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Abstract

We give a basic uniqueness theorem in the inverse spectral theory for a Sturm-Liouville
equation with a weight which is not of one sign. It is shown that the theorem may be
applied to the spectral problem associated with the Camassa-Holm integrable system
which models shallow water waves.

1 Introduction

The Camassa-Holm (CH) equation
Dy — Pypy + 30D, + 2P, =20,D,, + Dy,

where s is a parameter, was first derived by Fokas and Fuchssteiner [12] as an example
of an equation with a bi-Hamiltonian structure, and then as a model for shallow water
waves by Camassa and Holm [5]; see also Johnson [13]. It was also derived as a model for
hyper-elastic rods by Dai [11], and shown to describe geodesic flow on the diffeomorphism
group of the circle by Misiolek [15]; see also Constantin and Kolev [7, 8].

Associated with CH there is the spectral problem

—u" + tu = dw(-, t)u, (1.1)

where w = ® — @, + s and ¢ is just considered a parameter. One would like to copy the
scattering—inverse scattering approach for the KdV equation to this situation. Since the
spectral problem is no longer the Schrodinger equation there are a number of complications.
In particular, one of the more interesting features of the CH equation is the presence of
wave breaking. This phenomenon is discussed in Constantin and Escher [6]. It is known,
however, that wave breaking will not occur if w(x,0) > 0; see Constantin [10]. Thus one
should not assume that w > 0 in (1.1). Standard spectral theory, however, considers (1.1)
in an L?-space with weight w, which is then not possible.

One should instead use H'(R) as the Hilbert space for (1.1), provided with the slightly
modified scalar product

(u,v) = /R(UIF—i_ iuﬁ), lul| = v/ (u, u).
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There is then a complete spectral theory for (1.1), and we will sketch this in Section 4.

The plan of the paper is as follows: In Section 2 we briefly discuss what is known about
scattering for (1.1). In Section 3 is introduced the selfadjoint operator in H'(R) which
corresponds to (1.1); it is shown to have discrete spectrum if s = 0. Section 4 sketches
a general spectral theory for equations like (1.1) which need to be realized in a Hilbert
space with a norm of Sobolev type. More details may be found in [1] and, especially, [2].
An inverse spectral theory for such equations is developed in Section 5, and in Section 6
are proved some theorems of Paley-Wiener type which are crucial for the inverse spectral
theory. Finally, in Section 7 we briefly describe one way to apply this theory to the
Camassa-Holm spectral problem.

2 Scattering

We will only consider solutions of CH which decay sufficiently fast at infinity, so that the
coefficient w in (1.1) at least satisfies

(1+ |z|)(w(x) — ) € L}(R). (2.1)

We will consider both the case ¢ = 0 and the case ¢ # 0. In the latter case a simple scaling
argument shows that we may as well restrict ourselves to the case »» = 1. For the moment
we will ignore time dependence in w. There are good reasons to allow non-integrable local
singularities in w, at least permitting w to be a measure, possibly even w € ngi, but we
will not do this here.

If w =  the solutions of (1.1) are linear combinations of e=™** where k = /A3 — 1,

choosing the branch of the root with argument in [0,7). For s = 0 this means that
ik = —1/2 so that the solutions are linear combinations of e*#/2,

For » = 1 we have instead ¢k < 0 if A < % and k > 0if A > %,sothatfor)\>%we
have bounded, oscillatory solutions, whereas for A < i there are solutions exponentially
increasing at —oo and exponentially decaying at +o0o and vice versa.

A standard consequence of (2.1) is that there is a solution f; of (1.1) which is asymp-
kT a5 x — 0o and a solution f_ which is asymptotic to e ** as x — —oo; they
may be constructed by successive approximations. These are the ‘small’ solutions except
when k& > 0, in which case also f, and f_ are solutions, linearly independent of f, and
f— respectively. This occurs if 2 =1 and A > %.

Since three solutions are always linearly dependent, we may in the case k > 0 write

totic to e

T(k)f-(2,k) = To (@, K) + Ry (k) f+4 (2, k),

where T is called the transmission coefficient and Ry the reflection coefficient.

