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Abstract

The classical and quantum mechanics of systems on Lie groups and their homogeneous
spaces are described. The special stress is laid on the dynamics of deformable bodies
and the mutual coupling between rotations and deformations. Deformative modes are
discretized, i.e., it is assumed that the relevant degrees of freedom are controlled by
a finite number of parameters. We concentrate on the situation when the effective
configuration space is identical with affine group (affinely-rigid bodies). The special
attention is paid to left- and right-invariant geodetic systems, when there is no poten-
tial term and the metric tensor underlying the kinetic energy form is invariant under
left or/and right regular translations on the group. The dynamics of elastic vibrations
may be encoded in this way in the very form of kinetic energy. Although special
attention is paid to invariant geodetic systems, the potential case is also taken into
account.

1 Introduction

Typical physical theories are based on groups preserving bilinear or sesquilinear forms.
These forms are fixed and belong to the absolute, non-dynamical sector of the theory.
Typical examples are Euclidean and pseudo-Euclidean scalar products in space or space-
time. In field theory and quantum physics one deals with unitary and pseudo-unitary
groups preserving Hermitian scalar products in target spaces of field multiplets. In tetrad
models of gravitation the internal space is again endowed with Minkowskian geometry. It
is something else different from “external” geometry of special relativity; internal Lorentz
group which rules it must not by mixed up with the external group of special relativity.

External and internal metrics are machines contracting tensor indices and enabling us
to build scalars and scalar densities necessary for constructing Lagrangians. The resulting
models are linear or weakly (perturbatively) nonlinear, in particular, scalars and densities
quadratic in dynamical variables do exist. But it is clear that the affine (Tales) geometry is
mathematically more primary. Does a hypothetical affine physics with metrics appearing
as byproducts exist? It was the old idea of Ne’eman, Hehl, Sardanashvilly, and others
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[1]-[3] in GL(4,R)-gauge approaches to gravitation. In some of our earlier papers we pre-
sented an alternative tetrad model of gravitation based on the global group GL(4,R) of
internal symmetries [4, 5, 6]. Do realistic classical and quantum models ruled by affine
groups exist? In typical theories the affine group occurs but in a rather different context.
In nuclear matter theory it is used as a “non-invariance group”. It rules kinematics but
does not preserve dynamics. Instead of this, its generators satisfy some system of commu-
tation relations with Hamiltonian, and essential information concerning the energy levels
may be obtained on the basis of some ladder procedure. There exist also classical and
quantum models of affinely-rigid body with kinematics ruled by the affine group, but with
dynamics violating this symmetry and compatible at most with the Euclidean subgroup.
Without potential, on the purely geodetic level, such models are non-physical, because
they predict the unlimited contraction or expansion of the body. They are also deprived
of the aesthetic beauty of invariant geodetic systems on Lie groups [7]; the possibility of
rigorous analytical solution is also lost. Obviously, with appropriate potential terms, such
models are applicable in a wide range of physical phenomena like nuclear and molecular
dynamics, macroscopic elasticity, molecular crystals, micro-structured continua, and even
astrophysical objects [8, 9]. Nevertheless, at least from the academic point of view, it is an
interesting idea to replace such models by affinely invariant geodetic models, metrically-
rigid bodies by affinely-rigid ones, and spin by affine spin (hypermomentum) generating
affine transformation centered at the center of mass [1, 10, 11, 12]. Some suggestions are
presented below. It is interesting that replacing (pseudo)Euclidean and (pseudo)unitary
symmetries by the affine one, one obtains essential (non-perturbative) nonlinearity, e.g.,
the generalized Born-Infeld-type nonlinearity in field theory [13].

