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Abstract

This paper is a continuation of [1] where the classical model was analyzed. Discussed
are some quantization problems of two-dimensional affinely rigid body with the double
dynamical isotropy. Considered are highly symmetric models for which the variables
can be separated. Some explicit solutions are found using the Sommerfeld polynomial
method.

1 Introduction

In [1] we discussed the classical dynamics of the planar affinely-rigid body. The action-
angle analysis and discussion of degeneracy as well as the quasiclassical Bohr-Sommerfeld
quantization were also presented.

The two-dimensional problem may be effectively studied and may have some practical
applications both in macroscopic elasticity and in microscopic physical problems, e.g. on
the molecular level. There exist then potential models which are simultaneously physically
realistic and analytically treatable. On the classical level they are completely integrable and
may show some degeneracy properties following from hidden symmetries. We investigate
here the Schrödinger quantization procedure for such an object. We follow the standard
procedure of quantization in Riemannian manifolds [2], i.e. we use the L2-Hilbert space
of wave functions in the sense of the usual Riemannian measure (volume element). The
classical kinetic energy is replaced by the corresponding quantum expression based on
the Laplace-Beltrami operator. The separation of variables is performed and then the
corresponding one-dimensional Schrödinger equations are solved using the Sommerfeld
polynomial method [3].

2 Schrödinger quantization

Let us present now general ideas of the rigorous quantum-mechanical version of the model
investigated in [1]. We consider the two-dimensional body subject to constraints which
confine its deformative behavior to homogeneous strains. We do not take into account
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the motion of the center of mass. When translational degrees of freedom are neglected,
the configuration space becomes identical with the linear group: Q = GL(2, IR)-the group
of non-singular real 2 × 2 matrices. We will use the Cartesian and polar coordinates
(mentioned in [4, 5, 1]) to solve the stationary Schrödinger equation.

We use the Hilbert space L2(Q, µ̃) with the usual scalar product:

〈Ψ1 | Ψ2〉 =

∫

Ψ̄1Ψ2dµ̃, (2.1)

where Ψ1, Ψ2 are wave functions and µ̃ is the usual Riemannian measure. Therefore, in
the Cartesian and polar coordinates we have respectively:

dµ̃(θ, ψ, α, β) =
√

|det[Gij ]|dθdψdαdβ, [Gij ] =









α2 + β2 β2 − α2 0 0
β2 − α2 α2 + β2 0 0

0 0 1 0
0 0 0 1









,

dµ̃(θ, ψ, r, ϕ) =
√

|det[Gij ]|dθdψdrdϕ, [Gij ] =









r −r cosϕ 0 0
−r cosϕ r 0 0

0 0 1
4r 0

0 0 0 r
4









.

The Hamiltonian operator Ĥ is given by the expression:

1. Cartesian coordinates:

Ĥ = Ĥα + Ĥβ = − ~
2

2µ
∆ + V (α, β), (2.2)

where

Ĥα =
1

2µ

(

1

α2

(

Ŝ − Σ̂
)2

− ~
2

(

∂2

∂α2
+

1

α

∂

∂α

))

+ Vα(α),

Ĥβ =
1

2µ

(

1

β2

(

Ŝ + Σ̂
)2

− ~
2

(

∂2

∂β2
+

1

β

∂

∂β

))

+ Vβ(β),

and Ŝ = ~

i
∂
∂θ

is the spin operator, the generator of spatial rotations, and Σ̂ = ~

i
∂
∂ψ

is

the “vorticity” operator, the generator of material rotations. Operators Ĥα, Ĥβ, Ŝ,

Σ̂ are the quantum constants of motion. They also commute with each other (they
represent co-measurable physical quantities).

2. Polar coordinates:

Ĥ = Ĥr +
ĥϕ

r
= − ~

2

2µ
∆ + V (r, ϕ), (2.3)

where

Ĥr = −2~
2

µ

(

r
∂2

∂r2
+ 2

∂

∂r

)

+ Vr(r),

ĥϕ =
1

2µ

(

1

sin2 ϕ

(

Ŝ2 + Σ̂2 + 2ŜΣ̂ cosϕ
)

− 4~
2

(

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ

))

+ Vϕ(ϕ).