For certain A for which ik < 0 it may happen that f_ and f are linearly dependent,
in which case f- € H'(R); then \ is an eigenvalue of (1.1) and we define ¢ = ||f_|| 72,
called the normalization constant for \.

Assuming (2.1) and s = 0 eigenvalues can only accumulate at +00, so we may number
eigenvalues increasingly with A, > 0 if n > 0 and A\, < 0 if n < 0, with corresponding
normalization constants ¢,. The sequence (A, ¢,), is called the scattering data for (1.1)
in the case » = 0.
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Similarly, assuming (2.1) and » = 1 eigenvalues can only accumulate at —oo, so we
may number them in decreasing order as Ai, Ag,..., with corresponding normalization
constants c¢i, ¢, .... The finite or infinite sequence (A, ), n =1,2,..., together with T’
and Ry is called the scattering data for (1.1) in the case » = 1.

Now suppose w = & — @, + 3 where @ is a sufficiently rapidly decaying solution of
the CH equation. Thus the scattering data now also depend on time. It is known that

e Eigenvalues are conserved quantities, i.e., independent of ¢.
e The transmission coefficient 7" is a conserved quantity.

e Normalization constants evolve according to

cn(t) = cn(0) exp(—
e The reflection coefficient R4 evolves according to
ik
Ry(k,t) = Ry (k,0) exp(Xt), k> 0.

At this point one would need an inverse scattering theory for (1.1), but as yet no such
thing is available. If w > 0 and w is sufficiently smooth one may use the known inverse
scattering theory for the Schrédinger equation by transforming (1.1) to a Schrodinger
equation. This was carried out by Constantin [10] and Lenells [14], but will not work if
w changes sign. There does, however, exist a spectral theory and some inverse spectral
theory for (1.1). Some conclusions may be drawn from this, as we shall see.

3 A Hilbert space operator
If u € HY(R) we have u(x) = (u, G(- — z)) where G(z) = e~ 1®I/2 ¢ H(R) with |G| = 1.
It follows that if u; — 0 weakly in H!(R), then u; — 0 pointwise and, since we have

lu(z)| < ||G||||u|| = ||u|, boundedly. Consider first the case > = 0 so that w € L'(R). If
we multiply by w and integrate, writing ||w||; = [ |w| we obtain

| [ woul < fwllallol,
R
so that the sesqui-linear form [, utw is bounded on H'(R). It follows that the linear
form u — [ wow is bounded on H L(R) for any v € H(R), so by the Riesz representation

theorem there exists an operator 7' on H!(R), bounded by |lwl||; and selfadjoint since w
is real-valued, such that

/Ruiw = (u, Tv).

It is clear that T is compact, since ||Tu|? = [p(Tu)uw < ||Tu| [ Ju||w| so that

| Tuj | < /R ] — 0
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by dominated convergence if u; — 0 weakly. It is easy to see that 7" has an (unbounded)
inverse if suppw = R. We have [(Tv)'¢' = [(wv — Tv/4)¢ if ¢ € H' by the definition
of T, so in the distributional sense —(Tv)"” + Tv/4 = wv. Thus v = ATu if and only if
u € H'(R) and satisfies (1.1), so in this case (1.1) generates an operator in H*(R) with
discrete spectrum.

Now consider the case s = 1. Since [ |ul* < 4[ul® the sesqui-linear form [, uvw
generates a bounded operator also in this case. This operator is no longer compact but
has continuous spectrum in [0,4]. The inverse operator, which exists as an unbounded
operator if supp w = R, thus has discrete spectrum below 1/4 and (absolutely) continuous
spectrum equal to [1/4, 00).

There are only finitely many eigenvalues if and only if w > 0 a.e. If w < 0 on a set with
positive measure and w_ is the negative part of w, one may by rather standard methods
(Priifer transform) prove the asymptotic formula

An = 1+0(1))

{ nm }2 (
Jz VO
asn — 0o. Here ,/w— < %\w—1|, so that the square root is integrable. Since all eigenvalues
are conserved quantities we obtain as a byproduct the following theorem, which was also
proved in Constantin and McKean [9].