2 Invariant geodetic models

When some reference configuration and Cartesian coordinates are fixed, the configuration
space of the affinely-rigid body may be identified with the semi-direct product GL+(n,R)×s

Rn (or simply with GL+(n,R) when translational degrees of freedom are neglected). This
means that the Lagrange (material, reference) coordinates aK and the Euler (spatial, cur-
rent) variables yi are interrelated as follows: yi(t) = ϕi

K(t)aK +xi(t), where xi denotes the
center of mass coordinates, and ϕi

K are generalized coordinates of internal motion (rota-
tions and deformations). Spatial and material actions of GL+(n,R) are given respectively
by left and right regular translations: ϕ 7→ Lϕ, ϕ 7→ ϕR. Euler and Lagrange additive
translations act trivially on xi and aK . Laboratory and material affine velocities are Lie-
algebraic objects defined respectively as follows: Ω = ϕ̇ϕ−1, Ω̂ = ϕ−1ϕ̇ = ϕ−1Ωϕ. The left
and right regular translations affect them according to the rule: L : Ω 7→ LΩL−1, Ω̂ 7→ Ω̂,
R : Ω 7→ Ω, Ω̂ 7→ R−1Ω̂R. The co-moving representation of translational velocity is given
by v̂A = (ϕ−1)Ai vi = (ϕ−1)Ai ẋi.

Kinetic energy (inertial metric tensor) is postulated in the additive form T = Ttr +
Tint (translational and internal parts). Left (spatially) invariant expressions for Tint are
constant-coefficients quadratic forms of Ω̂. Right (materially) invariant ones are built in a
similar way of Ω. The doubly invariant Tint are combined of second-order Casimirs:

T aff−aff
int :=

A

2
Tr(Ω2) +

B

2
(TrΩ)2 =

A

2
Tr(Ω̂2) +

B

2
(TrΩ̂)2, (2.1)
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where A,B are constants. Due to the semi-simplicity and non-compactness of SL(n,R),
T is not positively definite, however, this does not exclude its physical usefulness. It is
non-degenerate when A + nB 6= 0. The special case A = 2n, B = −2 corresponds just to
the standard normalization of the Killing metric; its degeneracy is due to the non-semi-
simplicity of GL(n,R).

Translational kinetic energies Ttr are never doubly invariant. The highest possible sym-
metries for mathematically reasonable models are those affine in the space and Euclidean
in the material, or conversely. Thus, these two possibilities can by written in the combined
form:

{
Tmet−aff

tr

T aff−met
tr

}
=

m

2

{
gij

Cij

}
ẋiẋj =

m

2

{
GAB

δAB

}
v̂Av̂B , (2.2)

where g is the spatial metric tensor (δ in the orthonormal basis), and G,C are respectively
the Green and Cauchy deformation tensors, GAB = gijϕ

i
Aϕj

B , Cij = δAB(ϕ−1)Ai(ϕ
−1)Bj.

Any left and right invariant twice covariant field on the affine group is degenerate, thus,
non-applicable as a kinetic energy model. The above-quoted models of Ttr show the highest
reasonable invariance and fix our attention on the models of Tint with the same symmetry
properties, i.e., metric-affine and affine-metric:

{
Tmet−aff

int

T aff−met
int

}
=

I

2
Tr

{
ΩT Ω

Ω̂T Ω̂

}
+ T aff−aff

int (2.3)

=
I

2
Tr

{
ΩT Ω

Ω̂T Ω̂

}
+

A

2
Tr

{
Ω2

Ω̂2

}
+

B

2

(
Tr

{
Ω

Ω̂

})2

.

In some open domain of inertial constants (I,A,B) ∈ R3 the above expressions are
positively definite, thus, “good” kinetic energies. The usual kinetic energy compatible
with the d’Alembert principle has the following form: T = Ttr + Tint = (m/2)gij ẋ

iẋj +
(1/2)gij ϕ̇

i
Aϕ̇j

BJAB , where the inertial parameters are not primary ones but obtained
from the measure µ describing the co-moving mass distribution: m =

∫
dµ(a), JAB =∫

aAaBdµ(a),
∫

aAdµ(a) = 0 (the total mass and second-order moment of its distribution;
JAB = IδAB in the isotropic case). Without an appropriate potential term the above T
is non-viable as a realistic Lagrangian, because the generic deformative motion would be
non-bounded and passing through singularities. Unlike this, it was shown that geodetic
models (2.1), (2.3) based on curved inertial metrics predict an open family of bounded
and an open family of non-bounded orbits on SL(n,R). It is only dilatational motion that
needs extra stabilization.

