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Abstract

We construct a deformation quantization for two cases of configuration spaces: the
multiplicative group of positive real numbers R+ and the circle S1. In these cases we
define the momenta using the Fourier transform. Using the identification of symbols of
quantum observables — real functions on the phase space — with classical observables,
we introduce a non–commutative ⋆–product between a pair of them.

1 Introduction

In this contribution we proceed to study the relationship between classical mechanics and
quantum mechanics, and to clarify mathematical connections between them for two simple
examples of configuration spaces. Such attempts originally have led to the discipline called
quantization methods [1]. The traditional methods contained in the works of Dirac,
Heisenberg and Schrödinger are usually called canonical quantization. The subsequent
development of this branch brought a general concept of quantization [2] which contains
alternative quantization methods, among them the quantization as a deformation of an
algebra of classical observables.

In classical mechanics and quantum mechanics, there are two basic concepts: states
and observables. While in classical mechanics pure states are points in a phase space
and observables are functions on the phase space, in quantum mechanics pure states are
one–dimensional subspaces of a separable Hilbert space H , generally of infinite dimension,
and observables are selfadjoint operators on the Hilbert space.

In both theories the observables form an associative algebra which is commutative in
classical mechanics and non–commutative in quantum mechanics. So the quantization can
also be understood as a procedure replacing a commutative algebra by a non–commutative
one [3, 4, 5], called a deformation quantization.

In order to perform the deformation, it is useful to describe the observables in quantum
and classical mechanics by the objects of the same mathematical nature [1, 6]. For this
purpose the Wigner correspondence can be used, which associates real functions on phase
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space (Wigner symbols) with selfadjoint operators on H . Then the multiplication of
operators on H corresponds to a non–commutative multiplication (so called ⋆–product)
of the associated Wigner symbols.

If the symbols WF (p, q) and WG(p, q) are associated with the operators F̂ and Ĝ, then
the multiplication (WF ⋆ WG)(p, q) corresponds to F̂ Ĝ according to the diagram

F̂ , Ĝ −−−−→ F̂ ◦ Ĝ




y





y

WF (p, q),WG(p, q) −−−−→ (WF ⋆WG)(p, q)

2 The Wigner symbol

For the construction of the Wigner symbols we are going to apply our method introduced
in [7] for the case of compact groups.

• Let the configuration space M be a compact unimodular group, quantum Hilbert
space L2(M, dx), where dx is an invariant measure.

• Let Ĥ be a selfadjoint integral operator acting on L2(M, dx) with the Hilbert–
Schmidt kernel H(x, y), i.e.

(Ĥψ)(x) =

∫

M

H(x, y)ψydy,

where
H(x, y) = H(y, x).

• Let {πi(M), i ∈ I} be the set of all irreducible representations of M. Accord-
ing to the Peter–Weyl theorem, any L2 function on a compact group M admits a
Fourier expansion into the complete orthogonal basis of all matrix elements {φk(x) =
Ci

mn(x), k = (i,m, n) ∈ U)} of all representations π(M). We assume that the basis
{φk(x)} of Hilbert space H is normalized.

• Let the operator T̂ act on L2(M×M)

T̂ : f(x, y) → f(xy, xy−1),

and let the inverse operator T̂ −1 exist (this is the case, e.g. for Lie groups for which
the exponential map is onto).

Then the Wigner symbol of the operator Ĥ is a function on M×U with the first variable
in the group x ∈ M and the second in the set of indices k = (i,m, n) ∈ U

WH(x, k) =

∫

M

(T̂ (H(x, y)))φk(y)dy.

It can be written
WH(k, x) = F̂(T̂ (H(x, y)))

where F̂ is the Fourier transform in the second variable.
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3 Wigner Quantization

We consider the Wigner quantization as quantization defined by the multiplication law
between the Wigner symbols – the ⋆–product. Assuming the existence of the inverse
operators F̂−1 and T̂ −1, the general scheme is : let us have Wigner symbols WF ,WG and
WFG, we define ⋆–product between them

WFG(x, k) = (WF ⋆ WG)(x, k)

WFG(x, k) = F̂k(T̂ 〈x|F̂ Ĝ|y〉) = F̂k(T̂ (

∫

M

dz〈x|F̂ |z〉〈z|Ĝ|y〉)) =

F̂k(T̂ (

∫

M

dz(T̂ −1F̂−1WF )(x, z)(T̂ −1F̂−1WG)(z, y))).

