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Abstract

The aim of this paper is to present aspects of the use of Lie groups in mechanics.
We start with the motion of the rigid body for which the main concepts are extracted.
In a second part, we extend the theory for an arbitrary Lie group and in a third section
we apply these methods for the diffeomorphism group of the circle with two particular
examples: the Burger equation and the Camassa-Holm equation.

Introduction

The aim of this article is to present aspects of the use of Lie groups in mechanics. In a
famous article [1], Arnold showed that the motion of the rigid body and the motion of an
incompressible, inviscid fluid have the same structure. Both correspond to the geodesic
flow of a one-sided invariant metric on a Lie group. From a rather different point of view,
Jean-Marie Souriau has pointed out in the seventies [28] the fundamental role played by Lie
groups in mechanics and especially by the dual space of the Lie algebra of the group and
the coadjoint action. We aim to discuss some aspects of these notions through examples in
finite and infinite dimension. The article is divided in three parts. In Section 1 we study
in detail the motion of an n-dimensional rigid body. In the second section, we treat the
geodesic flow of left-invariant metrics on an arbitrary Lie group (of finite dimension). This
permits us to extract the abstract structure from the case of the motion of the rigid body
which we presented in Section 1. Finally, in the last section, we study the geodesic flow of
Hk right-invariant metrics on Diff(S1), the diffeomorphism group of the circle, using the
approach developed in Section 2. Two values of k have significant physical meaning in this
example: k = 0 corresponds to the inviscid Burgers equation [18] and k = 1 corresponds
to the Camassa-Holm equation [3, 4].

1 The motion of the rigid body

1.1 Rigid body

In classical mechanics, a material system (Σ) in the ambient space R
3 is described by

a positive measure µ on R
3 with compact support. This measure is called the mass

distribution of (Σ).
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• If µ is proportional to the Dirac measure δP , (Σ) is the massive point P , the multi-
plicative factor being the mass m of the point.

• If µ is absolutely continuous with respect to the Lebesgue measure λ on R
3, then the

Radon-Nikodym derivative of µ with respect to λ is the mass density of the system
(Σ).

In the Lagrangian formalism of Mechanics, a motion of a material system is described
by a smooth path ϕt of embeddings of the reference state Σ = Supp(µ) in the ambient
space. A material system (Σ) is rigid if each map ϕ is the restriction to Σ of an isometry
g of the Euclidean space R

3. Such a condition defines what one calls a constitutive law of
motion which restricts the space of probable motions to that of admissible ones.
In the following section, we are going to study the motions of a rigid body (Σ) such that

Σ = Supp(µ) spans the 3 space. In that case, the manifold of all possible configurations
of (Σ) is completely described by the 6-dimensional bundle of frames of R

3, which we
denote R(R3). The group D3 of orientation-preserving isometries of R

3 acts simply and
transitively on that space and we can identify R(R3) with D3. Notice, however, that this
identification is not canonical – it depends of the choice of a ”reference” frame �0.
Although the physically meaningful rigid body mechanics is in dimension 3, we will not

use this peculiarity in order to distinguish easier the main underlying concepts. Hence, in
what follows, we will study the motion of an n-dimensional rigid body.
Moreover, since we want to insist on concepts rather than struggle with heavy com-

putations, we will restrain our study to motions of a rigid body having a fixed point.
This reduction can be justified physically by the possibility to describe the motion of an
isolated body in an inertial frame around its center of mass. In these circumstances, the
configuration space reduces to the group SO(n) of isometries which fix a point.

1.2 Lie algebra of the rotation group

The Lie algebra so(n) of SO(n) is the space of all skew-symmetric n×n matrices1. There
is a canonical inner product, the so-called Killing form [28]

〈Ω1,Ω2 〉 = −1
2
tr(Ω1Ω2)

which permit us to identify so(n) with its dual space so(n)∗.
For x and y in R

n, we define

L∗(x, y)(Ω) = (Ωx) · y, Ω ∈ so(n)

which is skew-symmetric in x, y and defines thus a linear map

L∗ :
2∧

R
n → so(n)∗ .

1In dimension 3, we generally identify the Lie algebra so(3) with R
3 endowed with the Lie bracket given

by the cross product ω1 × ω2.
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This map is injective and is therefore an isomorphism between so(n)∗ and
∧2

R
n, which

have the same dimension. Using the identification of so(n)∗ with so(n), we check that the
element L(x, y) of so(n) corresponding to L∗(x, y) is the matrix

L(x, y) = yxt − xyt . (1.1)

where xt stands for the transpose of the column vector x.

1.3 Kinematics

The location of a point a of the body Σ is described by the column vector r of its coor-
dinates in the frame �0. At time t, this point occupies a new position r(t) in space and
we have r(t) = g(t)r, where g(t) is an element of the group SO(3). In the Lagrangian
formalism, the velocity v(a, t) of point a of Σ at time t is given by

v(a, t) =
∂

∂t
ϕ(a, t) = ġ(t) r.

