
Journal of Nonlinear Mathematical Physics Volume 11, Number 4 (2004), 508–520 Wave Motion

Traveling Wave Solutions of the Camassa-Holm

and Korteweg-de Vries Equations

Jonatan LENELLS

Department of Mathematics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
E-mail: jonatan@maths.lth.se

This article is part of the Proceedings of the meeting at the Mathematical Research Institute at
Oberwolfach (Germany) titled “Wave Motion”, which took place during January 25-31, 2004

Abstract

We show that the smooth traveling waves of the Camassa-Holm equation naturally
correspond to traveling waves of the Korteweg-de Vries equation.

1 Introduction

The Camassa-Holm equation

ut − utxx + 3uux + 2kux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1.1)

and the Korteweg-de Vries (KdV) equation

ut − 6uux + uxxx = 0, x ∈ R, t > 0, (1.2)

are models for the propagation of shallow water waves, u(x, t) representing the water’s
free surface in non-dimensional variables, and k ∈ R being a parameter related to the
critical shallow water speed [3, 25]. The well-known KdV equation - the simplest equation
embodying both nonlinearity and dispersion - has attracted enormous attention over the
years and has served as the model equation for the development of soliton theory (see [25]).
Equation (1.1) was derived as a model for shallow water waves [3], and was subsequently
recognized as having been included implicitly as an abstract equation in [30] via the
method of recursion operators (see [29]). For a derivation of the Camassa-Holm equation
using Kodama’s normal form transformations we refer to [26, 27] and for discussions of its
relation to shallow water waves see [26, 27, 10, 33, 35]. Note also that (1.1) models the
propagation of nonlinear waves in a cylindrical axially symmetric hyperelastic rod, u(x, t)
representing the radial stretch relative to a prestressed state [23].

The equations (1.1) and (1.2) have plenty of structure tied into them. KdV is a com-
pletely integrable bi-Hamiltonian equation (see [25, 41]), its solitary waves are solitons
[25], and the Cauchy problem for (1.1) is globally well-posed even for rough initial data
[5]. On the other hand, the bi-Hamiltonian structure and the isospectral problem for (1.2)
were found in [3]. The Camassa-Holm equation is completely integrable: for the periodic
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case see [7, 19], and for aspects of the direct/inverse scattering see [2, 9, 18, 22, 34, 36].
The solitary waves of (1.2) for k > 0 are smooth solitons [22, 34] while in the limiting
case k = 0 they are peaked solitons (peakons) [3] which have to be understood as weak
solutions [15, 20, 44]. The peakons are stable wave patterns [21, 37]. The Camassa-Holm
equation models wave breaking [3, 4, 6, 8, 11, 13, 14, 24, 39, 42, 45] and admits wave solu-
tions that exist indefinitely in time [6, 8, 12, 13]. Additionally, (1.1) can be interpreted as
Euler’s equation for the geodesic flow on the Lie group of compressible diffeomorphisms of
the circle [40] (see also [32] for a discussion). This can be used to prove that (1.1) satisfies
the Least Action Principle [16, 17]: solutions move along uniquely determined paths that
locally minimize energy. Let us also point out that associated to each of the equations
(1.1)-(1.2) there is a whole hierarchy of integrable equations [31, 41].

Of particular interest among the solutions to (1.1) and (1.2) are traveling wave solutions
u(x, t) = ϕ(x − ct) for some function ϕ. Through a connection between the isospectral
problems associated to (1.1) and (1.2), we will construct a natural mapping taking smooth
traveling waves of (1.1) into traveling waves of (1.2).

We need two lemmas on the existence of traveling waves of (1.1) and (1.2). In [38] the
traveling waves of (1.1) are classified according to their minimum, maximum, and speed.

Lemma 1. Fix k ∈ R and let z = c− 2k −M −m. Then

(a) (Smooth periodic) If z < m < M < c, there is a smooth periodic traveling wave
ϕ(x− ct) of (1.1) with m = minx∈R ϕ(x) and M = maxx∈R ϕ(x).

(b) (Smooth with decay) If z = m < M < c, there is a smooth traveling wave ϕ(x− ct) of
(1.1) with m = infx∈R ϕ(x), M = maxx∈R ϕ(x), and ϕ ↓ m exponentially as x → ±∞.

(a′) (Smooth periodic) If z > m > M > c, there is a smooth periodic traveling wave
ϕ(x− ct) of (1.1) with M = minx∈R ϕ(x) and m = maxx∈R ϕ(x).

(b′) (Smooth with decay) If z = m > M > c, there is a smooth traveling wave ϕ(x− ct) of
(1.1) with M = minx∈R ϕ(x), m = supx∈R ϕ(x), and ϕ ↑ m exponentially as x → ±∞.
Moreover, these are all bounded smooth traveling waves of the Camassa-Holm equation.

