When is a sum of projections equal to a scalar operator?

Yurii S. SAMOĬLENKO

Institute of Mathematics, National Academy of Sciences of Ukraine, vul. Tereshchinkivs'ka, 3, Kiev, Ukraine
E-mail: yurii_sam@imath.kiev.ua

This article is part of the Proceedings titled "Geometrical Mathods in Physics: Bialowieza XXI and XXII"

1 Introduction

Collections of self-adjoint operators that act on a separable complex Hilbert space H, $\operatorname{dim} H \leq \infty$, have their spectra, $\sigma\left(A_{k}\right)$, in given finite sets $M_{k} \subset \mathbb{R}, k=1, \ldots, n$, and are such that the sum of them is a multiple of the identity operator play an important role in analysis, algebraic geometry, representation theory, and mathematical physics (see [1, 2] and the bibliography therein). The problem of describing the set Σ_{n} of values of the parameter α for which there exists a Hilbert space H, n orthogonal projections on H, P_{1}, \ldots, P_{n}, which are operators with the spectra in $\{0,1\}$, and such that $\sum_{k=1}^{n} P_{k}=\alpha I_{H}$ has been studied in $[3,4,5]$. The latter condition is equivalent to the fact that the $*$-algebra

$$
\mathcal{P}_{n, \alpha}=\mathbb{C}\left\langle p_{1}, \ldots, p_{n} \mid p_{k}^{2}=p_{k}^{*}=p_{k}(k=1, \ldots, n), \sum_{k=1}^{n} p_{k}=\alpha e\right\rangle
$$

has $*$-representations on a Hilbert space. Since the dimension of H is not fixed (it could even be infinite), it is difficult to describe Σ_{n} by using Horn's inequalities, see [1, 2] and the bibliography therein.

In this survey, following [5], we describe the set Σ_{n}. For $n \leq 4$, the set Σ_{n} is discrete, and the description of Σ_{n} and the corresponding representations have become a part of the mathematical folklore (a survey of the main results and a bibliography can be found in [5]). However, it turns out that the set Σ_{n} contains a nonempty interval for $n \geq 5$. If $n \geq 4, \Sigma_{n}=\Lambda_{n} \cup\left[\frac{n-\sqrt{n^{2}-4 n}}{2}, \frac{n+\sqrt{n^{2}-4 n}}{2}\right] \cup\left(n-\Lambda_{n}\right)$, where Λ_{n} is a discrete set which is the union of the following two series:

$$
\begin{aligned}
& \Lambda_{n}^{1}=\left\{0,1+\frac{1}{n-1}, 1+\frac{1}{n-2-\frac{1}{n-1}}, 1+\frac{1}{n-2-\frac{1}{n-2-\frac{1}{n-1}}}, \cdots\right\}, \\
& \Lambda_{n}^{2}=\left\{1,1+\frac{1}{n-2}, 1+\frac{1}{n-2-\frac{1}{n-2}}, 1+\frac{1}{n-2-\frac{1}{n-2-\frac{1}{n-2}}}, \cdots\right\} .
\end{aligned}
$$

We also give the following expression for Λ_{n} :

$$
\Lambda_{n}=\left\{\left.\frac{n-\sqrt{n^{2}-4 n} \operatorname{coth}\left(k \operatorname{Arch}\left(\frac{\sqrt{n}}{2}\right)\right)}{2} \right\rvert\, k \in \mathbb{N}\right\}
$$

All points of the sets Σ_{n} were found with the help of an approach to the description of the sets Σ_{n} based on the introduction of two functors Φ^{+}and Φ^{-}on the categories Rep $\mathcal{P}_{n, \alpha}$ of $*$-representations of the algebras $\mathcal{P}_{n, \alpha}$, see [6]. The functors Φ^{+}and Φ^{-} will be called Coxeter functors, because their structure and the role in the description of representations of the algebras $\mathcal{P}_{n, \alpha}$ are similar to those of the Coxeter functors in [7] in many respects.

Note that the problem of finding values of the parameter $\tau \in \mathbb{R}$ such that the $*$-algebra $\left.\mathcal{T} \mathcal{L}_{\infty, \tau}=\mathbb{C}\left\langle p_{1}, \ldots, p_{n}, \cdots\right| p_{k}^{2}=p_{k}=p_{k}^{*}(k \in \mathbb{N}) ; p_{k} p_{j}=p_{j} p_{k},|k-j| \geq 2 ; p_{k} p_{k \pm 1} p_{k}=\tau p_{k}\right\rangle$ has at least one representation is similar and goes back to the famous series of works of V. Jones (see [8]).

2 A description of the set Σ_{n}.

2.1 Preliminaries.

2.1.1 Elementary properties of Σ_{n}.

Proposition 1. (a) $\Sigma_{n} \subset[0, n]$;
(b) $\{0,1, \ldots, n\} \subset \Sigma_{n}$;
(c) $(0,1) \cap \Sigma_{n}=\emptyset$;
(d) $\left(1,1+\frac{1}{n-1}\right) \cap \Sigma_{n}=\emptyset$;
(e) $\alpha \in \Sigma_{n} \Longleftrightarrow n-\alpha \in \Sigma_{n}$.

Proof. (a) We have $0 \leq \alpha \leq n$, since the equivalent identities $\sum_{k=1}^{n} P_{k}=\alpha I$ and $\sum_{k=1}^{n}\left(I-P_{k}\right)=(n-\alpha) I$ have positive operators in the left-hand sides.
(b) If P_{k} are projections in a one-dimensional space such that m of them are identities and the other are zeros, then $\sum_{k=1}^{n} P_{k}=m I$.
(c) $\Sigma_{n} \cap(0,1)=\emptyset$, since if $0<\alpha<1$ and $\sum_{k=1}^{n} P_{k}=\alpha I$, then at least one projection $P_{j} \neq 0$. Then $\sum_{k \neq j}^{n} P_{k}=\alpha I-P_{j}$. But there is a nonnegative operator in the left-hand side of this identity, whereas the right-hand side is an operator which is not nonnegative. A contradiction.
(d) Let us first give a simple proof assuming that $\operatorname{dim} H=m<\infty$. Let $P_{i}, i=1, \ldots, n$, be projections in the space $H, 0<\epsilon$, and the sum of the projections equal $(1+\epsilon) I$. Then $\forall k, k=1, \ldots, n$, we have $\sum_{i \neq k}^{n} P_{i}=(1+\epsilon) I-P_{k}$ and $\sum_{i \neq k}^{n} \operatorname{tr}\left(P_{i}\right)=(1+\epsilon) m-\operatorname{tr}\left(P_{k}\right)$ (m is the dimension of H). Since $\sum_{i \neq k}^{n} \operatorname{tr}\left(P_{i}\right) \geq \operatorname{rank}\left(\sum_{i \neq k}^{n}\left(P_{i}\right)\right)=m$, we have that $\operatorname{tr}\left(P_{k}\right) \leq \epsilon m$. Because k is arbitrary, $(1+\epsilon) m=\sum_{i=1}^{n} \operatorname{tr}\left(P_{i}\right) \leq \sum_{i=1}^{n} \epsilon m=m n \epsilon$, whence $\epsilon \geq \frac{1}{n-1}$.

If the space H is separable, to prove property (d) we will need the following lemmas on the spectrum of a sum of orthogonal projections.

Lemma 1. Let a number $1 \geq \tau>0$ and projections P_{1}, P_{2} be given. Then if $\lambda \in$ $\sigma\left(\tau P_{1}+P_{2}\right), \lambda \neq 0, \tau, 1,1+\tau$, we have that $1+\tau-\lambda \in \sigma\left(\tau P_{1}+P_{2}\right)$.