Thus the ⋆–product is expressed by an integral over the manifold M. The functionH(x, y)
can be expanded in a double Fourier series

H(x, y) =
∑

mn∈U

hm,nφm(x)φn(y),

where hm,n = hn,m, and in some cases one can use the orthogonality relation of the Fourier
basis to simplify the relations.

3.1 Wigner quantization on a circle

An arbitrary L2 function on the circle can be expanded in the Fourier series

f(x) =
∑

k

fkφk(x) =
∑

k

fke
ikx,

where k = 0, 1, 2, . . . and x ∈ (−π, π). The function corresponding to a selfadjoint operator
Ĥ is

H(x, y) =
∑

k,l

hk,le
ikxe−ily,

where x, y ∈ (−π, π), k, l = 0,±1,±2, . . ., and hk,l = hl,k. The Wigner symbols of the

selfadjoint operators Ĥ and Ĝ are

WH(x, k) =
∑

l

hl,k−le
ix(2l−k),

WG(z,m) =
∑

n

gn,m−ne
iz(2n−m),

and the symbol corresponding to the product of the operators Ĥ and Ĝ is

WGH(x, l) =
∑

k,m

gm,khk,l−me
ix(2m−l).
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Let us now start with the symbols WH and WG. To determine the ⋆–product, we have
to determine the coefficients

hm,n =
1

2π

∫ π

−π

WH(x,m− n)eix(m+n)dx.

The result is

WHG(x, l) = (WH ⋆ WG)(x, l) =
∑

k,m

eix(2m−l) 1

2π
×

∫ π

−π

dz
1

2π

∫ π

−π

dyWH(z, k −m)WG(y, l −m− k)eiz(k+m)eiy(l+k+m).

Hence for any two real functions on phase space their ⋆–product is given by

(h ⋆ g)(x, l) =
∑

k,m

eix(2m−l) 1

2π
×

∫ π

−π

dz
1

2π

∫ π

−π

dyh(z, k −m)g(y, l −m− k)eiz(k+m)eiy(l+k+m).

3.2 Wigner quantization on R+

Our approach is based on the idea that R+ is an Abelian multiplicative group with the
Haar measure dη = dy

y
and it is isomorphic with the additive group R via y = eη . Hence

the characters are related by eip ln y = eipη and labeled by p ∈ R.

Let us consider a selfadjoint operator Ĥ on L2(R+, dx). The corresponding kernel of
an integral operator H(x, y) = 〈x|Ĥ|y〉 = H(y, x) is also selfadjoint. In order to get a real
symbol of Ĥ on phase space R+ × R, we introduce the following transformations:

• The operator T̂ acts on L2(R+ × R+, dx dy) by

T̂ : H(x, y) 7→ h(x, y) = H(xy, xy−1),

and T̂ −1 is its inverse

T̂ −1 : h(x, y) 7→ H(x, y) = h(
√
xy,

√

xy−1),

• The operator F̂ acts from L2(R+ × R+, dx dy) to L2(R+ × R, dx dp)

F̂ : h(x, y) 7→WH(x, p) =

∫

∞

0
h(x, y)eı p ln y dy

y

and the operator F̂−1 is its inverse

F̂−1 : WH(x, p) 7→ h(x, y) =

∫

∞

0
WH(x, p)e−ı p ln ydp.
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The Wigner symbol of Ĥ is defined as

WH(x, p) = F̂(T̂ (H(x, y)))

and it is a real function on R+ × R.
A non–commutative multiplication law — the ⋆–product between the Wigner symbols

WF and WG on phase space R+ × R, is

(WF ⋆ WG)(x, p) = WFG(x, p),

where

(WF ⋆ WG)(x, p) = F̂(T̂ (

∫

∞

0
(T̂ −1F̂−1WF )(x, z)(T̂ −1F̂−1WG)(z, y)))dz

It is straightforward to convert the quantization into integration over R+ × R : let
f(x, p) and g(x, p), be real functions on phase space, then their ⋆–product is given by the
integral

(f ⋆ g)(x, l) =
1

4π2

∫

R

dk

∫

R

dp

∫

R+

dz

∫

R+

dy f(
√
xyz, p) g(

√

xy

z
, k)×

e
−ıp ln

√

xz

y e−ık ln
√

y

xz eıl ln z.
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