The kinetic energy K of the body Σ at time t is defined by

K(t) =
1
2

∫
Σ
‖v(a, t)‖2 dµ =

1
2

∫
Σ
‖ġ r‖2 dµ =

1
2

∫
Σ
‖Ωr‖2 dµ (1.2)

where Ω = g−1 ġ lies in the Lie algebra so(n).

Lemma 1. We have K = −1
2 tr(ΩJΩ), where J is the symmetric matrix with entries

Jij =
∫

Σ
xixj dµ .

Proof. Let L :
∧2

R
n → so(n) be the operator defined by (1.1). We have

L(r,Ω r) = (rrt)Ω + Ω(rrt) Ω ∈ so(n), r ∈ R
n, (1.3)

where rrt is the symmetric matrix with entries xixj . Therefore

(Ω r) · (Ω r) = L∗(r,Ωr)Ω = −1
2
tr

(
L(r,Ω r

)
Ω) = − tr (Ω(rrt)Ω)

, (1.4)

which leads to the claimed result after integration. �

The kinetic energy K is therefore a positive quadratic form on the Lie algebra so(n).
A linear operator A : so(n) → so(n), called the inertia tensor or the inertia operator, is
associated to K by means of the relation

K =
1
2
〈A(Ω),Ω 〉 , Ω ∈ so(n).

More precisely, this operator is given by

A(Ω) = JΩ+ ΩJ =
∫

Σ

(
Ω rrt + rrtΩ

)
dµ . (1.5)
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Remark. In dimension 3 the identification between a skew-symmetric matrix Ω and a
vector ω is given by ω1 = −Ω23, ω2 = Ω13 and ω3 = −Ω12. If we look for a symmetric
matrix I such that A(Ω) correspond to the vector Iω, we find that

I =
∫

Σ


 y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2


 dµ,

which gives the formula used in Classical Mechanics. ♦

1.4 Angular momentum

In classical mechanics, we define the angular momentum of the body as the following
2-vector2

M(t) =
∫

Σ
(gr) ∧ (ġr) dµ .

Lemma 2. We have L(M) = gA(Ω)g−1.

Proof. A straightforward computation shows that

L(gr, ġr) = gΩrrtg−1 + grrtΩg−1.

Hence

L(M) =
∫

Σ
L(gr, ġr) dµ = gA(Ω)g−1 .

�

1.5 Equation of motion

If there are no external actions on the body, the spatial angular momentum is a constant
of the motion,

dM
dt

= 0 . (1.6)

Coupled with the relation L(M) = gA(Ω)g−1, we deduce that

A(Ω̇) = A(Ω)Ω− ΩA(Ω) (1.7)

which is the generalization in n dimensions of the traditional Euler equation. Notice that
if we let M = A(Ω), this equation can be rewritten as

Ṁ = [M,Ω ] . (1.8)

2In the Euclidean 3-space, 2-vectors and 1-vectors coincide. This is why, usually, one consider the
angular momentum as a 1-vector.
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1.6 Integrability

Equation (1.8) has the peculiarity that the eigenvalues of the matrix M are preserved
in time. Usually, integrals of motion help to integrate a differential equation. The Lax
pairs technique [21] is a method to generate such integrals. Let us summarize briefly this
technique for finite dimensional vector spaces. Let u̇ = F (u) be an ordinary differential
equation in a vector space E. Suppose that we were able to find a smooth map L : E →
End(F ), where F is another vector space of finite dimension, with the following property:
if u(t) is a solution of u̇ = F (u), then the operators L(t) = L(u(t)) remain conjugate with
each other, that is, there is a one-parameter family of invertible operators P (t) such that

L(t) = P (t)−1L(0)P (t) . (1.9)

In that case, differentiating (1.9), we get

L̇ = [L,B ] (1.10)

where B = P−1Ṗ . Conversely, if we can find a smooth one-parameter family of matrices
B(t) ∈ End(F ), solutions of equation (1.10), then (1.9) is satisfied with P (t) a solution
of Ṗ = PB . If this is the case, then the eigenvalues, the trace and more generally all
conjugacy invariants of L(u) constitute a set of integrals for u̇ = F (u).
A Hamiltonian system on R

2N is called completely integrable if it has N integrals in
involution that are functionally independent almost everywhere. A theorem of Liouville
describes in that case, at least qualitatively, the dynamics of the equation. This is the
reason why it is so important to find integrals of motions of a given differential equation.
Using the Lax pairs technique, Manakov [23] proved the following theorem 3

Theorem 1. Given any n, equation (1.8) has

N(n) =
1
2

[n
2

]
+

n(n− 1)
4

integrals of motion in involution. The equation of motion of an n-dimensional rigid body
is completely integrable.

Sketch of proof. The proof is based on the following basic lemma.

Lemma 3. Euler’s equations (1.8) of the dynamics of an n-dimensional rigid body have,
for any n, a representation in Lax’s form in matrices, linearly dependent on a parameter
λ ∈ C, given by Lλ =M + J2λ and Bλ = Ω+ Jλ.