Proof. It is sufficient to check the statement of the lemma for irreducible pairs of orthogonal projections. Irreducible pairs of orthogonal projections can only be one and twodimensional. For one-dimensional pairs of projections, $\lambda \in \sigma\left(\tau P_{1}+P_{2}\right) \subset\{0, \tau, 1,1+\tau\}$. Any two-dimensional pair of orthogonal projections is unitarily equivalent to the pair

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\cos ^{2} \phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & \sin ^{2} \phi
\end{array}\right)
$$

for some $0<\phi<\pi / 2$, and the statement of the lemma for this pair is verified directly.

Corollary 1. If $0<\epsilon<\tau \leq 1$ and $\tau P_{1}+P_{2} \leq(1+\epsilon) I$, then $\tau P_{1}+P_{2} \geq(\tau-\epsilon) P_{\operatorname{Im} P_{1}+\operatorname{Im} P_{2}}$, where $P_{\operatorname{Im} P_{1}+\operatorname{Im} P_{2}}$ is the orthogonal projection onto the closed linear span of $\operatorname{Im} P_{1}+\operatorname{Im} P_{2}$.

Proof. Suppose that there exists a number $\lambda \in \sigma\left(\tau P_{1}+P_{2}\right)$ such that $0<\lambda<(\tau-\epsilon)$. Then $1+\tau-\lambda>1+\epsilon$. However, by Lemma $1,1+\tau-\lambda \in \sigma\left(\tau P_{1}+P_{2}\right)$, which contradicts the conditions of the corollary.

In the next lemma, we consider the case of a greater number of orthogonal projections.
Let P_{1}, \ldots, P_{k} be projections on a Hilbert space. Define the subspaces $\mathfrak{H}_{k}=\operatorname{Im} P_{1}+$ $\cdots+\operatorname{Im} P_{k}$ in H as closed linear spans of $\operatorname{Im} P_{1}+\cdots+\operatorname{Im} P_{k}$ in H.

Lemma 2. Let $0<\epsilon<1$ and $\sum_{k=1}^{n} P_{k} \leq(1+\epsilon) I$. Then $\sum_{k=1}^{m} P_{k} \geq(1-(m-1) \epsilon) P_{\mathfrak{H}_{m}}$ for all $m=1,2, \ldots, n$.

Proof. We use induction on m. For $m=2$, the statement of the lemma is directly deduced from Corollary 1, since $P_{1}+P_{2} \leq(1+\epsilon) I$. Let now $m>2$ be fixed and $\sum_{k=1}^{m-1} P_{k} \geq(1-(m-2) \epsilon) P_{\mathfrak{H}_{m-1}}$. Then $\sum_{k=1}^{m} P_{k} \leq(1+\epsilon) I$ and, by Corollary $1, \sum_{k=1}^{m} P_{k}=$ $\sum_{k=1}^{m-1} P_{k}+P_{m} \geq(1-(m-2) \epsilon) P_{\mathfrak{H}_{m-1}}+P_{m} \geq(1-(m-1) \epsilon) P_{\mathfrak{H}_{m}}$.

Let us now proceed with the proof of property (d). If P_{k} are projections on $H, \epsilon>0$, and $\sum_{k=1}^{n} P_{k}=(1+\epsilon) I$, then the operator $\sum_{k=1}^{n-1} P_{k}=(1+\epsilon) I-P_{n}$ has the diagonal form in a certain basis, $\operatorname{diag}\{1+\epsilon, \ldots, 1+\epsilon, \ldots, \epsilon, \ldots \epsilon, \ldots\}$. This shows that the space \mathfrak{H}_{n-1} coincides with the entire H and $\epsilon \in \sigma\left(P_{1}+\cdots+P_{n-1}\right)$. By applying Lemma 2 with $m=n-1$, we get $\epsilon \geq 1-(n-2) \epsilon$, that is, $\epsilon \geq \frac{1}{n-1}$.
(e) If P_{1}, \ldots, P_{n} are orthogonal projections on H such that $\sum_{1}^{n} P_{k}=\alpha I$, then P_{k}^{\perp} are orthogonal projections on H such that $\sum_{k=1}^{n} P_{k}^{\perp}=\sum_{k=1}^{n}\left(I-P_{k}\right)=n I-\sum_{k=1}^{n} P_{k}=$ $(n-\alpha) I$. Hence, $(n-\alpha) \in \Sigma_{n}$.

Remark 1. The $*$-algebras $\mathcal{P}_{n, \alpha}$ and $\mathcal{P}_{n, n-\alpha}$ are isomorphic. Therefore, the categories of their $*$-representations, $\operatorname{Rep} \mathcal{P}_{n, \alpha}$ and $\operatorname{Rep} \mathcal{P}_{n, n-\alpha}$, coincide. Indeed, let $\mathcal{P}_{n, \alpha}=\mathbb{C}\left\langle p_{1}, \ldots, p_{n}\right|$ $\left.p_{k}^{2}=p_{k}^{*}=p_{k}, \sum_{k=1}^{n} p_{k}=\alpha e\right\rangle$, and $\mathcal{P}_{n, n-\alpha}=\mathbb{C}\left\langle\tilde{p}_{1}, \ldots, \tilde{p}_{n}\right| \tilde{p}_{k}^{2}=\tilde{p}_{k}^{*}=\tilde{p}_{k}, \sum_{k=1}^{n} \tilde{p}_{k}=$ $(n-\alpha) e\rangle$. Then the mapping $p_{k} \mapsto e-\tilde{p}_{k}$ defines a $*$-isomorphism of the $*$-algebras $\mathcal{P}_{n, \alpha}$ and $\mathcal{P}_{n, n-\alpha}$.

2.1.2 A description of Σ_{n} and $*$-representations of the $*$-algebras $\mathcal{P}_{n, \alpha}, \alpha \in \Sigma_{n}$

 for $n \leq 4$.Several papers deal with this problem (see $[9,10,11,12,13,14]$ e.a.) The following simple assertion holds.
Proposition 2. (a) $\Sigma_{3}=\left\{0,1, \frac{3}{2}, 2,3\right\}$;
(b) $\mathcal{P}_{3, \alpha}=0$, if $\alpha \notin \Sigma_{3}$;
(c) $\mathcal{P}_{3,0}=\mathcal{P}_{3,3}=\mathbb{C}^{1}, \mathcal{P}_{3,1}=\mathcal{P}_{3,2}=\mathbb{C}^{1} \oplus \mathbb{C}^{1} \oplus \mathbb{C}^{1}, \mathcal{P}_{3,3 / 2}=M_{2}\left(\mathbb{C}^{1}\right)$;
(d) There exists a unique, up to a unitary equivalence, irreducible representation of the algebra $\mathcal{P}_{3,3 / 2}$,

$$
P_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{cc}
\frac{1}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{3}{4}
\end{array}\right), \quad P_{3}=\left(\begin{array}{cc}
\frac{1}{4} & -\frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & \frac{3}{4}
\end{array}\right) .
$$