From now on, let us neglect translational motion. Legendre transformation may be
expressed in any of the following convenient forms: Σi

j = ∂Tint/∂Ωj
i, Σ̂A

B = ∂Tint/∂Ω̂B
A.

The laboratory and co-moving affine spins Σ, Σ̂ are respectively Hamiltonian generators
(momentum mappings) of the left and right regular translations on GL(n,R). Geodetic
Hamiltonians corresponding to (2.1), (2.3) have the following form:

T aff−aff
int =

1

2A
Tr

{
Σ2

Σ̂2

}
− B

2A(A + nB)

(
Tr

{
Σ

Σ̂

})2

, (2.4)

{
T met−aff

int

T aff−met
int

}
=

1

2Ĩ
Tr

{
ΣT Σ

Σ̂T Σ̂

}
+

1

2Ã
Tr

{
Σ2

Σ̂2

}
+

1

2B̃

(
Tr

{
Σ

Σ̂

})2

, (2.5)
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where Ĩ = (I2 − A2)/I, Ã = (A2 − I2)/A, B̃ = −(I + A)(I + A + nB)/B. One can also
use the following convenient representation:

{
T met−aff

int

T aff−met
int

}
=

C(2)

2α
+

C(1)2

2β
+

1

2µ

{
‖S‖2
‖V ‖2

}
, (2.6)

where C(k) = Tr(Σk) = Tr(Σ̂k), and S = Σ − ΣT , V = Σ̂ − Σ̂T are spin and vorticity
(generators of spatial and material rotations), ‖S‖ and ‖V ‖ are their magnitudes, ‖S‖2 =
−(1/2)Tr(S2) ≥ 0, ‖V ‖2 = −(1/2)Tr(V 2) ≥ 0, and α, β, µ are constants: α := I + A,
β := −(I + A)(I + A + nB)/B, µ := (I2 − A2)/I. Obviously, T aff−aff

int is obtained by
putting I = 0, i.e., µ = 0.

It is also convenient to introduce the auxiliary quantities q ∈ R, ω, ω̂ ∈ SL(n,R)′, and
the canonical momenta conjugate to them p ∈ R, σ, σ̂ ∈ SL(n,R)′∗ ≃ SL(n,R)′, where
detϕ = exp(nq), ω = Ω − (1/n)(TrΩ)In = Ω − q̇In, ω̂ = Ω̂ − (1/n)Tr(Ω̂)In = Ω̂ − q̇In,
σ = Σ− (p/n)In, σ̂ = Σ̂− (p/n)In, and In is the unit n×n matrix. This is the splitting of
GL(n,R) into pure dilatational and isochoric SL(n,R) parts. One can easily show that:

T aff−aff
int =

CSL(n)(2)

2A
+

p2

2n(A + nB)
, (2.7)

{
T met−aff

int

T aff−met
int

}
=

CSL(n)(2)

2(I + A)
+

p2

2n(I + A + nB)
+

I

2(I2 −A2)

{
‖S‖2
‖V ‖2

}
, (2.8)

where CSL(n)(2) = Tr(σ2) = Tr(σ̂2). It is seen that T met−aff
int and T aff−met

int differ merely
by geometrically interesting ‖S‖2- and ‖V ‖2-correction terms from the doubly invariant
T aff−aff

int in which A is to be replaced by (I + A).

As mentioned, on the incompressible SL(n,R) level, the above geodetic models predict
bounded elastic vibrations and may be analytically investigated due to their invariance
under regular translations. When the total GL(n,R) is admitted, dilatations must be
stabilized by some term V(q), e.g., of the oscillator form V = (κ/2)q2, or the narrow and
deep potential well around q = 0.

Classical equations may be analyzed and solved with the use of Poisson brackets and
exponential mapping.