Hence, the polynomials Pk(λ) = tr (M + J2λ)k, (k = 2, . . . , n) are time-independent
and the coefficients Pk(λ) are integrals of motion. Since M is skew-symmetric and J is
symmetric, the coefficient of λs in Pk(λ) is nonzero, provided s has the same parity as k.
The calculation of N(n) here presents no difficulties. �

3This theorem was first proved by Mishchenko for n = 4 [26].
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2 Geodesic flow on a Lie Group

In this section, we are going to study the geodesic flow of a left invariant metric on a
Lie group of finite dimension. Our aim is to show that all the computations performed
in Section 1 are a very special case of the theory of one-sided invariant metrics on a Lie
group. Later on, we will use these techniques to handle partial differential equations. We
refer to [2] from where materials of this section come from and to Souriau’s book [28] for
a thorough discussion of the role played by the dual of the Lie algebra in mechanics and
physics.

2.1 Lie Groups

A Lie group G is a group together with a smooth structure such that g �→ g−1 and
(g, h) �→ gh are smooth. On G, we define the right translations Rh : G → G by Rg(h) = hg
and the left translations Lg : G → G by Lg(h) = gh.
A Lie group is equipped with a canonical vector-valued one form, the so called Maurer-

Cartan form ω(Xg) = Lg−1Xg which shows that the tangent bundle to G is trivial TG �
G× g. Here g is the tangent space at the group unity e.
A left-invariant tensor is completely defined by its value at the group unity e. In

particular, there is an isomorphism between the tangent space at the origin and left-
invariant vector fields. Since the Lie bracket of such fields is again a left-invariant vector
field, the Lie algebra structure on vector fields is inherited by the tangent space at the
origin g. This space g is called the Lie algebra of the group G.

Remark. One could have defined the Lie bracket on g by pulling back the Lie bracket of
vector fields by right translation. The two definitions differ just by a minus sign

[ξ, ω ]R = − [ξ, ω ]L . ♦

Example. The Lie algebra so(n) of the rotation group SO(n) consists of skew-symmetric
n× n matrices. ♦

2.2 Adjoint representation of G

The composition Ig = Rg−1Lg : G → G which sends any group element h ∈ G to ghg−1 is
an automorphism, that is,

Ig(hk) = Ig(h)Ig(k).

It is called an inner automorphism of G. Notice that Ig preserves the group unity.
The differential of the inner automorphism Ig at the group unity e is called the group

adjoint operator Adg defined by

Adg : g → g, Adg ω =
d

dt
|t=0 Ig(h(t)),

where h(t) is a curve on the group G such that h(0) = e and ḣ(0) = ω ∈ g = TeG. The
orbit of a point ω of g under the action of the adjoint representation is called an adjoint
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orbit. The adjoint operators form a representation of the group G (i.e. Adgh = AdgAdh)
which preserves the Lie bracket of g, that is,

[Adg ξ, Adg ω ] = Adg [ξ, ω ] .

This is the Adjoint representation of G into its Lie algebra g.

Example. For g ∈ SO(n) and Ω ∈ so(n), we have Adg Ω = gΩg−1. ♦

2.3 Adjoint representation of g

The map Ad, which associates the operator Adg to a group element g ∈ G, may be
regarded as a map from the group G to the space End(g) of endomorphisms of g. The
differential of the map Ad at the group unity is called the adjoint representation of the
Lie algebra g into itself,

ad : g → End(g), adξ ω =
d

dt
|t=0 Adg(t) ω.

Here g(t) is a curve on the group G such that g(0) = e and ġ(0) = ξ. Notice that the
space {adξ ω, ξ ∈ g} is the tangent space to the adjoint orbit of the point ω ∈ g.

Example. On the rotation group SO(n), we have adΞ Ω = [Ξ,Ω ], where [Ξ,Ω ] = ΞΩ−ΞΣ
is the commutator of the skew-symmetric matrices Ξ and Ω. As we already noticed, for
n = 3, the vector [ξ, ω ] is the ordinary cross product ξ×ω of the angular velocity vectors
ξ and ω in R

3. More generally, if G is an arbitrary Lie group and [ξ, ω ] is the Lie bracket
on g defined earlier, we have adξ ω = [ξ, ω ]. ♦

2.4 Coadjoint representation of G

Let g∗ be the dual vector space to the Lie algebra g. Elements of g∗ are linear functionals
on g. As we shall see, the leading part in mechanics is not played by the Lie algebra itself
but by its dual space g∗. Souriau [28] pointed out the importance of this space in physics
and called the elements of g∗ torsors of the group G. This definition is justified by the fact
that torsors of the usual group of affine Euclidean isometries of R

3 represent the torsors
or torques of mechanicians.
Let A : E → F be a linear mapping between vector spaces. The dual (or adjoint)

operator A∗, acting in the reverse direction between the corresponding dual spaces, A∗ :
F ∗ → E∗, is defined by