All the algebras $\mathcal{P}_{4, \alpha}$ are already infinite dimensional; only the algebra $\mathcal{P}_{4,2}$ is a $P I$ algebra (see [15]). However, Σ_{4} and the $*$-representations $\mathcal{P}_{4, \alpha}, \alpha \in \Sigma_{4}$, have a simple structure (see, for example, [14]).
Proposition 3. (a) $\Sigma_{4}=\left\{0,1,1+\frac{k}{k+2}(k \in \mathbb{N}), 2,3-\frac{k}{k+2}(k \in \mathbb{N}), 3,4\right\} ;$
(b) The $*$-algebra $\mathcal{P}_{4,0}$ has a unique representation, $P_{1}=P_{2}=P_{3}=P_{4}=0$;
(c) The *-algebra $\mathcal{P}_{4,1}$ has 4 irreducible (nonequivalent, one-dimensional) representations, $P_{1}=\cdots=P_{k-1}=P_{k+1}=\cdots=P_{4}=0, P_{k}=1, k=1,2,3,4 ;$
(d) For odd k, there exists a unique (up to an equivalence) ($k+2$)-dimensional irreducible representation of the $*$-algebra $\mathcal{P}_{n, 1+\frac{k}{k+2}}$;
(e) For even $k=2 k_{1}$, there exist four nonequivalent $\left(k_{1}+1\right)$-dimensional irreducible representations of the $*$-algebra $\mathcal{P}_{n, 1+\frac{k}{k+2}}$;
(f) The algebra $\mathcal{P}_{4,2}$ is a PI-algebra. The irreducible *-representations of $\mathcal{P}_{4,2}$ are one- and two-dimensional. There exist six nonequivalent one-dimensional representations of $\mathcal{P}_{4,2}$, - two projections equal zero and two projections equal the identity. Nonequivalent two-dimensional representations $\pi_{a, b, c}$ of the $*$-algebra $\mathcal{P}_{4,2}$ depend on points of the set $\left\{(a, b, c) \in \mathbb{R}^{3} \mid a^{2}+b^{2}+c^{2}=1, a>0, b>0, c \in[-1,1]\right.$, or $a=0, b>0, c>0$, or $a>0, b=0, c>0\}$, the operators of the representation are the following:

$$
\begin{aligned}
& \pi_{a, b, c}\left(p_{1}\right)=\frac{1}{2}\left(\begin{array}{cc}
1+a & -b-i c \\
-b+i c & 1-c
\end{array}\right), \pi_{a, b, c}\left(p_{2}\right)=\frac{1}{2}\left(\begin{array}{cc}
1-a & b-i c \\
b+i c & 1+a
\end{array}\right), \\
& \pi_{a, b, c}\left(p_{3}\right)=\frac{1}{2}\left(\begin{array}{cc}
1-a & -b+i c \\
-b-i c & 1+a
\end{array}\right), \pi_{a, b, c}\left(p_{4}\right)=\frac{1}{2}\left(\begin{array}{cc}
1+a & b+i c \\
b-i c & 1-a
\end{array}\right) .
\end{aligned}
$$

We remark that a proof of items (a) - (e) and the formulas for the operators of the irreducible representations of the $*$-algebras $\mathcal{P}_{4, \alpha}, \alpha \in \Sigma_{4}$, can be obtained from the constructions carried out below for the $*$-algebras $\mathcal{P}_{n, \alpha}$, where $n \geq 4$.

2.2 On Coxeter functors and their properties

2.2.1 Functors of linear and hyperbolic reflections

Let us construct a functor $T: \operatorname{Rep} \mathcal{P}_{n, \alpha} \longrightarrow \operatorname{Rep} \mathcal{P}_{n, n-\alpha}, \alpha<n$. If π is a representation in the category $\operatorname{Rep} \mathcal{P}_{n, \alpha}$ and $\pi\left(p_{i}\right)=P_{i}$ are projections on the space H, then, on the same space, the operators $P_{i}^{\perp}=I_{H}-P_{i}$ define a representation $T(\pi)$ in the category Rep $\mathcal{P}_{n, n-\alpha}$. Functor T is identity on morphisms.

In the sequel, we will call the functor T the linear reflection functor. It is clear that $T^{2}=I d$, where $I d$ is the identity functor.

Construct now a functor $S: \operatorname{Rep} \mathcal{P}_{n, \alpha} \longrightarrow \operatorname{Rep} \mathcal{P}_{n, 1+\frac{1}{\alpha-1}}, \alpha>1$ (in the proceeding, we call it the hyperbolic reflection functor).

Let π be a representation of the algebra $\mathcal{P}_{n, \alpha}, \pi\left(p_{i}\right)=P_{i}$, where P_{i} are orthogonal projections on the space H. Consider the spaces $H_{i}=\operatorname{Im} P_{i}$ and the natural isometries $\Gamma_{i}: H_{i} \longrightarrow H$. Then $\Gamma_{i}^{*}: H \longrightarrow H_{i}$ are epimorphisms and

$$
\begin{equation*}
\Gamma_{i}^{*} \Gamma_{i}=I_{H_{i}}, P_{i}=\Gamma_{i} \Gamma_{i}^{*} . \tag{2.1}
\end{equation*}
$$

Let $\mathfrak{H}=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n}$. Define the linear operator $\Gamma: \mathfrak{H} \longrightarrow H$ by its Pierce decomposition, $\Gamma=\left[\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}\right]$.

Since $\Gamma \Gamma^{*}=\sum_{i=1}^{n} \Gamma_{i} \Gamma_{i}^{*}=\sum_{i=1}^{n} P_{i}=\alpha I_{H}$, we have that $\left(\frac{1}{\sqrt{\alpha}} \Gamma\right)\left(\frac{1}{\sqrt{\alpha}} \Gamma^{*}\right)=I_{H}$, so that $\frac{1}{\sqrt{\alpha}} \Gamma^{*}$ is an isometry of the space H into \mathfrak{H}. Let \hat{H} be the orthogonal complement to $\operatorname{Im} \Gamma^{*}$ in \mathfrak{H}.

Denote by $\sqrt{\frac{\alpha-1}{\alpha}} \triangle^{*}$ the natural isometry of \hat{H} into \mathfrak{H}. Then $U^{*}=\left[\sqrt{\frac{\alpha-1}{\alpha}} \triangle^{*}, \frac{1}{\sqrt{\alpha}} \Gamma^{*}\right]$ is a unitary operator from the space $\hat{H} \oplus H$ onto the space \mathfrak{H}. Since $\mathfrak{H}=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n}$, the operator U has the following Pierce decomposition:

$$
U=\left[\begin{array}{cccc}
\sqrt{\frac{\alpha-1}{\alpha}} \triangle_{1} & \sqrt{\frac{\alpha-1}{\alpha}} \triangle_{2} & \cdots & \sqrt{\frac{\alpha-1}{\alpha}} \triangle_{n} \\
\frac{1}{\sqrt{\alpha}} \Gamma_{1} & \frac{1}{\sqrt{\alpha}} \Gamma_{2} & \cdots & \frac{1}{\sqrt{\alpha}} \Gamma_{n}
\end{array}\right],
$$

$U: \mathfrak{H} \longrightarrow \hat{H} \oplus H, \triangle_{i}: H_{i} \longrightarrow \hat{H}, \triangle_{i}^{*}: \hat{H} \longrightarrow H_{i}$. Since $U^{*} U=I_{\mathfrak{H}}$, we have that $\frac{\alpha-1}{\alpha} \triangle_{i}^{*} \triangle_{i}+\frac{1}{\alpha} \Gamma_{i}^{*} \Gamma_{i}=I_{H_{i}}$ or (since $\left.\Gamma_{i}^{*} \Gamma_{i}=I_{H_{i}}\right) \triangle_{i}^{*} \triangle_{i}=I_{H_{i}}(i=1, \ldots, n)$. Moreover, $\frac{\alpha-1}{\alpha} \triangle_{i}^{*} \triangle_{j}+\frac{1}{\alpha} \Gamma_{i}^{*} \Gamma_{j}=0$ for $i \neq j$, so that $\triangle_{i}^{*} \triangle_{j}=-\frac{1}{\alpha-1} \Gamma_{i}^{*} \Gamma_{j}$ for $i \neq j$. Since $U U^{*}=$ $I_{\hat{H} \oplus H}$, we have that $\frac{\alpha-1}{\alpha}\left(\triangle_{1} \triangle_{1}^{*}+\cdots+\triangle_{n} \triangle_{n}^{*}\right)=I_{\hat{H}}$, or $\sum_{i=1}^{n} \triangle_{i} \triangle_{i}^{*}=\frac{\alpha}{\alpha-1} I_{\hat{H}}$. Besides, $\frac{\sqrt{\alpha-1}}{\alpha} \sum_{i=1}^{n} \triangle_{i} \Gamma_{i}^{*}=0$, i.e., $\sum_{i=1}^{n} \triangle_{i} \Gamma_{i}^{*}=0$. Hence, we have the following formulas:

$$
\begin{align*}
& \triangle_{i}^{*} \triangle_{i}=I_{H_{i}}, i=1, \ldots, n ; \tag{2.2a}\\
& \sum_{i=1}^{n} \triangle_{i} \triangle_{i}^{*}=\frac{\alpha}{\alpha-1} I_{\hat{H}} ; \tag{2.2b}\\
& \triangle_{i}^{*} \triangle_{j}=-\frac{1}{\alpha-1} \Gamma_{i}^{*} \Gamma_{j} \text { for } i \neq j ; \tag{2.2c}\\
& \sum_{i=1}^{n} \triangle_{i} \Gamma_{i}^{*}=0 . \tag{2.2~d}
\end{align*}
$$

Define now the functor S as follows: $S(\pi)=\hat{\pi}$, where $\hat{\pi}\left(p_{i}\right)=\triangle_{i} \triangle_{i}^{*}$. It is easy to verify that identity (2.2a) implies that $\triangle_{i} \triangle_{i}^{*}$ are orthogonal projections which are denoted in the sequel by $Q_{i}\left(Q_{i}: \hat{H} \longrightarrow \hat{H}\right)$. Identity (2.2b) means that $\sum_{i=1}^{n} Q_{i}=\frac{\alpha}{\alpha-1} I_{\hat{H}}$, that is, $\hat{\pi}$ is a representation of the algebra $\mathcal{P}_{n, 1+\frac{1}{\alpha-1}}$.

Let C be a morphism from a representation π to a representation $\tilde{\pi}$, i.e., a mapping $C: H \longrightarrow \tilde{H}$ such that $C \pi\left(p_{i}\right)=\tilde{\pi}\left(p_{i}\right) C$. Denote by C_{i} the restriction of the operator C to the space $H_{i} ; C_{i}$ maps H_{i} into the space \tilde{H}_{i}. It is easy to see that

$$
\begin{align*}
& C \Gamma_{i}=\tilde{\Gamma}_{i} C_{i} \tag{2.3a}\\
& C_{i} \Gamma_{i}^{*}=\tilde{\Gamma}_{i}^{*} C . \tag{2.3b}
\end{align*}
$$

It follows from relations (2.3) that

$$
\begin{align*}
C_{i} & =\tilde{\Gamma}_{i}^{*} C \Gamma_{i} \tag{2.4a}\\
C & =\frac{1}{\alpha} \sum_{i=1}^{n} \tilde{\Gamma}_{i} C_{i} \Gamma_{i}^{*} \tag{2.4b}
\end{align*}
$$

Using a formula similar to formula (2.4b) we set $\hat{C}=\frac{\alpha-1}{\alpha} \sum_{i=1}^{n} \tilde{\triangle}_{i} C_{i} \triangle_{i}^{*}$. Let us show that \hat{C} is a morphism from the representation $\hat{\pi}=S(\pi)$ into the representation $\hat{\tilde{\pi}}=S(\tilde{\pi})$, i.e., $\hat{C} \hat{\pi}\left(p_{i}\right)=\hat{\tilde{\pi}}\left(p_{i}\right) \hat{C}$ or $\hat{C} Q_{k}=\tilde{Q}_{k} \hat{C}(k=1 \ldots, n)$.

It will suffice to prove that $\hat{C} \triangle_{k}=\widetilde{\triangle}_{k} C_{k}$ and $C_{k} \triangle_{k}^{*}=\tilde{\triangle}_{k}^{*} \hat{C}$ (then $\hat{C} Q_{k}=\hat{C} \triangle_{k} \triangle_{k}^{*}=$ $\left.\tilde{\triangle}_{k} C_{k} \triangle_{k}^{*}=\tilde{\triangle}_{k} \tilde{\triangle}_{k}^{*} \hat{C}=Q_{k} \hat{C}\right)$. We have $\hat{C} \triangle_{k}=\frac{\alpha-1}{\alpha} \sum_{i=1}^{n} \tilde{\triangle}_{i} C_{i}\left(\triangle_{i}^{*} \triangle_{k}\right)$. By using (2.2a) and (2.2d) we get $\hat{C} \triangle_{k}=-\frac{1}{\alpha} \sum_{i=1, i \neq k}^{n} \tilde{\triangle}_{i}\left(C_{i} \Gamma_{i}^{*}\right) \Gamma_{k}+\frac{\alpha-1}{\alpha} \tilde{\triangle}_{k} C_{k}$. It follows from (2.3b) that $\hat{C} \triangle_{k}=-\frac{1}{\alpha} \sum_{i=1, i \neq k}^{n} \tilde{\triangle}_{i} \tilde{\Gamma}_{i}^{*}\left(C \Gamma_{k}\right)+\frac{\alpha-1}{\alpha} \tilde{\triangle}_{k} C_{k}$, and (2.3a) yields $\hat{C} \triangle_{k}=-\frac{1}{\alpha} \sum_{i=1, i \neq k}^{n}$ $\tilde{\triangle}_{i} \tilde{\Gamma}_{i}^{*} \tilde{\Gamma}_{k} C_{k}+\frac{\alpha-1}{\alpha} \tilde{\triangle}_{k} C_{k}$. Using (2.4b) we get $\hat{C} \triangle_{k}=\frac{1}{\alpha} \tilde{\triangle}_{k} \tilde{\Gamma}_{k}^{*} \tilde{\Gamma}_{k} C_{k}+\frac{\alpha-1}{\alpha} \tilde{\triangle}_{k} C_{k}=\frac{1}{\alpha} \tilde{\triangle}_{k} C_{k}+$ $\frac{\alpha-1}{\alpha} \tilde{\triangle}_{k} C_{k}=\tilde{\triangle}_{k} C_{k}$, what was to be proved.

Similarly, $\tilde{\triangle}_{k}^{*} \hat{C}=\frac{\alpha-1}{\alpha} \sum_{i=1}^{n} \tilde{\triangle}_{k}^{*} \tilde{\triangle}_{i} C_{i} \triangle_{i}^{*}=-\frac{1}{\alpha} \sum_{i=1, i \neq k}^{n} \tilde{\Gamma}_{k}^{*}\left(\tilde{\Gamma}_{i} C_{i}\right) \triangle_{i}^{*}+\frac{\alpha-1}{\alpha} C_{k} \triangle_{k}^{*}=$ $-\frac{1}{\alpha} \sum_{i=1, i \neq k}^{n} \tilde{\Gamma}_{k}^{*} C \Gamma_{i} \triangle_{i}^{*}+\frac{\alpha-1}{\alpha} C_{k} \triangle_{k}^{*}=-\frac{1}{\alpha} \sum_{i=1, i \neq k}^{n} C_{k} \Gamma_{k}^{*} \Gamma_{i} \triangle_{i}^{*}+\frac{\alpha-1}{\alpha} C_{k} \triangle_{k}^{*}=\frac{1}{\alpha} C_{k} \Gamma_{k}^{*} \Gamma_{k} \triangle_{k}^{*}+$ $\frac{\alpha-1}{\alpha} C_{k} \triangle_{k}^{*}=\frac{1}{\alpha} C_{k} \triangle_{k}^{*}+\frac{\alpha-1}{\alpha} C_{k} \triangle_{k}^{*}=C_{k} \triangle_{k}^{*}$.