3 Quantization ideas

Integration elements corresponding to Haar measures α, λ on the affine and linear groups
are given respectively as follows: dα(x, ϕ) = (detϕ)−n−1dx1 . . . dxndϕ1

1 . . . dϕn
n, dλ(ϕ) =

(det ϕ)−ndϕ1
1 . . . dϕn

n. Quantum mechanics of the affinely-rigid body is formulated in
Hilbert spaces L2(GL(n,R) ×s Rn, α) and L2(GL(n,R), λ) respectively for systems with
and without translational degrees of freedom. Kinetic energy operator T has the stan-
dard form T = (~2/2)∆, where ∆ is the Laplace-Beltrami operator based on the met-
ric tensor underlying the classical kinetic energy, ∆ = gµν∇µ∇ν . The direct compu-
tation of ∆ is rather complicated and the resulting formula is completely non-readable.
However, the group structure enables one to express T in terms of differential operators
Σi

j = −i~ϕi
A(∂/∂ϕj

A), Σ̂A
B = −i~ϕi

B(∂/∂ϕi
A) generating left and right regular trans-

lations. They are operators of laboratory and co-moving components of the affine spin.
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Regular translations are unitary in the sense of scalar product based on the Haar measure.
Therefore, Σ, Σ̂ are formally self-adjoint. Of course, being differential operators, they are
unbounded, thus, they are not Hermitian in the literal mathematical sense. Nevertheless,
they are good physical observables.

Finally, kinetic energy operators have the following form:

T aff−aff
int =

1

2A

{
Σi

jΣ
j
i

Σ̂A
BΣ̂B

A

}
− B

2A(A + nB)

{
Σi

iΣ
j
j

Σ̂A
AΣ̂B

B

}
, (3.1)

{
T met−aff

int

T aff−met
int

}
=

1

2Ĩ

{
gikg

jlΣi
jΣ

k
l

δABδCDΣ̂A
CΣ̂B

D

}
(3.2)

+
1

2Ã

{
Σi

jΣ
j
i

Σ̂A
BΣ̂B

A

}
+

1

2B̃

{
Σi

iΣ
j
j

Σ̂A
AΣ̂B

B

}
.

Representations (2.6), (2.7), (2.8) are also possible; the meaning of the operator symbols
is obvious from the later formulas, and the quantized dilatational momentum is given by
p = −i~(∂/∂q).

The above kinetic energies restricted to SL(n,R) have both discrete and continuous
spectra. On GL(n,R), just as in the classical case, one has to use stabilizing dilatational
potential V(q) to prevent plane-wave dilatational solutions. As previously, harmonic oscil-
lator and potential well are the simplest and most convincing models, at least in nuclear
physics.

There is a very important point concerning the quantized model. Namely, it belongs to
the very fundamentals of the wave version of quantum mechanics that the wave function
has to be one-valued (and satisfy other regularity requirements). Although, it is well-
motivated in Rn, but it is not necessarily so in multiply connected manifolds with finite
homotopy groups. Then one can use the universal covering manifold of the configuration
space, in our case simply the universal covering group GL(n,R), as a proper, so to speak
“hidden”, configuration space. To preserve the usual statistical interpretation, we must
only demand the probability density ΨΨ to be one-valued, thus, projectable from the
covering manifold to the original configuration space. Nevertheless, the class of acceptable
wave functions Ψ is essentially wider, they may be non-projectable, i.e., multi-valued from
the point of view of the original configuration space. That is the fact, e.g., in rigid body
mechanics, where for n ≥ 3 the configuration space SO(n,R) is doubly-connected and
universally covered by the group Spin(n), i.e., SU(2) in the physical case n = 3. Therefore,
the two-valued wave functions possessing two different signs at the same SO(3,R) point are
admitted [14]. Obviously, they are single-valued on SU(2). According to the Peter-Weyl
theorem, the wave functions on SU(2) may be expanded with respect to matrix elements
of unitary irreducible representations Ds

mm′ . For half-integer and integer values of s these
functions satisfy respectively Ds

mm′(−u) = ∓Ds
mm′(u) for any u ∈ SU(2); obviously ±u

project onto the same element of SO(3,R). But ΨΨ must be one-valued, therefore, a kind
of superselection rule appears according to which states with half-integer and integer s
cannot be superposed with each other. This is a toy model of the fermionic and bosonic
sectors.