Theorem 3.1. In the case »x = 1 the integral fR JWw_ s a conserved quantity under the
Camassa-Holm flow. Similarly, if » = 0 the integrals [, Jw_ and [ \/wy are conserved
quantities.

4 Spectral theory

Here we will sketch a general spectral theory for equations of the form
—(pu') +qu=Awu in [0,b), (4.1)

where 0 < b < +o00, p >0, ¢ > 0 and 1/p, ¢ and w are all in L} _[0,b). It is also assumed
that ¢ # 0 and that w # 0 a.e.

We shall study the equation in the space H which is the completion of C(0, b)-functions
which are finite, i.e., vanish in a left neighborhood of b, with respect to the norm-square
lul? = fob(p|u’|2 + qlul?). We will also study the equation in the space Hp, which is
the subspace of H of codimension 1 obtained by completing C}(0,b) in the same norm.
In order to avoid some technicalities we also assume that the form fé’ uvw is a bounded,
hermitian form on H, so that, like in Section 3, there exists a bounded operator 1" such that
for u,v € H we have fob wow = (Tu,v) and which is the inverse of a selfadjoint operator
P, which in turn is a selfadjoint realization in H of the differential operator corresponding
to (4.1). It is easy to see that all functions v in the domain of P satisfy the boundary
condition pu/(0) = 0, a Neumann type condition. We denote the resolvent of P = T~! by
R). Similarly we obtain a differential operator Py in Hg, which now corresponds to the
Dirichlet boundary condition u(0) = 0.

The Cauchy-Schwarz inequality gives

@) <)+ | "] < i+ | vl ([ )"
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and multiplying by ¢(y), integrating with respect to y over an interval J such that [ 74>0
and using Cauchy-Schwarz again gives

()] < Cellull,

with C, < ((f;0)7' + [J 1/p) V2 ity = max(z,supJ). Thus pointwise evaluations are
bounded linear forms on H.

By Riesz’ representation theorem it also follows that there exists a kernel g(x,y, \)
which for fixed z and A € C\ R is in H, and such that

Ryu(z) = (u,g(x,-, A)) — u(x) /. (4.2)

We will call this kernel Green’s function for the differential operator P, although one
should note that, since the Hilbert space is not L?, the operator in (4.2) is not a standard
integral operator. Nevertheless, it is now a fairly standard matter to see that

g(:v, Y, )‘) = go(min(:v, y)? )‘)w(max('xv y)> )‘)7

where p(x, A) is the solution of (4.1) satisfying initial data p(0,\) = —1/X, pe'(0,\) = 0,
and 9 (z, A) is another solution, the Weyl solution, which is uniquely determined by the
facts that y — g(z,y, A) is in H and the Wronskian pp’y) — py' = 1/A. In fact, if 6(z, \)
is the solution with initial data 6(0,A) = 0, pd’(0, \) = 1, there is a unique function m(\),

analytic in C \ R, satisfying m(\) = m()), and such that ¢ (xz, \) = 6(z, A) + m(A)p(z, N).
From Ry — R, = (A—u)R)\R,, one easily obtains |[1(-, \)||> = Imm(A)/Im A, so that m(\)
maps the upper and lower half-planes into themselves. Altogether this means that m(\) is
a so called Nevanlinna or Herglotz function. Such functions have a unique representation

o 1 t

m(A) =a+ A+ / (m — m) dp(t), (4.3)

—00

where a € R, 8 > 0 and dp, the spectral measure, is a positive measure with ffooo ffi? < 00.

Thus m(A) is completely analogous to the so called Titchmarsh-Weyl m-function which is
defined when w = 1 and one considers the equation (4.1) in the Hilbert space L?(0,b).

One can carry out exactly the same procedure for the operator Py and find a corre-
sponding m-function mg with a corresponding spectral measure dpg, but for the moment
we will concentrate on the Neumann case.