Define $S(C)=\hat{C}$. This completes the construction of the functor S.
Remark 2. A more precise notation for the functor S would include indices that indicate the category Rep $\mathcal{P}_{n, \alpha}$ on which it is defined, for example, $S_{n, \alpha}$. But it is more convenient for us to regard the functor S as being the same for each category Rep $\mathcal{P}_{n, \alpha}, \alpha>1$.

Remark 3. The restriction of the constructed unitary operator $U: H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n} \longrightarrow$ $\hat{H} \oplus H$ to the subspace H_{i} is the isometry $\mathcal{B}_{i}=\left[\begin{array}{c}\sqrt{\frac{\alpha-1}{\alpha}} \triangle_{i} \\ \frac{1}{\sqrt{\alpha}} \Gamma_{i}\end{array}\right]$ of the space H_{i} into $\hat{H} \oplus H$, so that the operator $\mathcal{P}_{i}=\mathcal{B}_{i} \mathcal{B}_{i}^{*}$ is an orthogonal projection in the space $\hat{H} \oplus H$,

$$
\mathcal{P}_{i}=\left[\begin{array}{cc}
\frac{\alpha-1}{\alpha} \triangle_{i} \triangle_{i}^{*} & \frac{\sqrt{\alpha-1}}{\alpha} \triangle_{i} \Gamma_{i}^{*} \\
\frac{\sqrt{\alpha-1}}{\alpha} \Gamma_{i} \triangle_{i}^{*} & \frac{1}{\alpha} \Gamma_{i} \Gamma_{i}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\alpha-1}{\alpha} Q_{i} & \frac{\sqrt{\alpha-1}}{\alpha} \triangle_{i} \Gamma_{i}^{*} \\
\frac{\sqrt{\alpha-1}}{\alpha} \Gamma_{i} \triangle_{i}^{*} & \frac{1}{\alpha} P_{i}
\end{array}\right] .
$$

Using identities (2.2) it is easy to check that $\mathcal{P}_{1}+\mathcal{P}_{2}+\cdots+\mathcal{P}_{n}=I_{\hat{H} \oplus H}$. We thus have constructed a concrete "joint" dilatation of resolutions of the identity operators $I_{\hat{H}}=$
$\frac{\alpha-1}{\alpha} Q_{1}+\cdots+\frac{\alpha-1}{\alpha} Q_{n}$ and $I_{H}=\frac{1}{\alpha} P_{1}+\cdots+\frac{1}{\alpha} P_{n}$ in the spaces \hat{H} and H, correspondingly, to a decomposition of the identity operator in the spaces $\hat{H} \oplus H$ into a sum of orthogonal projections.

Theorem 1. We have $S^{2}=\mathrm{Id}$ (by Id we denote the identity functor on the corresponding category Rep $\mathcal{P}_{n, \alpha}$). The functor S defines an equivalence between the categories Rep $\mathcal{P}_{n, \alpha}$ and Rep $\mathcal{P}_{n, 1+\frac{1}{\alpha-1}}$.

Proof. Since $C_{i}=\tilde{\Gamma}_{i}^{*} C \Gamma_{i}, C_{i}=\tilde{\triangle}_{i}^{*} \hat{C} \triangle_{i}$, and $C=\frac{1}{\alpha} \sum_{i=1}^{n} \tilde{\Gamma}_{i} C_{i} \Gamma_{i}^{*}, \widehat{C}=\frac{\alpha-1}{\alpha} \sum_{i=1}^{n} \tilde{\triangle}_{i} C_{i} \triangle_{i}^{*}$, we have that the functor S is strict and full. Each representation $\hat{\pi}$ in the category Rep $\mathcal{P}_{n, 1+\frac{1}{\alpha-1}}$ is equivalent to one of the representations $S(\pi)$ (for example, $S^{2}(\hat{\pi})$). The operators $\Gamma_{i}, \triangle_{i}$ enter the matrix U symmetrically, so that $S^{2}=\mathrm{Id}$.

2.2.2 The Coxeter functors Φ^{+}and Φ^{-}. The Coxeter mappings Φ^{+}and Φ^{-} on Σ_{n} and on the dimensions of the representations.

Define now the functors Φ^{+}and Φ^{-}as follows: $\Phi^{+}=S T$ for $\alpha<n-1, \Phi^{-}=T S$ for $\alpha>1$. In what follows, we call these functors the Coxeter functors on the set of categories Rep $\mathcal{P}_{n, \alpha}$.

Theorem 2. The functors $\Phi^{+}: \operatorname{Rep} \mathcal{P}_{n, \alpha} \longrightarrow \operatorname{Rep} \mathcal{P}_{n, 1+\frac{1}{n-1-\alpha}}, \Phi^{-}: \operatorname{Rep} \mathcal{P}_{n, \alpha} \longrightarrow$ Rep $\mathcal{P}_{n, n-1-\frac{1}{\alpha-1}}$ define an equivalence of the corresponding categories; $\Phi^{+} \Phi^{-}=\mathrm{Id}$, $\Phi^{-} \Phi^{+}=\mathrm{Id}$.

Proof. The proof follows in an evident way from Theorem 1 and a similar assertion for the functor T.

The functors Φ^{+}, Φ^{-}, S, T give rise to mappings on the sets of dimensions of representations (in the case where the representations are finite dimensional) and on the set Σ_{n}. These mappings will be denoted with the same symbols as the functors.

By the generalized dimension of a representation π of the algebra $\mathcal{P}_{n, \alpha}$ on a space H, we will call the vector $\left(d ; d_{1}, \ldots, d_{n}\right)$, where $d=\operatorname{dim} H, d_{i}=\operatorname{dim} H_{i}\left(H_{i}=\operatorname{Im} P_{i}\right)$.

It is easy to see how the dimension changes when passing to the representations $S(\pi)$ and $T(\pi)$,

$$
\begin{align*}
& S\left(d ; d_{1}, d_{2}, \ldots, d_{n}\right)=\left(\sum_{i=1}^{n} d_{i}-d ; d_{1}, d_{2}, \ldots, d_{n}\right) \\
& T\left(d ; d_{1}, d_{2}, \ldots, d_{n}\right)=\left(d ; d-d_{1}, d-d_{2}, \ldots, d-d_{n}\right) \tag{2.5}
\end{align*}
$$

For the set of the generalized dimension, the mappings Φ^{+}, Φ^{-}are compositions of the mappings (2.5).

The number-valued mappings T, S, Φ^{+}, Φ^{-}on Σ_{n} are given by $T(\alpha)=n-\alpha, S(\alpha)=$ $1+\frac{1}{\alpha-1}, \Phi^{+}(\alpha)=1+\frac{1}{n-1-\alpha}, \Phi^{-}(\alpha)=n-1-\frac{1}{\alpha-1}$. Denote $\Phi^{+k}(\alpha)=\Phi^{+}\left(\Phi^{+k-1}(\alpha)\right)$ (Φ^{+0} is the identity mapping). Let $\Phi^{+k}(\alpha)=1+\frac{a_{k-1}}{a_{k}}(k \in \mathbb{N})$. Then $\vec{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is a linear recurrence sequence with the characteristic polynomial $F(x)=x^{2}-(n-2) x+1$ and the initial vector $(1, n-1-\alpha)$. As is well known, the linear space $L(F)$ of all linear recurrence sequences with a fixed characteristic polynomial $F(x)$ is a module over the polynomial ring $\mathbb{R}[x]$ if setting $x \vec{a}=\left(a_{1}, a_{2}, \ldots\right)$ (a shift to the left by one position). Here,
this module is cyclic with a generating element $\vec{e}=(0,1, \ldots)$ which is a recurrence sequence from $L(F)$ having $(0,1)$ as the initial vector. A polynomial $\phi(x)$ satisfying $\vec{a}=\phi(x) \vec{e}$ is called a generator of the sequence \vec{a}.