The same problem appears in quantum mechanics of affinely-rigid body. Indeed, for
n ≥ 3 GL+(n,R) and SL(n,R) are doubly-connected. It is an interesting and intriguing

fact that the covering groups GL+(n,R) and SL(n,R) are nonlinear, i.e., do not possess



162 J J Sławianowski and V Kovalchuk

faithful realizations through finite matrices. Their description as manifolds may be based
on the polar splitting ϕ = UA = BU = (UAU−1)U , where U ∈ SO(n,R), and A,B ∈
Symm+(n,R) are symmetric and positively definite. The splittings are unique, and in this
way GL+(n,R) as a manifold may be identified with the Cartesian product SO(n,R)×
Symm+(n,R) or Symm+(n,R)× SO(n,R). Symm+(n,R) is topologically Rn(n+1)/2 (R6

in the physical three-dimensional case). Therefore, the covering manifold may be iden-
tified with Spin(n)× Symm+(n,R) or Symm+(n,R)× Spin(n). Wave functions may be
expanded as previously: Ψ(u,A) =

∑
Cs

mm′(A)Ds
mm′ (u), with the same restriction that

only half-integer or integer s may appear in a given expansion.

In our highly-symmetric models it is more convenient to use the two-polar decomposi-
tion. It consists of diagonalization of A or B, e.g., A = RDR−1, R ∈ SO(n,R), and D ∈
Diag(Rn) is diagonal. Assigning L := UR ∈ SO(n,R), we have finally: ϕ = LDR−1. It is
also convenient to denote Dii = Qi = exp(qi). The previously introduced dilatational vari-
able q is the “centre of mass” of qi’s, i.e., q = (q1+. . .+qn)/n, and p = p1+. . .+pn, where pi

are canonical momenta conjugate to qi (those conjugate to Qi will be denoted by Pi). In this
way ϕ ∈ GL+(n,R) is identified with a triplet (L;D(q);R) ∈ SO(n,R)×Rn × SO(n,R).
This splitting is not unique. Let us describe this non-uniqueness explicitly, because it is
essential for taking into account half-integer angular momentum of extended deformable
bodies.

Let K ∈ O(n,R) denote the finite group of orthogonal matrices which have exactly one
non-vanishing entry in every row and column; obviously, these entries equal to±1. The sub-
group K+ := K ∩ SO(n,R) consists of afore-defined matrices with the determinants equal
to +1. It is easy to see that the groups K,K+ have respectively (2n)n! and (n)n! elements.
For any U ∈ K, the similarity transformation Diag(Rn) ∋ D 7→ U−1DU ∈ Diag(Rn) re-
sults in a permutation of diagonal elements of D: (Q1, . . . , Qn) 7→ (QπU (1, . . . , Qn)), i.e.,
(q1, . . . , qn) 7→ (qπU (1, . . . , qn)). The assignment K ∋ U 7→ πU ∈ S(n) is a (2n : 1)-
epimorphism of K onto the permutation group S(n). Restricting it to K+, we obtain an
(n : 1)-epimorphism.

Let GL+(n)(n,R) denote the subset of GL+(n,R) with the simple spectra of deformation
tensors, and M (n) be the corresponding subset of SO(n,R) × Rn× SO(n,R) consisting
of such triplets (L; q1, . . . , qn;R) that all qi’s are pairwise disjoint. Let K+ act on M (n)

according to the rule: (L; q1, . . . , qn;R) 7→ (LU ; qπU (1, . . . , qn);RU). Let us denote the
corresponding transformation group of M (n) by H(n). It is clear that GL+(n)(n,R) is
diffeomorphic with M (n)/H(n), i.e., GL+(n)(n,R) ≃ M (n)/H(n). Of course, this situation
of non-degenerate spectra is a generic one, so this is the main part of the multi-valuedness
of the two-polar decomposition.

To describe the covering group GL+(n,R) one should use the following auxiliary man-
ifold: Spin(n) × Rn× Spin(n) (SU(2) × R3× SU(2) for n = 3). Let τ : Spin(n) →
SO(n,R) denote the canonical projection; K+ ⊂ Spin(n) denotes the (2n)n!-element sub-

group τ−1(K+). The manifold M (n) introduced above is covered by M (n), i.e., the subset
of such triplets (l; q1, . . . , qn; r) ∈ Spin(n)×Rn× Spin(n) that all qi’s are pairwise disjoint.