(A∗ α)(x) = α(A x)

for every x ∈ E, α ∈ F ∗.
The coadjoint representation of a Lie group G in the space g∗ is the representation that

associates to each group element g the linear transformation

Ad∗g : g
∗ → g∗

given by Ad∗g = (Adg−1)∗. In other words,

(Ad∗g m)(ω) = m(Adg ω)
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for every g ∈ G, m ∈ g∗ and ω ∈ g. The choice of g−1 in the definition of Ad∗g is to
ensure that Ad∗ is a left representation, that is Ad∗gh = Ad∗gAd∗h and not the converse
(or right representation). The orbit of a point m of g∗ under the action of the coadjoint
representation is called a coadjoint orbit.
The Killing form on g is defined by

k(ξ, ω) = tr (adξ adω) .

Notice that k is invariant under the adjoint representation of G. The Lie group G is
semi-simple if k is non-degenerate. In that case, k induces an isomorphism between g and
g∗ which permutes the adjoint and coadjoint representation. The adjoint and coadjoint
representation of a semi-simple Lie group are equivalent.

Example. For the group SO(3) the coadjoint orbits are the sphere centered at the origin
of the 3-dimensional space so(3)∗. They are similar to the adjoint orbits of this group,
which are spheres in the space so(3). ♦

Example. For the group SO(n) (n ≥ 3), the adjoint representation and coadjoint repre-
sentations are equivalent due to the non-degeneracy of the Killing form4

k(Ξ,Ω) =
1
2
tr (ΞΩ∗) ,

where Ω∗ is the transpose of Ω relative to the corresponding inner product of Rn. Therefore

Ad∗g M = gMg−1,

for M ∈ so(n)∗ and g ∈ SO(n). ♦

Despite the previous two examples, in general the coadjoint and the adjoint repre-
sentations are not alike. For example, this is the case for the Poincaré group (the non-
homogenous Lorentz group) cf. [14].

2.5 Coadjoint representation of g

Similar to the adjoint representation of g, there is the coadjoint representation of g. This
later is defined as the dual of the adjoint representation of g, that is,

ad∗ : g → End(g∗), ad∗ξ m = (adξ)∗(m) = − d

dt
|t=0 Ad∗g(t) m,

where g(t) is a curve on the group G such that g(0) = e and ġ(0) = ξ.

Example. For Ω ∈ so(n) and M ∈ so(n)∗, we have ad∗Ω M = − [Ω,M ]. ♦

Given m ∈ g∗, the vectors ad∗ξ m, with various ξ ∈ g, constitute the tangent space to
the coadjoint orbit of the point m.

4This formula is exact up to a scaling factor since a precise computation for so(n) gives k(X, Y ) =
(n − 2) tr(XY ).
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2.6 Left invariant metric on G

A Riemannian or pseudo-Riemannian metric on a Lie group G is left invariant if it is
preserved under every left shift Lg, that is,

〈Xg, Yg 〉g = 〈Lh Xg, Lh Yg 〉hg , g, h ∈ G.

A left-invariant metric is uniquely defined by its restriction to the tangent space to the
group at the unity, hence by a quadratic form on g. To such a quadratic form on g, a
symmetric operator A : g → g∗ defined by

〈ξ, ω 〉 = (Aξ, ω ) = (Aω, ξ ) , ξ, ω ∈ g ,

is naturally associated, and conversely5. The operator A is called the inertia operator. A
can be extended to a left-invariant tensor Ag : TgG → TgG

∗ defined by Ag = L∗
g−1ALg−1 .

More precisely, we have

〈X,Y 〉g = (AgX,Y )g = (AgY,X )g , X, Y ∈ TgG.

The Levi-Civita connection of a left-invariant metric is itself left-invariant: if La and
Lb are left-invariant vector fields, so is ∇LaLb. We can write down an expression for this
connection using the operator B : g × g → g defined by

〈[a, b ] , c 〉 = 〈B(c, a), b 〉 (2.1)

for every a, b, c in g. An exact expression for B is

B(a, b) = A−1 ad∗b(Aa) .

With these definitions, we get

(∇LaLb)(e) =
1
2
[a, b ]− 1

2
{B(a, b) +B(b, a)} (2.2)

2.7 Geodesics

Geodesics are defined as extremals of the Lagrangian

L(g) =
∫

K (g(t), ġ(t)) dt (2.3)

where

K(X) =
1
2
〈Xg, Xg 〉g =

1
2
(Ag Xg, Xg )g (2.4)

is called the kinetic energy or energy functional.
If g(t) is a geodesic, the velocity ġ(t) can be translated to the identity via left or right

shifts and we obtain two elements of the Lie algebra g,

ωL = Lg−1 ġ, ωR = Rg−1 ġ,

5The round brackets correspond to the natural pairing between elements of g and g∗.
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called the left angular velocity, respectively the right angular velocity. Letting m = Ag ġ ∈
TgG

∗, we define the left angular momentum mL and the right angular momentum mR by

mL = L∗
gm ∈ g∗, mR = R∗

gm ∈ g∗.