Now consider Lg, the L2-space over R with respect to the measure dp. We get a
generalized Fourier transform for the equation (4.1) in the following way. For a finite
function u € H we set u(\) = (u, (-, \)) which is seen to be an entire function of A by an

integration by parts. If also v € H is finite it is easily seen that (Ryu,v) — @(A)o(X)m())
is an entire function. If we integrate this around an axis-parallel rectangle, intersecting
R in an interval A, we get from (4.3), taking some care in interchanging the order of
integration,

(Eauv) = [ dddp,
A

where the left hand side comes from the spectral theorem and Fa is the spectral projector
associated with A. This quite easily leads to the following concrete version of the spectral
theorem (for more details see also [1] and especially [2]).
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Theorem 4.1. For u € H the integral

b
Flu)(t) = alt) = /0 (' (- 1) + quep(-, 1))

converges n L% and giwes a unitary map F : H 2 u — 4 € Lz with inverse given
by u(x fR (z,t)dp(t), the integral converging in H, and locally uniformly. We
have u 6 H in the domain of P precisely if ta(t) € L3, and then F(Pu)(t) = ta(t).
Finally, if M C R is a Borel set and FEyy the correspondmg spectral projector for P, then

Eyu(x) = [, a(t)p(z,t) dp(t)

It follows that the spectrum of the operator P is o(P) = suppdp, eigenvalues cor-
responding to point-masses in the measure. If the spectrum is discrete with eigenval-
ues )\, and we introduce the normalization constants ¢, = ||¢(-, \n)|| 72, it is clear that
dp = > cpdy, where 0, is the Dirac measure at a. Thus, in this case knowing the spectral
measure is equivalent to knowing all eigenvalues and normalization constants.

It is easy to see that the Fourier transform of the Weyl solution (-, \) is 1(t,\) =
1/(t — A). It follows that the Weyl solution tends to 0 in H, and thus locally uniformly,
as A — oo along non-real rays originating at the origin. Since u is in the domain of P
precisely if u = Ryv for some v € H, and the Fourier transform of Ryv is 0(t)/(t — A) it
also follows that @ is integrable (dp) if u is in the domain of P. We obtain the following
lemma.

Lemma 4.2. 1. F(y(-,\)(t) =1/(t = \).

2. As A — oo along any non-real ray originating in the origin we have ¥(-,A) — 0, as
an element of H and locally uniformly.

3. 4 is integrable (dp) for any u in the domain of P.

4. If u € H, then u(0) = 0 precisely if (u,v(-,0)) = 0.

5 Inverse spectral theory

We shall deal with the following question: 7o what extent is the operator P, i.e., the
interval [0,b) and the coefficients p, q and w, determined by the spectral measure dp?
We will also consider the same question for the operator Py. To answer these questions
we introduce the concept of a Liouville transform as a map v +— u given by u(x) =
f(z)v(g(x)), where f and g are fixed functions defined in [0, b). We suppose that g is locally
absolutely continuous with ¢’ > 0 a.e., and that f is at least measurable and # 0 a.e. It is
then easy to see that the inverse of a Liouville transform is also a Liouville transform, as
is the composition of two Liouville transforms. Now consider another operator P of the
same type as P, with interval [0 lv)) and coefficients p, q and w. We define the functions

= [y V/lw|/pon[0,b) and h(z = [ /|w]/pon [0, b) respectively. Our main theorem

is the following.

Theorem 5.1. Suppose that P and P have the same spectral measure dp. Then there is a
Liouville transform taking P into P, where g(z) = h='oh(z) and f(z) = (p(g(x))|[w(g(x))|/p(z)|w(x)|) /4.
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The function f is locally absolutely continuous, strictly positive and f(0) = 1, and pf’ is
also locally absolutely continuous with pf’'(0) = 0. Exactly the same statements are true
for two Dirichlet operators Py and Py with the same spectral measure dpqg.

Sufficient additional information will imply that P and P are identical. We give two
corollaries of this type.

Corollary 5.2. Suppose P and P have the same spectral measure and that p = p, |w| = |w|
in [0, min(b,b)). Then P = P, ie., b=>b, ¢ = and w = w. The same statement is true
for Dirichlet operators Py and P(]

Proof. The assumptions together with Theorem 5.1 show that g(z) = = and that f(z) =
1, so that P and P, respectively Py and P, are identical. |

Note that only the absolute value of w need be known, so that all information about
sign changes in w is encoded in the spectral measure. Also note that if p = p, |w| = ||
only in [0,a) where 0 < a < min(b, 13) we still have ¢ = ¢ and w = w in [0, a).