And K+ induces on M (n) the transformation group H(n) the action of which is given by
the following rule: (l; q1, . . . , qn; r) 7→ (lu; qπτ(u)(1, . . . , qn); ru), where u ∈ Spin(n) (SU(2) if
n = 3). The corresponding generic part of the configuration space is given by the quotient

manifold Q(n) ≃ M (n)/H(n). In situations when there are coincidences of qi’s, i.e., when
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the spectra of deformations tensors are degenerate, description is more complicated. Such
configurations are non-generic, and they need some special treatment. It is impossible to
present all details here, so we will only describe a brief scheme for this.

Let M (k;p1...pn) be the set of such triplets (L; q1, . . . , qn;R) that there are only k dif-
ferent qi’s, every one with a multiplicity factor pσ,

∑k
σ=1 pσ = n. Let us take the trans-

formation group H(k;p1...pn) with the following action on M (k;p1...pn): (L; q1, . . . , qn;R) 7→
(LU ; qπU (1, . . . , qn);RU), where U runs over the group generated by K and the subgroup
W (k;p1...pn) ⊂ SO(n,R) composed of k pσ × pσ blocks, every one in the corresponding
SO(pσ,R). The generic subset Q(k;p1...pn) is given by the quotient M (k;p1...pn)/H(k;p1...pn).
When the half-integer spin is to be taken into account, we must consider the manifold
M (k;p1...pn) consisting of triplets (l; q1, . . . , qn; r), where l, r ∈ Spin(n), and (q1, . . . , qn) are

degenerate as above. Then H(k;p1...pn) = τ−1(H(k;p1...pn)) ⊂ Spin(n,R), and the mani-

fold of the corresponding degenerate configuration is the quotient M (k;p1...pn)/H(k;p1...pn)

taken with respect to the action (l; q1, . . . , qn; r) 7→ (lu; qπτ(u)(1, . . . , qn); ru), where u ∈
H(k;p1...pn). When k < n, i.e., at least one multiplicity factor is nontrivial, the group
H(k;p1...pn) is continuous, and the resulting quotient is lower-dimensional. In the physi-
cal case n = 3, we have obviously only two possibilities of nontrivial blocks, SO(2,R)×
SO(1,R) and the total SO(3,R) (respectively two of q’s or all of them equal); obviously,
SO(1,R) = {1}.

Let us now just concentrate on the physical case n = 3. In our highly-symmetric
geodetic models the projections of spin onto some space-fixed z-axis and the projection
of vorticity onto some body-fixed z′-axis are good quantum numbers. Our wave functions
may be expanded as follows:

Ψ(u, q, v) =
∑

s,j

s∑

m,n=−s

j∑

k,l=−j

Ds
mn(u)f sj

(nk

ml)
(q)Dj

kl(v
−1), (3.3)

where u, v ∈ SU(2), and q is here an abbreviation for (q1, q2, q3), (m,n) and (k, l) run over
the range from −s to s and −j to j respectively in integer steps, whereas s, j are non-
negative integers starting from 0 or positive half-integers starting from 1/2. But, just as
in rigid body mechanics, there is a superselection rule. Namely, if |Ψ| is to be one-valued,
then either s, j must be simultaneously half-integer or simultaneously integer. The reduced
invariant-dependent amplitudes f sj(q1, q2, q3) vanish in the mixed case, i.e., if (j − s) is
half-integer. The case of degenerate triplets (q1, q2, q3) is too complicated to be described
here in detail; the general rules follow from the above discussion. Namely, the f -amplitudes
must be chosen in such a way as not to distinguish triplets (u, q, v) equivalent in the above
sense.