Between these four elements, we have the relations

ωR = Adg ωL, mR = Ad∗gmL, mL = AωL. (2.5)

Note that the kinetic energy is given by the formula

K =
1
2
〈ġ, ġ 〉g =

1
2
〈ωL, ωL 〉 = 1

2
(mL, ωL ) =

1
2
(Ag ġ, ġ )g . (2.6)

Example. The kinetic energy of an n-dimensional rigid body, defined by

K(t) =
1
2

∫
Σ
‖ġ r‖2 dµ = −1

2
tr(ΩJΩ) (2.7)

is clearly a left-invariant Riemannian metric on SO(n). In this example, we have Ω = ωL

and M = mL. Physically, the left-invariance is justified by the fact that the physics of the
problem must not depend on a particular choice of reference frame used to describe it. It
is a special case of Galilean invariance. ♦

2.8 Euler-Arnold equation

The invariance of the energy with respect to left translations leads to the existence of a
momentum map µ : TG → g∗ defined by

µ((g, ġ))(ξ) =
∂K

∂ġ
Zξ = 〈ġ, Rg ξ 〉g = (m,Rg ξ ) =

(
R∗

g m, ξ
)
= mR(ξ),

where Zξ is the right-invariant vector field generated by ξ ∈ g. According to Noether’s
theorem [28], this map is constant along a geodesic, that is

dmR

dt
= 0. (2.8)

As we did in the special case of the group SO(n), using the relation mR = Ad∗g mL and
computing the time derivative, we obtain

dmL

dt
= ad∗ωL

mL. (2.9)

This equation is known as the Arnold-Euler equation. Using ωL = A−1 mL, it can be
rewritten as an evolution equation on the Lie algebra

dωL

dt
= B(ωL, ωL) . (2.10)

Remark. The Euler-Lagrange equations of problem (2.7) are given by{
ġ = Lg ωL ,
ω̇L = B(ωL, ωL) .

(2.11)

If the metric is bi-invariant, then B(a, b) = 0 for all a, b ∈ g and ωL is constant. In that
special case, geodesics are one-parameter subgroups, as expected. ♦
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2.9 Lie-Poisson structure on g∗

A Poisson structure on a manifold M is a skew-symmetric bilinear function {, } that
associates to a pair of smooth functions on the manifold a third function, and which
satisfies the Jacobi identity

{{f, g } , h }+ {{g, h } , f }+ {{h, f } , g } = 0

as well as the Leibniz identity

{f, gh } = {f, g }h+ g {f, h } .

On the torsor space g∗ of a Lie group G, there is a natural Poisson structure defined
by

{f, g } (m) = (m, [dmf, dmg ]) (2.12)

for m ∈ g∗ and f, g ∈ C∞(g∗). Note that the differential of f at each point m ∈ g∗ is an
element of the Lie algebra g itself. Hence, the commutator [dm f, dm g ] is also a vector of
this Lie algebra. The operation defined above is called the natural Lie-Poisson structure
on the dual space to a Lie algebra. For more materials on Poisson structures, we refer to
[22, 29].

Remark. A Poisson structure on a vector space E is linear if the Poisson bracket of two
linear functions is itself a linear function. This property is satisfied by the Lie-Poisson
bracket on the torsors space g∗ of a Lie group G. ♦

To each function H on a Poisson manifoldM one can associate a vector field ξH defined
by

LξH
f = {H, f }

and called the Hamiltonian field of H. Notice that

[ξF , ξH ] = ξ{F,H }.

Conversely, a vector field v on a Poisson manifold is said to be Hamiltonian if there exists
a function H such that v = ξH .

Example. On the torsors space g∗ of a Lie group G, the Hamiltonian field of a function
H for the natural Lie-Poisson structure is given by ξH(m) = ad∗dmH m.

Let A be the inertia operator associated to a left-invariant metric on G. Then equa-
tion (2.9) on g∗ is Hamiltonian with quadratic Hamiltonian

H(m) =
1
2

(
A−1 m,M

)
, m ∈ g∗,

which is nothing else but the kinetic energy expressed in terms of m = Aω. Notice that
since mL(t) = Ad∗g(t) mR where mR ∈ g∗ is a constant, each integral curve mL(t) of this
equation stays on a coadjoint orbit. ♦
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A Poisson structure on a manifold M is non-degenerate if it derives from a symplectic
structure on M . That is

{f, g } = ω(ξf , ξg) ,

where ω is a non-degenerate closed two form on M . Unfortunately, the Lie-Poisson struc-
ture on g∗ is degenerate in general. However, the restriction of this structure on each
coadjoint orbit is non-degenerate. The symplectic structure on each coadjoint orbit is
known as the Kirillov6 form. It is given by

ω(ad∗a m, ad∗b m) = (m, [a, b ] )

where a, b ∈ g and m ∈ g∗. Recall that the tangent space to the coadjoint orbit of m ∈ g∗

is spanned by the vectors ad∗ξ m where ξ describes g.