In these coordinates, the operators Ĥ, ĥϕ, Ŝ, Σ̂ are the quantum constants of motion.
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We restrict ourselves to the Stäckel-type potentials [1] and ∆ is the Laplace-Beltrami
operator corresponding to the metric G and its action on the wave function is given by the
following expression:

∆Ψ = Gij∇i∇jΨ =
1

√

|G|
∑

i,j

∂

∂xi

(

√

|G|Gij ∂Ψ

∂xj

)

, (2.4)

where ∇ denotes the operator of covariant differentiation. Thus, after some calculations
we obtain:

1. Cartesian coordinates:

∆Ψ =
∂2Ψ

∂α2
+
∂2Ψ

∂β2
+

1

α

∂Ψ

∂α
+

1

β

∂Ψ

∂β
+

(

1

4α2
+

1

4β2

)(

∂2Ψ

∂θ2
+
∂2Ψ

∂ψ2

)

+ (2.5)

+

(

1

2β2
− 1

2α2

)

∂2Ψ

∂θ∂ψ
.

A complete system of solutions of the stationary Schrödinger equation ĤΨ = EΨ
has the form:

Ψ(θ, ψ, α, β) = Θ(θ)Υ(ψ)A(α)B(β), (2.6)

where Θ(θ) = eimθ, Υ(ψ) = eilψ (m, l are integers) and A(α), B(β) are the purely
deformative wave functions.

2. Polar coordinates:

∆Ψ =
1

r sin2 ϕ

(

∂2Ψ

∂θ2
+
∂2Ψ

∂ψ2

)

+
2cosϕ

r sin2 ϕ

∂2Ψ

∂θ∂ψ
+4r

∂2Ψ

∂r2
+8

∂Ψ

∂r
+

4

r

(

∂2Ψ

∂ϕ2
+ cotϕ

∂Ψ

∂ϕ

)

,

(2.7)

Ψ(θ, ψ, r, ϕ) = Θ(θ)Υ(ψ)R(r)F (ϕ), (2.8)

where R(r), F (ϕ) are the deformative wave functions.

Hence, the stationary Schrödinger equation with an arbitrary potentials V (α, β) = Vα(α)+

Vβ(β), V (r, ϕ) = Vr(r)+
Vϕ(ϕ)
r

leads after the standard separation procedure to the follow-
ing system of one-dimensional eigenequations:

1. Cartesian coordinates:

∂2A(α)

∂α2
+

1

α

∂A(α)

∂α
− (m− l)2

4α2
A(α) +

2µ

~2
(Eα − Vα(α))A(α) = 0,

∂2B(β)

∂β2
+

1

β

∂B(β)

∂β
− (m+ l)2

4β2
B(β) +

2µ

~2
(Eβ − Vβ(β))B(β) = 0, (2.9)

where Eα and Eβ are fixed values of energy.
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2. Polar coordinates:

∂2R(r)

∂r2
+

2

r

∂R(r)

∂r
+

µ

2~2r

(

E − Vr(r) −
eϕ

r

)

R(r) = 0,

∂2F (ϕ)

∂ϕ2
+cotϕ

∂F (ϕ)

∂ϕ
−
(

m2 + l2 + 2ml cosϕ

4 sin2 ϕ
+

µ

2~2
(Vϕ(ϕ) − eϕ)

)

= 0, (2.10)

where eϕ is a separation constant and E is a fixed value of the energy.

It is natural to expect that for potentials discussed in [1] the resulting Schrödinger equa-
tions should be rigorously solvable in terms of some standard special functions. The most
convenient way of solving them is to use the Sommerfeld polynomial method [3].

3 Sommerfeld polynomial method

In this method the solutions are expressed by the usual or confluent Riemann P -functions.
They are deeply related to the hypergeometric functions (respectively usual F1 or confluent
F2). If the usual convergence demands are imposed, then the hypergeometric functions
become polynomials and our solutions are expressed by elementary functions. At the
same time the energy levels and separation constants are expressed by the eigenvalues
of the corresponding operators. There exists some special class of potentials to which
the Sommerfeld polynomial method is applicable. The restriction to solutions expressible
in terms of Riemann P -functions is reasonable, because this class of functions is well
investigated and many special functions used in physics may be expressed by them. There
is also an intimate relationship between these functions and representations of Lie groups.

4 Some rigorously solvable models

There exist potentials given by the formula [4, 5]: V = A
α2 + B

β2 + C
(

α2 + β2
)

, where A,
B, C are constants, which could lead to Schrödinger equation separable simultaneously in
Cartesian and polar coordinate systems. This simultaneous separability usually leads to
some degeneracy of the problem.

The equations (2.9) and (2.10) may be solved only when the explicit forms of potentials
V (α, β) and V (r, ϕ) are specified. It is clear that simple solutions in terms of known
special functions may be expected only when the potential has some particular geometric
interpretation. For example, this is the case when the corresponding classical problem is
degenerate and has some hidden symmetries.