When there is no external potential, i.e., in purely geodetic models, it is convenient to
restrict ourselves to expansions with fixed values of s, j,m, l:

Ψsj
ml(u, q, v) =

s∑

n=−s

j∑

k=−j

Ds
mn(u)f sj

nk(q)D
j
kl(v

−1). (3.4)

Everything said above applies to SL(3,R) geodetic situations when dilatations are stabi-
lized with the help of some potential V(q) (now q = (q1 + q2 + q3)/3), or even to more
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general non-geodetic situations when the potential energy is non-trivial but depends only
on deformation invariants, V(q1, q2, q3).

For fixed s, j the reduced amplitude f sj is a qi-dependent (2s + 1) × (2j + 1) matrix.
It satisfies the family of reduced Schrödinger eigenequations for energy levels: Hsjf sj =
Esjf sj, where for our model T aff−aff

int we have:

Hsjf sj = − ~
2

2A
Df sj +

~
2B

2A(A + nB)

∂2

∂q2
f sj +

1

32A

∑

a,b

(
←−
S j

ab −
−→
S s

ab)
2

sh2[(qa − qb)/2]
f sj (3.5)

− 1

32A

∑

a,b

(
←−
S j

ab +
−→
S s

ab)
2

ch2[(qa − qb)/2]
f sj + Vf sj,

where D = (1/P )
∑

a(∂/∂qa)P (∂/∂qa), P =
∏

a6=b |sh(qa − qb)|, Sj
ab is the (a, b)-th (~

included) matrix of the j-th angular momentum, i.e, rotations in the (a, b)-th plane of Rn

(for n = 3, Sj
ab are (2j + 1) × (2j + 1)-matrices),

←−
S j

abf
sj = f sjSj

ab,
−→
S s

abf
sj = Ss

abf
sj, V

denotes the dilatation-stabilizing potential. The structure of equations does not change
when, besides of q = (q1 + . . . + qn)/n, V depends also on other deformation invariants
(eigenvalues of deformation tensors).

The Haar measure in the two-polar representation is given by the following expression:
dλ(l, q, r) =

∏
i6=j |sh(qi − qj)|dµ(l)dµ(r)dq1 . . . dqn, where µ denotes the unity-normalized

Haar measure on SO(n,R).

Remark: sometimes it is convenient to use the modified deformation amplitude g =
√

Pf .
The resulting Schrödinger equation is analogous to (3.5) with the difference that D is
replaced by

∑
a(∂

2/∂(qa)2)− (~/2m)P−2 +(~2/4m)P−1
∑

a(∂P/∂qa)2, i.e., the usual Rn-
Laplacian modified by some extra “potential” term. The scalar product representation is
then also modified in an appropriate way.

In three dimensions the effective Hamiltonians Hsj corresponding to T net−aff
int , T aff−met

int

are as follows:

Hsjf sj = − ~
2

2α
Df sj − ~

2

2β

∂2

∂q2
f sj +

1

32α

∑

a,b

(
←−
S j

ab −
−→
S s

ab)
2

sh2[(qa − qb)/2]
f sj (3.6)

− 1

32α

∑

a,b

(
←−
S j

ab +
−→
S s

ab)
2

ch2[(qa − qb)/2]
f sj +

~
2

2µ

{
s(s + 1)
j(j + 1)

}
f sj + Vf sj,

For a general n the above ~
2s(s + 1) and ~

2j(j + 1) terms are replaced by the correspond-
ing eigenvalues of the second-order Casimirs of SO(n,R). The terms with denominators
ch2[(qa − qb)/2] and sh2[(qa − qb)/2] describe respectively the effective attraction (acting
even without any V) and repulsion. For the scalar situation, when s = j = 0, there are
only terms −(~2/2α)Df00 − (~2/2β)(∂2f00/∂q2) +Vf00 in the Schrödinger operator. The

special case s = j = 1/2 is very interesting, because S
1/2
ab = (~/2)σab, i.e., spin and vor-

ticity are represented by Pauli matrices multiplied by ~/2. Obviously, in two dimensions,
when the covering kernel is isomorphic with Z, there is no half-integer angular momentum.