The following corollary may have some interest in the study of the Camassa-Holm
equation.

Corollary 5.3. Suppose P and P have the same spectral measure and that b = lu), p=7p
and ¢ = ¢ £ 0. Then P = P, ie., then also w = w. The same statement is true for
Dirichlet operators Py and Py.

Proof. We assume that the equation —(pu’) +qu = Awu is transformed into —(pv’) +qv =
Abv via a Liouville transform F' given by u(z) = f(z)v(g(z)) where f(0) =1, pf'(0) =0
g(0) = 0 and g(b) = b. Now let f1 be the solution of —(pf])’ + ¢fi = 0 with initial
data f1(0) = 1 pf1(0) = 0. Since p > 0 and ¢ > 0 this solution is > 0 on [0,b), so we
may put g1 (z fo 1/pf%. This gives us a Liouville transform F; mapping [0,b) onto
some interval [O ¢), and transforming the equations into —uf{ = Awju; and —v] = Ay
respectively. Thus FyFF| ! transforms these two equations into each other. Being a
composition of Liouville transforms this is itself a Liouville transform, given, say, by
ui(z) = fa(x)vi(g2(z)). By construction we obtain f2(0) = 1 and f}(0) = 0. Since
the highest order coefficients of the two equations are 1, it is easily seen that f2gh is
constant, and since the potentials are identically 0 for both equations it follows that
14 = 0. Altogether this means that fo =1 and gs2(x) = Cx for a constant C.

Since g2 maps [0, ¢) onto itself we must have C' = 1, unless ¢ = +o0o. However, this is
not possible since ¢ = fé’ 1/pf2%, and the latter integral is always convergent. To see this,
let H(x) = pfi(x)fi(x). Then H'(z) = p(f])* + q(f1)? so that H increases, and since
q # 0 we have H > 0 close to b. It follows that 1/pf? = p(f])?/H? < H'/H?. Thus, if d
is so close to b that H(d) > 0 we obtain f; 1/pf? <1/H(d). Consequently C =1 so that
F is the identity on [0,b). But this means that @ = w and thus finishes the proof. [

To prove Theorem 5.1 we first show that the statement about Dirichlet operators follows
from that for Neumann operators.

Proposition 5.4. If the operators Py and Py have the same spectral measures, then so
have the operators P and P.
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Proof. By the representation formula (4.3) the m-functions for the operators Py and b
can only differ by a linear function. However, it is known that Dirichlet m-functions (in
our ‘left-definite’ case) always tend to 0 as A — oo for example along the imaginary axis.
See [3, Theorem 3.6] for this result. Thus the m-functions for Py and Py coincide.

It is also known, see [3, (2.8)], that m(\) = —1/mg()), so that in fact P and P also have
the same m-functions. By the uniqueness of the spectral measure in the representation
(4.3) it follows that P and P have the same spectral measures. |

We therefore only need to prove Theorem 5.1 for Neumann operators, and to do this we
need the following theorem of Paley-Wiener type. For its statement it will be convenient
to introduce a special class of entire functions.

Definition 5.5. Suppose r is measurable and ]r|1/ 2 is integrable in every compact subset

of [0,b). Let A(r) be the set of entire functions @ of order < 1/2 which satisfy

limsup ¢ In |[a(t2))| S/ Re Vv —=Ar (5.1)
0

t—00
for some a € (0,b) and all A € C\ R.

Theorem 5.6. Let 4 be the generalized Fourier transform of w € H. Then @ has at most
one entire continuation in A(w/p), and if sup(suppu) = a < b such a continuation is
given by

a(\) = /0 "l () + quip(-, )

in which case (5.1) holds with equality for r = w/p and all X.
Conversely, if i has an entire continuation of order < 1/2 satisfying (5.1) for \ on at
least two different rays from the origin, then suppu C [0, a.