3 Right-invariant metric on the diffeomorphism group

In [1], Arnold showed that Euler equations of an incompressible fluid may be viewed as
the geodesic flow of a right-invariant metric on the group of volume-preserving diffeomor-
phism of a 3-dimensional Riemannian manifold M (filled by the fluid). More precisely,
let G = Diffµ(M) be the group of diffeomorphisms preserving a volume form µ on
some closed Riemannian manifold M . According to the Action Principle, motions of an
ideal (incompressible and inviscid) fluid in M are geodesics of a right-invariant metric on
Diffµ(M). Such a metric is defined by a quadratic form K (the kinetic energy) on the
Lie algebra Xµ(M) of divergence-free vector fields

K =
1
2

∫
M

‖v‖2 dµ

where ‖v‖2 is the square of the Riemannian length of a vector field v ∈ X (M). An operator
B on Xµ(M)×Xµ(M) defined by the relation

〈[u, v ] , w 〉 = 〈B(w, u), v 〉

exists. It is given by the formula

B(u, v) = curlu× v + grad p ,

where × is the cross product and p a function onM defined uniquely (modulo an additive
constant) by the condition divB = 0 and the tangency of B(u, v) to ∂M . The Euler
equation for ideal hydrodynamics is the evolution equation

∂u

∂t
= u× curlu− grad p . (3.1)

If at least formally, the theory works as well in infinite dimension and the unifying concepts
it brings form a beautiful piece of mathematics, the details of the theory are far from being

6It was first discovered by Sophus Lie. Jean-Marie Souriau has generalized this construction for other
natural G-actions on g∗ when the group G has non null symplectic cohomology [28].
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as clear as in finite dimension. The main reason of these difficulties is the fact that the
diffeomorphism group is just a Fréchet Lie group, where the main theorems of differential
geometry like the Cauchy-Lipschitz theorem and the Inverse function theorem are no
longer valid. In [15], Ebin and Marsden studied Euler equation on the Hilbert Manifold
Ds of Hs diffeomorphisms of a closed manifold M . However, and contrary to the group
of C∞ diffeomorphisms, Ds is only a topological group since the group operations are not
smooth maps.
In this section, we are going to apply the results of Section 2 to study the geodesic flow

of a Hk right-invariant metrics on the group of C∞ diffeomorphisms of the circle S
1. This

may appear to be less ambitious than to study the 3-dimensional diffeomorphism group.
However, we will be able to understand in that example some phenomena which may
lead to understand why the 3-dimensional ideal hydrodynamics is so difficult to handle.
Moreover, we shall give an example where things happen to work well, the Camassa-Holm
equation.

3.1 The diffeomorphism group of the circle

The group Diff(S1) is an open subset of C∞(S1,S1) which is itself a closed subset of
C∞(S1,C). We define a local chart (U0,Ψ0) around a point ϕ0 ∈ Diff(S1) by the neigh-
borhood

U0 =
{‖ϕ− ϕ0‖C0(S1) < 1/2

}

of ϕ0 and the map

Ψ0(ϕ) =
1
2πi

log(ϕ0(x)ϕ(x)) = u(x), x ∈ S
1.

The structure described above endows Diff(S1) with a smooth manifold structure based
on the Fréchet space C∞(S1). The composition and the inverse are both smooth maps
Diff(S1)×Diff(S1)→ Diff(S1), respectively Diff(S1)→ Diff(S1), so that Diff(S1)
is a Lie group.
A tangent vector V at a point ϕ ∈ Diff(S1) is a function V : S

1 → TS
1 such that

π(V (x)) = ϕ(x). It is represented by a pair (ϕ, v) ∈ Diff(S1) × C∞(S1). Left and right
translations are smooth maps and their derivatives at a point ϕ ∈ Diff(S1) are given by

Lψ V = (ψ(ϕ), ψx(ϕ) v)
Rψ V = (ϕ(ψ), v(ψ))

The adjoint action on g = V ect(S1) ≡ C∞(S1) is

Adψ u = ψx(ψ−1)u(ψ−1),

whereas the Lie bracket on the Lie algebra TId Diff(S1) = V ect(S1) ≡ C∞(S1) of
Diff(S1) is given by

[u, v] = −(uxv − uvx), u, v ∈ C∞(S1)
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Each v ∈ V ect(S1) gives rise to a one-parameter subgroup of diffeomorphisms {η(t, ·)}
obtained by solving

ηt = v(η) in C∞(S1) (3.2)

with initial data η(0) = Id ∈ Diff(S1). Conversely, each one-parameter subgroup t �→
η(t) ∈ Diff(S1) is determined by its infinitesimal generator

v =
∂

∂t
η(t)

∣∣∣
t=0

∈ V ect(S1).