4.1 Cartesian model

Here we consider the model of the Cartesian potential, i.e.

V (α, β) =
C

4

(

α2 +
4

α2

)

+
C

4
β2, C > 0. (4.1)

Applying the Sommerfeld polynomial method we obtain the energy levels E = Eα+Eβ as
follows:

E =
1

2
√

2
~ω

(

4n+ 2 + |m+ l| +
√

(m− l)2 +
8Cµ

~2

)

, (4.2)
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where

Eα =
~ω

2
√

2

(

4nα + 1 +

√

(m− l)2 +
8Cµ

~2

)

, Eβ =
~ω

2
√

2
(4nβ + 1 + |m+ l|) ,

and ω =
√

C
µ
, n = 0, 1, ...; m, l = 0,±1, . . .. The energy in (4.2) depends on an integer

combination of the quantum numbers, i.e. n = nα+nβ. After some calculations we obtain
the wave functions A(α) and B(β) in the form:

A(α) = αχκ
1

4
+ χ

2 e−
κ

2
α2

F2

(

−nα; 1 + χ;κα2
)

, (4.3)

B(β) = βγκ
1

4
+ γ

2 e−
κ

2
β2

F2

(

−nβ; 1 + γ;κβ2
)

, (4.4)

where χ =
√

(m− l)2 + 8Cµ
~2 , κ =

√

Cµ
2~2 , γ = 1

4 |m+ l|.

4.2 Polar model

Next we consider the model of the polar potential, i.e.

V (r, ϕ) =
C

4

(

r +
4

r

)

+
C

r
tg2ϕ

2
, C > 0. (4.5)

Here we obtain the following expressions for the spectrum of eigenvalues of the constant
eϕ and the energy levels E as follows:

E =
1

2
√

2
~ω

(

4nr +

√

4 + 16eϕ +
8Cµ

~2

)

, (4.6)

where eϕ = 1
16

(

(

4nϕ + 2 + |m+ l| +
√

(m− l)2 + 8Cµ
~2

)2

− 4 − 8Cµ
~2

)

. Finally we obtain

the energy spectrum in the following form:

E =
1

2
√

2
~ω

(

4n+ 2 + |m+ l| +
√

(m− l)2 +
8Cµ

~2

)

. (4.7)

The energy in (4.7) depends on an integer combination of the quantum numbers, i.e.
n = nr + nϕ. The functions R(r) and F (ϕ) are as follows:

R(r) = r−
1

2
(1−ξ)ǫ

1

2 e−
ǫ

2
rF2 (−nr; 1 + ξ; rǫ) , (4.8)

F (ϕ) =
(

cos
ϕ

2

)
χ

2

(

sin
ϕ

2

)2γ
F1

(

−nϕ, nϕ + 1 + 2γ +
1

2
χ; 1 +

1

2
χ; cos2 ϕ

2

)

, (4.9)

where ξ =
√

1 + 4eϕ + 2µ2ω2

~2 and ǫ =
√
µκ

~2 .
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5 Conclusions

Separability of the stationary Schrödinger equation in two different coordinate systems
has to do with degeneracy of the problem. Due to the lack of complete degeneracy in the
corresponding classical problems, topological closures of classical trajectories are three-
dimensional tori. The systems are one-fold degenerate. The quantum numbers labeling
the energy levels cannot be combined into a single quantum number, i.e. there is no
quantum degeneracy with respect to them.
Acknowledgments. Special thanks are to Professor Jan J. Sławianowski for his help
during my work on this article. I am also indebted to University in Białystok, Institute of
Fundamental Technological Research and Polish Committee of Scientific Research (KBN)
for the financial support of my participation in the XXIInd Workshop on Geometric Meth-
ods in Physics. I am very grateful to Professor A. Odzijewicz for the invitation and his
hospitality. The paper was prepared within the KBN grant 8T07A04720.

References

[1] Martens A, Hamiltonian dynamics of planar affinely-rigid body, J. of Nonlin. Math. Phys., in
these proceedings.

[2] Mackey G. W, The mathematical Foundation of Quantum Mechanics, W. A. Benjamin, Inc.,
New York, Amsterdam, 1963.

[3] Rubinowicz W, Quantum Mechanics, PWN, Warszawa 1968.

[4] Sławianowski J J, Analytical Mechanics of Deformable Bodies, PWN, Warszawa-Poznań, 1982.
(in Polish).

[5] Sławianowski J J, ZAAM, 62, 229, 1982.