We will also need another theorem of Paley-Wiener type. To state it we introduce
another transform on H, which is analogous to a Laplace transform. For v € H, set
0(A) = (v,9(+, A)), which is analytic at least for A ¢ R. By Parseval’s formula ¢ is the
Stieltjes transform of the measure © dp, so by the uniqueness of the Stieltjes transform it
follows that ¥ determines ¢ and thus v. We will prove the following theorem.

Theorem 5.7. Suppose v € H and inf suppv =a > 0. Then

limsupt ' In [5(t2\)| = —/ Re/—Aw/p (5.2)
0

t—o0

Conversely, if v(0) = 0 and the left hand side of (5.2) is bounded by the right hand side
for two mon-real A with different argument, then inf suppv > a.

We will postpone the proofs of Theorems 5.6 and 5.7 to the next section.

Proof of Theorem 5.1. Let Y = F 1o F : H — 7:(, which is unitary. Since UP = PU
we also have UT = TU, with natural notation. Thus

/uﬁw = (u, Tv) = (Uu,UTv) = Uu, TUV) = /Uumw. (5.3)
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Now, applying Theorem 5.6 for the rays generated by +i it is clear that if a € (0, I;) and
u € H, then sup(supp u) = a if and only if sup(suppUu) = d, where h(a) = h(a), provided
there is such an a € (0,b). This will certainly be the case if a is sufficiently close to 0.
Suppose for some & € (0,b) we have h(b) < h(d). Then, since finite functions are dense
in H, the range of U would be orthogonal to all elements of H with supports in (a, I;),
contradicting the fact that U is unitary. A similar reasoning applied to &/ ~! shows that
the mapping g : [0,b) > a — a € [0, b) is strictly increasing and bijective. The function
g equals the composition h=1lo h, and since an absolutely continuous, increasing map has
an absolutely continuous inverse precisely if its derivative is > 0 a.e., it is clear that g and
g~ ! are both locally absolutely continuous.

By Lemma 4.2(4) we have u(0) = 0 if and only A/u(0) = 0. Thus, applying Theorem 5.7
for A\ = i we similarly obtain inf(suppu) = a if and only if inf(suppUu) = g(a). Thus
the convex hull of suppu is [a, ¢] precisely if the convex hull of suppUu is [g(a), g(c)]. Tt
therefore follows easily from (5.3) that if = € (0,b), then

x g(z)
/ UvwW = / UulAvw.
0 0

Differentiating this we obtain, after rearrangement,

w(g(x)g'() _  ulx)v(z)

w(z) Uu(g(x))Uv(g())
where the left hand side does not depend on u or v. Setting f(z) = u(x)/Uu(g(x))
and varying v shows that f independent of u, so u(z) = f(z)Uu(g(x)). Since it is clear
that the Fourier transform maps real-valued functions to realvalued functions we must
have f real-valued, locally absolutely continuous and # 0, thus of one sign. We also get
w(g(x)) = w(z)f2(x)/¢ (x). Using this we obtain from h(g(z)) = h(z) by differentiating
and squaring also that p(g(z)) = p(z )f2( ) ().

Furthermore F(1)(-, A))(t) = (t—X)~1 = F(4(-, A))(t) from which follows that ¢ (z, ) =
F(@)(g(x), N). Since m(}) is not linear, but the difference m(\) — m()) is, we obtain
f(0) = 1 so that f > 0. Differentiating and using the formulas for @ and p shows that pf’
is also locally absolutely continuous and pf’(0) = 0. |

Y

6 The Paley-Wiener theorems

The proofs of Theorems 5.6 and 5.7 rely on the following lemma, which is taken from [3,
Theorem 6.1, Corollary 6.2].

Lemma 6.1. The following asymptotic formulas hold, locally uniformly for A € C\ R.

hmt og(py' (z,t2)) / vV =Aw/p,
hm t~og(py/ (z, 12 N) / vV —Aw/p

The next lemma implies the simple direction of the Theorem 5.6.
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Lemma 6.2. Suppose u € H and suppu C [0,a|. Then 4(\) is entire of order < 1/2 and
w(A) = o(|p¢’(a, N)|) as A — oo along any non-real ray originating at the origin.