Evaluating the flow t �→ η(t, ·) of (3.2) at t = 1 we obtain an element expL(v) of Diff(S1).
The Lie-group exponential map v → expL(v) is a smooth map of the Lie algebra to the
Lie group [25]. Although the derivative of expL at 0 ∈ C∞(S1) is the identity, expL is not
locally surjective [25]. This failure, in contrast with the case of Hilbert Lie groups [20],
is due to the fact that the inverse function theorem does not necessarily hold in Fréchet
spaces [17].

3.2 Hk metrics on Diff(S1)

For k ≥ 0 and u, v ∈ V ect(S1) ≡ C∞(S1), we define

〈u, v〉k =
∫

S1

k∑
i=0

(∂i
xu) (∂

i
xv) dx =

∫
S1

Ak(u) v dx , (3.3)

where

Ak = 1− d2

dx2
+ ...+ (−1)k d2k

dx2k
(3.4)

is a continuous linear isomorphism of C∞(S1). Note that Ak is a symmetric operator for
the L2 inner product∫

S1

Ak(u) v dx =
∫

S1

uAk(v) dx.

Remark. What should be g∗ for G = Diff(S1) and g = vect(S1) ? If we let g∗ be the
space of distributions, Ak is no longer an isomorphism. This is the reason why we restrict
g∗ to the range of Ak

Im(Ak) = C∞(S1).

The pairing between g and g∗ is then given by the L2 inner product

(m,u ) =
∫

S1

mudx.

With these definitions, the coadjoint action of Diff(S1) on g∗ = C∞(S1) is given by

Ad∗ϕ m =
1

(ϕx(ϕ−1))2
m(ϕ−1).

Notice that this formula corresponds exactly to the action of the diffeomorphism group
Diff(S1) on quadratic differentials of the circle (expressions of the form m(x) dx2). This
is the reason why one generally speaks of the torsor space of the group Diff(S1) as the
space of quadratic differentials. ♦
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We obtain a smooth right-invariant metric on Diff(S1) by extending the inner product
(3.3) to each tangent space Tϕ Diff(S1), ϕ ∈ Diff(S1), by right-translations i.e.

〈V,W 〉ϕ =
〈
Rϕ−1V,Rϕ−1W

〉
k
, V,W ∈ TϕDiff(S1).

The existence of a connection compatible with the metric is ensured (see [11]) by the
existence of a bilinear operator B : C∞(S1)× C∞(S1)→ C∞(S1) such that

〈B(u, v), w〉 = 〈u, [v, w]〉, u, v, w ∈ V ect(S1) = C∞(S1).

For the Hk metric, this operator is given by (see [12])

Bk(u, v) = −A−1
k

(
2vxAk(u) + vAk(ux)

)
, u, v ∈ C∞(S1). (3.5)

3.3 Geodesics

The existence of the connection ∇k enables us to define the geodesic flow. A C2-curve
ϕ : I → Diff(S1) such that ∇ϕ̇ ϕ̇ = 0, where ϕ̇ denotes the time derivative ϕt of ϕ, is
called a geodesic. As we did in Section 2, in the case of a left-invariant metric, we let

u(t) = Rϕ−1 ϕ̇ = ϕt ◦ ϕ−1

which is the right angular velocity on the group Diff(S1). Therefore, a curve ϕ ∈
C2(I,Diff(S1)) with ϕ(0) = Id is a geodesic if and only if

ut = Bk(u, u), t ∈ I. (3.6)

Equation (3.6) is the Euler-Arnold equation associated to the right-invariant metric (3.3).
Here are two examples of problems of type (3.6) on Diff(S1) which arise in mechanics.

Example. For k = 0, that is for the L2 right-invariant metric, equation (3.6) becomes
the inviscid Burgers equation

ut + 3uux = 0. (3.7)

All solutions of (3.7) but the constant functions have a finite life span and (3.7) is a
simplified model for the occurrence of shock waves in gas dynamics (see [18]). ♦

Example. For k = 1, that is for the H1 right-invariant metric, equation (3.6) becomes
the Camassa-Holm equation (cf. [27])

ut + uux + ∂x (1− ∂x2)−1

(
u2 +

1
2
ux2

)
= 0. (3.8)

Equation (3.8) is a model for the unidirectional propagation of shallow water waves [3,
6, 19]. It has a bi-Hamiltonian structure [16] and is completely integrable [13]. Some
solutions of (3.8) exist globally in time [5, 7], whereas others develop singularities in finite
time [7, 8, 9, 24]. The blowup phenomenon can be interpreted as a simplified model for
wave breaking – the solution (representing the water’s surface) stays bounded while its
slope becomes unbounded [9]. ♦
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3.4 The momentum

As a consequence of the right-invariance of the metric by the action of the group on itself,
we obtain the conservation of the left angular momentum mL along a geodesic ϕ. Since
mL = Ad∗ϕ−1 mR and mR = Ak(u), we get that

mk(ϕ, t) = Ak(u) ◦ ϕ · ϕ2
x, (3.9)

satisfies mk(t) = mk(0) as long as mk(t) is defined.