It is easy to see that $\vec{a}=\left(1, n-1-\alpha, a_{2}, a_{3}, \ldots\right)=(x+1-\alpha) \vec{e}$. Let us first construct the recurrence sequence $\vec{e}, \vec{e}=\left(b_{0}, b_{1}, b_{2}, \ldots\right) \equiv\left(0,1, n-2,(n-2)^{2}-1,(n-2)^{3}-2(n-2), \ldots\right)$. One easily proves by induction that $b_{k}=\sum_{i=0}^{\left[\frac{k-1}{2}\right]}(-1)^{i} C_{k-1-i}^{i}(n-2)^{k-1-2 i}, k \geq 2$, so that $a_{k}=b_{k+1}+(1-\alpha) b_{k}$ and $\Phi^{+}(\alpha)=1+\frac{1}{n-1-\alpha}, \Phi^{+2}(\alpha)=1+\frac{a_{1}}{a_{2}}, \Phi^{+k}(\alpha)=1+\frac{a_{k-1}}{a_{k}}$, that is, $\Phi^{+k}(\alpha)=1+\frac{\sum_{i=0}^{\left[\frac{k-1}{2}\right]}(-1)^{i} C_{k-1-i}^{i}(n-2)^{k-1-2 i}+(1-\alpha) \sum_{i=0}^{\left[\frac{k-2}{2}\right]}(-1)^{i} C_{k-2-i}^{i}(n-2)^{k-2-2 i}}{\sum_{i=0}^{\left[\frac{k}{2}\right]}(-1)^{i} C_{k-i}^{i}(n-2)^{k-2 i}+(1-\alpha) \sum_{i=0}^{\left[\frac{k-1}{2}\right]}(-1)^{i} C_{k-1-i}^{i}(n-2)^{k-1-2 i}}$.

2.3 About the set Σ_{n}.

Having constructed the functors S, T, Φ^{+}, Φ^{-}, we, at the same time, have proved the following lemma.

Lemma 3. Let $\alpha \in \Sigma_{n}$. Then $T(\alpha) \in \Sigma_{n}$. If $\alpha>1$, then the number $S(\alpha) \in \Sigma_{n}$ and the number $\Phi^{-}(\alpha) \in \Sigma_{n}$. If $\alpha<n-1$, then $\Phi^{+}(\alpha) \in \Sigma_{n}$.

The following is the main theorem of this section.
Theorem 3. $\Sigma_{n}=\left\{\Lambda_{n}^{1}, \Lambda_{n}^{2},\left[\frac{n-\sqrt{n^{2}-4 n}}{2}, \frac{n+\sqrt{n^{2}-4 n}}{2}\right], n-\Lambda_{n}^{1}, n-\Lambda_{n}^{2}\right\}$.
The proof of the theorem is split into two parts, - a description of points of the discrete spectrum and a description of points of the continuous spectrum.

Lemma 4. The set $\Sigma_{n} \cap\left[0 ; \frac{n-\sqrt{n^{2}-4 n}}{2}\right)$ consists of two sequences of points. The first one is the sequence $x_{k}=\Phi^{+k}(0), k=0,1, \ldots$, that makes the set

$$
\Lambda_{n}^{1}=\left\{0,1+\frac{1}{n-1}, 1+\frac{1}{(n-2)-\frac{1}{n-1}} \ldots, 1+\frac{1}{(n-2)-\frac{1}{(n-2)-\frac{1}{\ddots}-\frac{1}{-\frac{1}{(n-1)}}}}, \ldots\right\} .
$$

The second one is $y_{k}=\Phi^{+k}(1), k=0,1, \ldots$, that makes the set

$$
\Lambda_{n}^{2}=\left\{1,1+\frac{1}{n-2}, 1+\frac{1}{(n-2)-\frac{1}{n-2}} \cdots, 1+\frac{1}{(n-2)-\frac{1}{(n-2)-\frac{1}{\ddots \ddots-\frac{1}{(n-2)}}}}, \ldots\right\}
$$

These two sequences converge to the points $\beta_{n}=\frac{n-\sqrt{n^{2}-4 n}}{2}$, as $n \rightarrow \infty$.
Proof. If $n \geq 4$, we have $\cdots<\Phi^{+k}(0)<\Phi^{+k}(1)<\Phi^{+(k+1)}(0)<\Phi^{+(k+1)}(1)<\cdots<\beta_{n}$ and $\lim _{k \rightarrow \infty} \Phi^{+k}(0)=\lim _{k \rightarrow \infty} \Phi^{+k}(1)=\beta_{n}$. The open intervals $\left(\Phi^{+k}(0), \Phi^{+k}(1)\right)$ and $\left(\Phi^{+k}(1), \Phi^{+(k+1)}(0)\right)$ do not contain the points Σ_{n}, since $(0,1) \cap \Sigma_{n}=\left(1,1+\frac{1}{n-1}\right) \cap$ $\Sigma_{n}=\emptyset$. Hence, by Theorem 2, Φ^{+}is a functor that gives the equivalence. Hence, $\Sigma_{n} \cap\left[0 ; \frac{n-\sqrt{n^{2}-4 n}}{2}\right)=\Lambda_{n}^{1} \cup \Lambda_{n}^{2}$.

Let us now prove that $\left(\beta_{n}, n-\beta_{n}\right) \subset \Sigma_{n}$. To do this, we will need the following lemmas.

Lemma 5. If $[3 / 2,2] \subset \Sigma_{5}$, then $[2, n-2] \subset \Sigma_{n}$.
Proof. Let $[3 / 2,2] \subset \Sigma_{5}$. By applying the functor Φ^{-}to the line segment [3/2, 2], we get, by Lemma 3, that $[2,3] \subset \Sigma_{5}$. Now, using induction on n we prove that $[2, n-2] \subset \Sigma_{n}$ for $n \geq 5$. Let $k \geq 5$ and $[2, k-2] \subset \Sigma_{k}$. Since $\Sigma_{k} \subset \Sigma_{k+1}$, we have that $[2, k-2] \subset \Sigma_{k+1}$. If $\alpha \subset[k-2,(k+1)-2]$, the number $(\alpha-1) \subset \Sigma_{k}$, and so there is a representation $P_{1}+\cdots+P_{k}=(\alpha-1) I$, where P_{i} are certain projections from $L(H)$. By setting $P_{k+1}=I$, we get $P_{1}+\cdots+P_{k+1}=\alpha I$. Hence, $[k-2,(k+1)-2] \subset \Sigma_{k+1}$ and, consequently, $[2,(k+1)-2] \subset \Sigma_{k+1}$.
Lemma 6. If $[2, n-2] \subset \Sigma_{n}$, then $\left(\frac{n-\sqrt{n^{2}-4 n}}{2}, \frac{n+\sqrt{n^{2}-4 n}}{2}\right) \subset \Sigma_{n}$.
Proof. The mapping Φ^{+}is continuous. So, since $\Phi^{+}(2)=1+\frac{1}{n-3}$ and $\Phi^{+}(n-2)=2$, we have that $\left[1+\frac{1}{n-3}, 2\right] \subset \Sigma_{n}$. Now, $\Phi^{+}\left(1+\frac{1}{n-3}\right)=1+\frac{1}{n-2-\frac{1}{n-3}}$ and $\Phi^{+}(2)=1+\frac{1}{n-3}$, that is, $\left[1+\frac{1}{n-2-\frac{1}{n-3}}, 1+\frac{1}{n-3}\right] \subset \Sigma_{n}$. By continuing this process, we see that $\left(\beta_{n}, 2\right] \subset \Sigma_{n}$, where $\beta_{n}=\lim _{k \rightarrow \infty} \Phi^{+k}(2)=\frac{n-\sqrt{n^{2}-4 n}}{2}$. Using the mapping T we get that Σ_{n} contains the interval $\left[n-2, n-\beta_{n}\right)$ and, consequently, $\left(\beta_{n}, n-\beta_{n}\right) \subset \Sigma_{n}$.