Proof. Let ¢ q (2, A) = p(z,\)/py'(a, A). This function has a quasi-derivative py'(z, A) /py’(a, A)
which vanishes at 0 and equals 1 at a. Therefore 94 is a Weyl solution for the inter-
val (0, a], viewing a as the initial point and with a Neumann boundary condition also at
0. Lemma 4.2(2) continues to hold in this situation, so ¢4 — 0 in norm as A — oo
along non-real rays from the origin. We have 4(\) = p¢’(a, \)(u, ¥ q(-; A)) so the lemma
follows. |

The hard direction of Theorem 5.6 follows from the next lemma.

Lemma 6.3. Suppose u € H, that 4 has an entire continuation of order < 1/2 and that
a(N) = O1/|pyY'(a,\)]) as A — oo along two different non-real rays originating at the
origin. Then suppu C [0,a] and w(N) = (u, o(-, \)).

Proof. Consider F(A\) = (Ryu,v) — a(X)((-, A), v). We shall show that if v = T'f, where
f € H has compact support in (a,b), then F' has an entire continuation of order < 1/2
which tends to 0 along the given rays. By Phragmén-Lindel6f’s theorem it follows that
F' is bounded everywhere and is therefore constant by Liouville’s theorem, thus actually
identically 0. Now F()\) = fOb(RAu — a(A\)Y(-, N) fw, so f being essentially arbitrary in
(a,b), it follows that Ryu — u(A)Y (-, A) has support in [0,a]. Applying the differential
operator it follows that also u has support in [0,a]. For z > a the formula (4.2) gives
Ryu(x) = 1(x, \)(u, ¢(-, A)) from which follows that 1 (z, \)(a@(A) — (u, (-, A))) = 0. The
lemma follows from this.
To prove that F is entire, Parseval’s formula and Lemma 4.2(1) shows that

Foy = [ MO 5@ an.

It is obvious that this is an entire function, at least if we can bound the integrand properly.
To do this and see that the order is at most 1/2, note that for [t — A| < 1 we may estimate
the integrand by supy,j<; [@'(A + 2)|[6(¢)|. For [t — A| > 1 we may estimate the integrand
by |a(t)0(t)| + |a(A)||0(t)]. Hence we have locally uniform convergence of the integral and

[E] < Jullllvll + (\SF<p1‘ (A 2)] + A /!vldp,

which is the desired estimate, the integral being finite by Lemma 4.2(3).

Finally, to show that F' tends to 0 along the rays, we first note that (¢¥(-,A),Tf) =
fo A) fw. Now, for z > a, g (@, ) = ¥ (x,A)/py/(a, A) is the Weyl solution for our
equatlon considered on the interval [a, b). Assuming supp f C [a,b) we have fob YN fw =
pY'(a, \) fab Viap) (-5 A) fw so that Lemma 4.2(2) implies (¢(-, \), T'f) = o(|py’(a, \)|). Since
R) — 0 strongly as Im A\ — oo, it follows that F' tends to 0 along the given rays. This
finishes the proof. |

Theorem 5.6 is now a simple consequence of Lemmas 6.1-6.3 and we will leave out the
details. See, however, the proof of Theorem 3.2 of [4]. The proof of Theorem 5.7 is quite
similar, and relies on the following two lemmas.
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Lemma 6.4. Suppose v € H and v =0 in [0,a]. Then 0(\) = o(|py/'(a,\)]) as A — oo
along any non-real ray starting at 0.

Proof. Setting ¢, (7, \) = ¥ (2, \)/py’(a, A) we obtain the Weyl solution for the interval

[a, b) with Neumann’s boundary condition at a. Thus (v, (44)(+, A)) = o(1) so that 9()) =
o(|py'(a, A)|) as A — oo along any non-real ray starting at 0. [ |

Lemma 6.5. Suppose v € H with v(0) = 0 and also that 0(\) = O(1/|p¢(a,N)|) as
A — 00 along two different non-real rays starting at 0. Then inf suppv > a.