3.5 Existence of the geodesics

In a local chart the geodesic equation (3.6) can be expressed as the Cauchy problem
{

ϕt = v,
vt = Pk(ϕ, v),

(3.10)

with ϕ(0) = Id, v(0) = u(0). However, the local existence theorem for differential equa-
tions with smooth right-hand side, valid for Hilbert spaces [20], does not hold in C∞(S1)
(see [17]) and we cannot conclude at this stage. However, in [12], we proved

Theorem 2. Let k ≥ 1. For every u0 ∈ C∞(S1), there exists a unique geodesic ϕ ∈
C∞([0, T ), Diff(S1)) for the metric (3.3), starting at ϕ(0) = Id ∈ Diff(S1) in the direc-
tion u0 = ϕt(0) ∈ V ect(S1). Moreover, the solution depends smoothly on the initial data
u0 ∈ C∞(S1).

Sketch of proof. The operator Pk in (3.10) is specified by

Pk(ϕ, v) =
[
Qk(v ◦ ϕ−1)

]
◦ ϕ,

where Qk : C∞(S1)→ C∞(S1) is defined by Qk(w) = Bk(w,w) + wwx. Since

C∞(S1) =
⋂
r≥n

Hr(S1)

for all n ≥ 0, we may consider the problem (3.10) on each Hilbert space Hn(S1). If k ≥ 1
and n ≥ 3, then Pk is a smooth map from Un × Hn(S1) to Hn(S1), where Un ⊂ Hn(S1)
is the open subset of all functions having a strictly positive derivative. The classical
Cauchy-Lipschitz theorem in Hilbert spaces [20] yields the existence of a unique solution
ϕn(t) ∈ Un of (3.10) for all t ∈ [0, Tn) for some maximal Tn > 0. Relation (3.9) can then
be used to prove that Tn = Tn+1 for all n ≥ 3. �

Remark. For k = 0, in problem (3.10), we obtain

P0(ϕ, v) = −2 v · vx
ϕx

which is not an operator from Un × Hn(S1) into Hn(S1) and the proof of Theorem 2 is
no longer valid. However, in that case, the method of characteristics can be used to show
that even for k = 0 the geodesics exists and are smooth (see [11]). ♦



496 B Kolev

3.6 The exponential map

The previous results enable us to define the Riemannian exponential map ex p for the Hk

right-invariant metric (k ≥ 0). In fact, there exists δ > 0 and T > 0 so that for all
u0 ∈ Diff(S1) with ‖u0‖2k+1 < δ the geodesic ϕ(t;u0) is defined on [0, T ] and we can
define ex p(u0) = ϕ(1;u0) on the open set

U =
{
u0 ∈ Diff(S1) : ‖u0‖2k+1 <

2 δ
T

}

of Diff(S1). The map u0 �→ ex p(u0) is smooth and its Fréchet derivative at zero, Dex p0, is
the identity operator. On a Fréchet manifold, these facts alone do not necessarily ensure
that ex p is a smooth local diffeomorphism [17]. However, in [12], we proved

Theorem 3. The Riemannian exponential map for the Hk right-invariant metric on
Diff(S1), k ≥ 1, is a smooth local diffeomorphism from a neighborhood of zero on V ect(S1)
to a neighborhood of Id on Diff(S1).

Sketch of proof. Working in Hk+3(S1), we deduce from the inverse function theorem in
Hilbert spaces that ex p is a smooth diffeomorphism from an open neighborhood Ok+3 of
0 ∈ Hk+3(S1) to an open neighborhood Θk+3 of Id ∈ Uk+3.
We may choose Ok+3 such that Dex pu0

is a bijection of Hk+3(S1) for every u0 ∈ Ok+3.
Given n ≥ k + 3, using (3.9) and the geodesic equation, we conclude that there is no
u0 ∈ Hn(S1) \Hn+1(S1), with ex p(u0) ∈ Un+1. We have proved that for every n ≥ k + 3,

ex p : O = Ok+3 ∩ C∞(S1)→ Θ = Θk+3 ∩ C∞(S1)

is a bijection. Using similar arguments, (3.9) and the geodesic equation can be used to
prove that there is no u0 ∈ Hn(S1) \ Hn+1(S1), with Dex pu0

(v) ∈ Hn+1(S1) for some
u0 ∈ O. Hence, for every u0 ∈ O and n ≥ k + 3, the bounded linear operator Dex pu0

is a
bijection from Hn(S1) to Hn(S1). �

Remark. For k = 0 we have that ex pis not a C1 local diffeomorphism from a neighborhood
of 0 ∈ V ect(S1) to a neighborhood of Id ∈ Diff(S1), as proved in [11]. The crucial
difference with the case (k ≥ 1) lies in the fact that the inverse of the operator Ak, defined
by (3.4), is not regularizing. This feature makes the previous approach inapplicable but
the existence of geodesics can nevertheless be proved by the method of characteristics. ♦
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