Lemma 7. $(3 / 2,2) \subset \Sigma_{5}$.
Before proving the lemma, let us prove two auxiliary results. Everywhere in the sequel, $\alpha \in(3 / 2,2)$ and $\epsilon=\alpha-1$.

We will need the following definition.
Definition 1. By a sewing of the matrices

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m m}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 l} \\
\vdots & & \vdots \\
b_{l 1} & \ldots & b_{l l}
\end{array}\right)
$$

we mean the matrix of the form

$$
\left(\begin{array}{ccccccc}
a_{11} & \ldots & a_{1 m-1} & a_{1 m} & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & \ldots & a_{m m-1} & a_{m m}+b_{11} & b_{12} & \ldots & b_{1 l} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & b_{l 1} & b_{l 2} & \ldots & b_{l l}
\end{array}\right)
$$

which is denoted in the sequel by $A \tilde{+} B$.
It follows directly from the definition that if the matrices $P_{1}, P_{2}, \ldots, P_{k}$ are projections, then the matrix $P_{1} \tilde{+} P_{2} \tilde{+} \ldots \tilde{+} P_{k}$ is a sum of k projections (the matrix P_{i} is augmented with zero rows and zero columns if necessary as to get the needed dimension). In particular, if $0 \leq x \leq 2$ and $\tau=(x-1)^{2}$, then the matrix (1) $\tilde{+}\left(\begin{array}{cc}\tau & \sqrt{\tau-\tau^{2}} \\ \sqrt{\tau-\tau^{2}} & 1-\tau\end{array}\right)$ with the spectrum $\{x, 2-x\}$ is a sum of the two projections, $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{cc}\tau & \sqrt{\tau-\tau^{2}} \\ \sqrt{\tau-\tau^{2}} & 1-\tau\end{array}\right)$.

Then the matrix $\left(\begin{array}{cc}1-\tau_{1} & \sqrt{\tau_{1}-\tau_{1}^{2}} \\ \sqrt{\tau_{1}-\tau_{1}^{2}} & \tau_{1}\end{array}\right) \tilde{+}\left(\begin{array}{cc}x & 0 \\ 0 & 2-x\end{array}\right)$ is a sum of three projections.
It is easy to check that if $\epsilon \leq x \leq \alpha, \tau_{1}=\frac{\epsilon(\alpha-x)}{x}$, then it has the spectrum $\{x-\epsilon, \alpha, 2-x\}$.
Let us prove the following statement.
Proposition 4. Let $\epsilon \leq a \leq \alpha$ and, for some $k \in\{0,1,2\}$, the inequalities $0<2-a-k \epsilon \leq$ ϵ hold. Then the matrix $\operatorname{diag}\{a, \underbrace{\alpha, \ldots, \alpha}_{k \text { times }}, 2-a-k \epsilon\}$ is a sum of three projections.
Proof. The cases where $k=0$ and $k=1$ have been considered above. Let $k=2$ and $0<2-a-k \epsilon \leq \epsilon$. Set

$$
\begin{aligned}
& Q=\left(\begin{array}{cc}
(a+\epsilon) / 2 & \frac{1}{2} \sqrt{2 a+2 \epsilon-(a+\epsilon)^{2}} \\
\frac{1}{2} \sqrt{2 a+2 \epsilon-(a+\epsilon)^{2}} & 1-(a+\epsilon) / 2
\end{array}\right), \\
& R=\left(\begin{array}{cc}
(a+\epsilon) / 2 & -\frac{1}{2} \sqrt{2 a+2 \epsilon-(a+\epsilon)^{2}} \\
-\frac{1}{2} \sqrt{2 a+2 \epsilon-(a+\epsilon)^{2}} & 1-(a+\epsilon) / 2
\end{array}\right),
\end{aligned}
$$

$\tau_{1}=\frac{\epsilon(1-a)}{a+\epsilon}, \tau_{2}=\frac{\epsilon(a+2 \epsilon-1)}{2-a-\epsilon}$. Then the spectrum of the matrix

$$
D=\left(\begin{array}{cc}
1-\tau_{1} & \sqrt{\tau_{1}-\tau_{1}^{2}} \\
\sqrt{\tau_{1}-\tau_{1}^{2}} & \tau_{1}
\end{array}\right) \tilde{+}(Q+R) \tilde{+}\left(\begin{array}{cc}
\tau_{2} & \sqrt{\tau_{2}-\tau_{2}^{2}} \\
\sqrt{\tau_{2}-\tau_{2}^{2}} & 1-\tau_{2}
\end{array}\right)
$$

consists of the points $a, \alpha, \alpha, 2-a-2 \epsilon$, counting the multiplicity. Since

$$
\left(\begin{array}{cc}
1-\tau_{1} & \sqrt{\tau_{1}-\tau_{1}^{2}} \\
\sqrt{\tau_{1}-\tau_{1}^{2}} & \tau_{1}
\end{array}\right) \oplus\left(\begin{array}{cc}
\tau_{2} & \sqrt{\tau_{2}-\tau_{2}^{2}} \\
\sqrt{\tau_{2}-\tau_{2}^{2}} & 1-\tau_{2}
\end{array}\right)
$$

is a projection, the matrix D, as well as any matrix that is equivalent to it, can also be represented as a sum of three projections.

Let us now consider sums of five projections.
Proposition 5. Let $1 \leq b \leq \alpha$. Then for some $k \in\{1,2,3\}$, we have $0<3-b-k \epsilon \leq \epsilon$ and there exist five projections P_{1}, \ldots, P_{5} such that $\sum_{1}^{5} P_{i}=\operatorname{diag}\{b, \underbrace{\alpha, \ldots, \alpha}_{k \text { times }}, 3-b-k \epsilon\}$.
Proof. Since $1 \leq b \leq \alpha$, we have that $\epsilon<3-\alpha \leq 3-b \leq 2 \leq 4 \epsilon$. Whence, $0<3-b-k \epsilon \leq \epsilon$ for some $k \in\{1,2,3\}$. Let now b and k be fixed and $0<3-b-k \epsilon \leq \epsilon$. Define

$$
Q_{1}=\left(\begin{array}{cc}
b / 2 & \sqrt{b / 2-b^{2} / 4} \\
\sqrt{b / 2-b^{2} / 4} & 1-b / 2
\end{array}\right), \quad Q_{2}=\left(\begin{array}{cc}
b / 2 & -\sqrt{b / 2-b^{2} / 4} \\
-\sqrt{b / 2-b^{2} / 4} & 1-b / 2
\end{array}\right) .
$$

It follows from Proposition 4 that for the number $a=\alpha-(2-b)$ there exist projections Q_{3}, Q_{4}, and Q_{5} such that

$$
Q_{3}+Q_{4}+Q_{5}=\operatorname{diag}\{a, \underbrace{\alpha, \ldots, \alpha}_{k-1 \text { times }}, 2-a-(k-1) \epsilon\} .
$$

The matrix $D=\left(Q_{1}+Q_{2}\right) \tilde{+}\left(Q_{3}+Q_{4}+Q_{5}\right)$ can be represented as a sum of five projections P_{1}, \ldots, P_{5} constructed from the matrices Q_{1}, \ldots, Q_{5} using the sewing operation. At the same time, $D=\operatorname{diag}\{b, \underbrace{\alpha, \ldots, \alpha}_{k \text { times }}, 3-b-k \epsilon\}$.