Proof. Let v € ‘H and assume suppu C [0,a) and put F(A) = (Ryv,u) — d(N)a(N).
By Theorem 5.6 and the assumption it follows that F' — 0 along the given rays. We
shall show that F' may be continued to an entire function of order < 1/2. Then the
Phragmén-Lindel6f theorem shows that F' = 0, i.e., (Ryv — 0(A\)¢(-,A),u) = 0. Now
setting v1 = Ryv — 0(A\)p(+, A) we have pvj(0) = 0 and —(pv}) + qui = Awvy + wo.
Thus integrating by parts we obtain 0 = (v1,u) = [;' (A1 + v)uw. Since u is essentially
arbitrary in [0, a] it follows that v = —Av; in [0,a]. Thus v(0) = pv/(0) = 0 and v satisfies
—(pv") 4+ qv =0 in [0, al, so that v vanishes in this interval.

To see that (vy,u) is entire of order < 1/2, note that according to (4.2) and using
v(0) = 0, partial integration gives

vi(z) = 0(x, \) /OI vA@(, N)w — Ap(z, A) /01 0 (-, Nw,

which is entire of order < 1/2; locally uniformly in z. As before we have (vi,u) =
J(Av1 + v)uw, so that we are done. |

7 An application to the Camassa-Holm equation

Corollary 5.3 gives a uniqueness theorem for the CH spectral problem on a half-line [0, o),
with Dirichlet or Neumann boundary conditions at 0. If w is integrable the spectrum is
discrete, and in this case w is determined by the eigenvalues and their normalization
constants. However, it is clear that the whole line case is of more interest. In this section
we shall see that in some cases also this case may be handled by Corollary 5.3.

If we consider (4.1) on a open interval (a,b), where 1/p, ¢, w are only locally inte-
grable, we may transform this problem by a Liouville transform. Thus we introduce new
independent and dependent variables g and @ by setting u(z) = f(x)a(g(x)), where f is a
given, sufficiently smooth function with no zeros. If u has compact support in (a,b) and
A = g(a), B = g(b) we obtain

b B
/ (Pl + glul?) = / @&P + dlal?) (7.1)
a A

where 8(g(z)) = p(x)2(2)g'(z) and d(g(x)) = @) (~(pF) + af)/g'(@). Thus, if we let
f be a non-vanishing solution to —(pf’)’ + ¢f = 0 near a and choose g(z) = [ 1/pf?

the transformed norm-square will be fOB(|11’ |2 + ¢ul?) where § = 0 near a. We have
here assumed that the integral converges at a, but there are in fact always non-vanishing
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solutions for which this is true. Since we will give an explicit f for the CH case we will
not prove this here.

Now assume g # 0 in both (a, ¢) and (¢, b) and choose f as the solution of —(pf’") +qf =
0 with f(¢) =1, pf’'(¢) =0 in (a,c] and f(x) =1 for x > ¢. Then f # 0 everywhere and
¢=01in (a,c) but ¢ Z 0 in (c,b).

The equation (7.1) is transformed to

—a" + qu = Mva on (0, B), (7.2)

where W(g(z)) = f?(x)w(z)/g (x). If @ is integrable near 0, then the spectral theory of
Section 4 and inverse spectral theory of Section 5 apply. The assumption on @ means
that f2?w is integrable near a. Now consider the case of (1.1) with = 0. We may
then choose f(x) = cosh(z/2) for z < 0 and f(x) = 1 otherwise, and we have to assume
e *w(z) € L'(—00,0) in addition to (2.1). For 3 = 0 we have discrete spectrum and
the solution f_ is asymptotic to e*/2 at —oo. It is easy to see that this means that
f— transforms to the solution ¢ of (7.2) with initial data ¢(0,\) = 0, ¢’(0,\) = 1. It
follows that the Dirichlet normalization constants for the transformed equation coincide
with those of the original equation. Thus, Corollary 5.3 tells us that the eigenvalues and
their normalization constants determine w uniquely. In other words, in the case s = 0
the scattering data determine the weight w. Presumably the assumption that e™*
integrable near —oo is actually superfluous.

w(z) is
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