Let us recall that in the exceptional case n = 3 the bi-indices (a, b) may be replaced
by the dual indices c, where c 6= a, b, namely, Sj

a = (1/2)ǫabcS
j
bc, Sj

ab = ǫabcS
j
c . Then after
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some calculations it may be shown that two terms of Hsj controlled by the factor 1/32α
has the following explicit form:

(Ss
1)

2f sj − 2Ss
1f

sjSj
1 + f sj(Sj

1)
2

16α sh2[(q2 − q3)/2]
+

(Ss
2)

2f sj − 2Ss
2f

sjSj
2 + f sj(Sj

2)
2

16α sh2[(q1 − q3)/2]

+
(Ss

3)
2f sj − 2Ss

3f
sjSj

3 + f sj(Sj
3)

2

16α sh2[(q1 − q2)/2]
− (Ss

1)
2f sj + 2Ss

1f
sjSj

1 + f sj(Sj
1)

2

16α ch2[(q2 − q3)/2]

−(Ss
2)

2f sj + 2Ss
2f

sjSj
2 + f sj(Sj

2)
2

16α ch2[(q1 − q3)/2]
− (Ss

3)
2f sj + 2Ss

3f
sjSj

3 + f sj(Sj
3)

2

16α ch2[(q1 − q2)/2]
.

Depending on the relationship between s and j, the SL(3,R)-geodetic spectrum is discrete
(bounded states) or continuous. The same is true for the total GL(3,R)-dynamics, when
an appropriate dilatation-stabilizing potential is used. Standard terms (~2/2µ)s(s + 1)
and (~2/2µ)j(j + 1) appearing respectively in the metric-affine and affine-metric models
as some corrections to the standard affine-affine spectrum are very interesting. They seem
to be confirmed by experimental data concerning nuclear and hadronic energetic (mass)
spectra. The controlling quantum numbers s, j have to do with spin and probably isospin
properties. As it was mentioned before, the third and fourth terms of (3.6) simply vanish
for the scalar case, when s = j = 0. In the physical dimension n = 3, the spinor-spinor
case s = j = 1/2 is also remarkably simpler than the general situation, because we have

S
1/2
a = (~/2)σa and [S

1/2
a ]2 = (~2/4)I2, where I2 is the unit 2× 2 matrix.

Finally, let us mention the planar case n = 2, which is also of some physical interest.
Then in the two-polar decomposition we have:

L =

[
cos α − sin α
sin α cos α

]
, R =

[
cos β − sinβ
sin β cos β

]
,

S = pα

[
0 -1
1 0

]
, V = pβ

[
0 -1
1 0

]
,

where pα, pβ are canonical momenta conjugate to α, β. It is convenient to introduce new
variables q := (q1 + q2)/2 and x := q2 − q1, their conjugate momenta are respectively p =
p1 + p2 and y = (p2 − p1)/2. The Haar measure on GL(2,R) is given by dλ(α; q1, q2;β) =∣∣sh(q1 − q2)

∣∣ dαdβdq1dq2, i.e., dλ(α; q, x;β) = |sh x|dαdβdxdq. The Fourier expansion of
wave functions with respect to α, β is given by Ψ(α; q, x;β) =

∑
m,n∈Z

fmn(q, x)eimαeinβ.

The reduced Hamiltonians corresponding to T aff−aff
int , T met−aff

int , T aff−met
int are as follows:

Hmnfmn = − ~
2

2A
Dfmn +

~
2B

2A(A + 2B)

∂2

∂q2
fmn (3.7)

+
~

2(n−m)2

16A sh2(x/2)
fmn − ~

2(n + m)2

16A ch2(x/2)
fmn + Vfmn,

Hmnfmn = − ~
2

2α
Dfmn − ~

2

2β

∂2

∂q2
fmn +

~
2(n−m)2

16α sh2(x/2)
fmn (3.8)

− ~
2(n + m)2

16α ch2(x/2)
fmn +

~
2

2µ

{
m2

n2

}
fmn + Vfmn,
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where Dfmn = (1/|sh x|)(∂/∂x)(|sh x|∂fmn/∂x) + ∂2fmn/∂x2, and V is a dilatations-
stabilizing potential depending on q. As for purely incompressible motion, there exist both
bounded and continuous spectra depending on the relationship between quantum numbers
n,m.
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