Remark 4. The matrices P_{1}, \ldots, P_{5} from Proposition 5 satisfy the following condition:

$$
\begin{gathered}
P_{1} \operatorname{diag}\{0, \ldots, 0,1\}=P_{2} \operatorname{diag}\{0, \ldots, 0,1\}=0, \\
P_{3} \operatorname{diag}\{1,0, \ldots, 0\}=P_{4} \operatorname{diag}\{1,0, \ldots, 0\}=P_{5} \operatorname{diag}\{1,0, \ldots, 0\}=0 .
\end{gathered}
$$

Hence, the matrices $\underbrace{P_{i} \tilde{+} \ldots \tilde{+} P_{i}}_{l \text { times }}, l \in \mathbb{N} \cup \infty$, are also projections for $i=1, \ldots, 5$.
Proof of Lemma 7. Let $b_{1}=\alpha$. It follows from Proposition 5 that there exist a number k_{1} and projections $P_{1}^{1}, \ldots, P_{5}^{1}$ such that $\sum_{1}^{5} P_{i}^{1}=\operatorname{diag}\{b_{1}, \underbrace{\alpha, \ldots, \alpha}_{k_{1} \text { times }}, 3-b_{1}-k_{1} \epsilon\}$. By choosing $b_{2}=\alpha-\left(3-b_{1}-k_{1} \epsilon\right)$ (clearly, $\left.1 \leq b_{2} \leq \alpha\right)$ and using the constructions in Proposition 5, we find projections $P_{1}^{2}, \ldots, P_{5}^{2}$ such that $\sum_{1}^{5} P_{i}^{2}=\operatorname{diag}\{b_{2}, \underbrace{\alpha, \ldots, \alpha}_{k_{2} \text { times }}, 3-$ $\left.b_{2}-k_{2} \epsilon\right\}$. Continuing this process we choose b_{s} by the formula $b_{s}=\alpha-\left(3-b_{s-1}-k_{s-1} \epsilon\right)$ and find a sequence of projections $P_{1}^{s}, \ldots, P_{5}^{s}, s=1,2,3, \ldots$. It follows from Remark 4 that $P_{i}=P_{i}^{1} \tilde{+} P_{i}^{2} \tilde{+} P_{i}^{3} \tilde{+} \ldots$ are projections in l_{2} for each $i \in\{1,2,3,4,5\}$. Moreover, by the construction, $\sum_{1}^{5} P_{i}=\alpha I$.

Remark 5. Let us note that the inclusion $[3 / 2 ; 5 / 2] \subset \Sigma_{5}$ is proved in [16] by using another method.

Lemmas 5, 6, and 7 give $\left(\frac{n-\sqrt{n^{2}-4 n}}{2}, \frac{n+\sqrt{n^{2}-4 n}}{2}\right) \subset \Sigma_{n}$.
The proof of the theorem is concluded by the following lemma proved by V. S. Shulman [17] in a more general situation. We will give a proof of the lemma.

Lemma 8. The set Σ_{n} is closed.
Proof. Let $\alpha_{k} \in \Sigma_{n}, P_{j}^{(k)} \in L\left(H_{k}\right)(j=1, \ldots, n)$ be projections such that $\sum_{j=1}^{n} P_{j}^{(k)}=$ $\alpha_{k} I_{H_{k}}$ and α_{k} converges to α. Consider the C^{*}-algebra \mathcal{A} of uniformly norm bounded sequences of operators $X_{k} \in L\left(H_{k}\right)$ and a closed two-sided $*$-ideal \mathcal{J} of sequences converging to zero with respect to the norm. Consider also the C^{*}-algebra $\mathcal{B}=\mathcal{A} / \mathcal{J}$. Denote by π the quotient mapping $\mathcal{A} \longrightarrow \mathcal{B}$. Then the projections $P_{j}=\left(P_{j}^{(1)}, P_{j}^{(2)}, P_{j}^{(3)} \ldots\right) \in \mathcal{A}$ define the projections $\pi\left(P_{j}\right) \in \mathcal{B}$. Here $\sum_{j=1}^{n} \pi\left(P_{j}\right)=\alpha I_{\mathcal{B}}$. Since the abstract C^{*}-algebra \mathcal{B} is isomorphic to a concrete C^{*}-algebra of operators, the lemma is proved.

References

[1] Klyachko A. A. Stable bundles, representation theory and Hermitian operators. Selecta Math. 4 (1998), 419-445.
[2] Fulton W. Eigenvalues, invariant factors, highest weights and Schubert calculus. Bull. of the AMS 37 No. 3 (2000), 209-249.
[3] Rabanovich V. I., Samoĩlenko Yu. S. When the sum of idempotents or projectionss is a multiple of the identity. Funkts. Anal. Prilozhen. 34, no. 4 (2000), 91-93; English transl. Funct. Anal. Appl. 34, no. 4 (2000), 311-313.
[4] Rabanovich V. I., Samoĭlenko Yu. S. When a scalar operator can ber represented as a sum of projections. Ukr. Mat. Zh. 53, no. 7 (2001), 939-952; English transl. Ukr. Math. J. 53, no. 7 (2001), 1116-1133.
[5] Kruglyak S. A., Rabanovich V. I., Samǐlenko Yu. S. Funktsional'nyi Analiz i ego Prilozheniya 36, No 3 (2002), 20-35.
[6] Kruglyak S. A. Coxeter functors for a certain class of *-quivers. Ukraǐn Mat. Zh. 54 No. 6 (2002), 789-797 (Russian); translation in Ukrainian Math. J. 53 No. 7 (2001).
[7] Bernshtein I. I., Gel'fand I. M., Ponomarev V. A. Coxeter functors an a theorem of Gabriel. Uspekhi Matematicheskikh Nauk, Vol. XXVIII, No. 2 (1973) 19-33. (Russian).
[8] Jones V. Index for subfactors. Invent. Math. 72 (1983), 1-25.
[9] Fillmore P. A. On sums of projections. J. Funct. Anal. 4 (1969), 146-152.
[10] Wang J.-H. Decomposition of operators into quadratic type, Ph.D. dissertation., National Chiao Tung Univ., Hsinchu, Taiwan, 1991.
[11] Wu P. Y. Additive combinations of special operators. In: Functional Analysis and Operator Theory, Banach Center Publ., vol. 30, Warszawa, 1994, pp. 337-361.
[12] Bespalov Yu. V. Collections of orthogonal projections satisfying relations. Ukraĭn Mat. Zh. 44, no. 3 (1992), 309-317 (Russian); translation in Ukrainian Math. J. 44, no. 3 (1992).
[13] Ehrhardt T. Sums of four idempotents. (preprint), Chemnitz, 1995.
[14] Ostrovskiǐ V., Samoǐlenko Yu. Introduction to the Theory Representation of Finitely Presented *-algebras. 1. Representations by bounded operators. Rev. Math. E Math Phys. vol. 11 1-261, Gordon and Breach (1999).
[15] Strelets A. V., Rabanovich V. I., Samoǐlenko Yu. S. On identities in the algebras $\mathcal{Q}_{n, \lambda}$ generated by idempotents. Ukraǐn Mat. Zh. 53, no. 10 (2001), 1380-1390 (Russian); translation in Ukrainian Math. J. 53 no. 10 (2001), 1380-1390.
[16] Ehrhardt T. On sums of five projections equal to a multiple of the identity. (preprint), Chemnitz, 2000.
[17] Shulman V. S. On representations of limit relations. Meth. Func. Anal. Topology 7, no. 4 (2002), 85-87.