The next lemma classifies the traveling waves of the KdV equation [25]. Henceforth,
to distinguish between solutions of the two equations, we let y be the space variable for
the KdV equation and x the space variable for the Camassa-Holm equation.

Lemma 2. Let z̄ = −c̄/2− m̄− M̄ . Then

(i) (Cnoidal waves) If m̄ < M̄ < z̄ there is a smooth periodic traveling wave Q(y − c̄t) of
the KdV equation with m̄ = miny∈R Q(y) and M̄ = maxy∈R Q(y).

(ii) (sech2-profiles) If m̄ < M̄ = z̄ there is a smooth traveling wave Q(y − c̄t) of the KdV
equation with m̄ = miny∈R Q(y), M̄ = supy∈R Q(y) and Q ↑ M̄ exponentially as y → ±∞.
Moreover, these are all bounded traveling waves of the KdV equation.

Before stating our main result we introduce some notation. Let (m,M, c) ∈ R
3 be

coordinates in R
3 and let z = c − 2k −M − m. Define Γ+ = {z < m < M < c} and

Γ− = {c < M < m < z}, where we write {z < m < M < c} instead of {(m,M, c) ∈ R
3 :

z < m < M < c}. Note that Γ+ and Γ−, being enclosed by the three planes {z = m},
{m = M}, and {M = c}, are shaped as tetrahedrons with common corner at (−k,−k,−k).
Also, Γ = Γ+ ∪ Γ− is symmetric around (−k,−k,−k). For each c, the section Γc of all
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Figure 1. The sets Γc and ∂1Γc for c > −k.

points in Γ with third coordinate c is a triangle - see Figure 1. In fact, Γ+ ⊂ {c > −k}
and Γ− ⊂ {c < −k}. The cases (a) respectively (a′) of Lemma 1 occur exactly when
(m,M, c) ∈ Γ+ respectively (m,M, c) ∈ Γ−. Moreover, if ∂1Γ = {z = m < M < c}
is one of the three edges of Γ, then the cases (b) and (b′) of Lemma 1 occur whenever
(m,M, c) ∈ ∂1Γ.

Henceforth sk will be defined as

sk =
{

1 k 
= 0,
0 k = 0.

(1.3)

With (m̄, M̄ , c̄) as coordinates in R
3 and z̄ = −c̄/2 − m̄ − M̄ , we define Π = {m̄ < M̄ <

z̄}∩{m̄+M̄ > − sk
2k} ⊂ R

3. Π is a tetrahedron with corner at (m̄, M̄ , c̄) = (− sk
4k ,− sk

4k ,− sk
4k ),

enclosed by the three planes {m̄ = M̄}, {M̄ = z̄}, and {m̄ + M̄ = − sk
2k}. Note that

Π ⊂ {c̄ < − sk
4k}. To any point in Π, a periodic traveling wave of KdV is associated

according to Lemma 2. Similarly, every point in ∂1Π = {m̄ < M̄ = z̄} ∩ ∂Π has a
corresponding traveling wave of KdV with decay at infinity.

Now we are ready to state our main result: a bijective correspondence between traveling
waves of (1.1) corresponding to (m,M, c) ∈ Γ+ ∪ ∂1Γ+, and traveling waves of (1.2)
corresponding to (m̄, M̄ , c̄) ∈ Π ∪ ∂1Π.

Theorem Fix k ∈ R. Let (m,M, c) ∈ Γ+∪∂1Γ+, and let ϕ be the corresponding smooth
periodic traveling wave of the Camassa-Holm equation (1.1). Similarly, let (m̄, M̄ , c̄) ∈
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Π ∪ ∂1Π and let Q be the corresponding periodic traveling wave of KdV. Then

Q(y) = γ − 1
c− ϕ(x)

, y =
∫ x

x0

√
ϕ(ξ)− ϕxx(ξ) + k dξ, (1.4)

where

m̄ = γ − 1
c−M

, M̄ = γ − 1
c−m

, c̄ =
sk

k
− γ, (1.5)

sk is given by (1.3), and

γ =
1
2

(
1

2k +M +m
+

1
c−m

+
1

c−M
− sk

2k

)
. (1.6)

The mapping (m,M, c) �→ (m̄, M̄ , c̄) given by (1.5) is a bijection, mapping Γ+ onto Π and
∂1Γ+ onto ∂1Π, with inverse

m = c− 1
m̄+ z̄ + sk/2k

, M = c− 1
M̄ + z̄ + sk/2k

, (1.7)

c =
1
2

(
1

m̄+ z̄ + sk/2k
+

1
M̄ + z̄ + sk/2k

+
1

m̄+ M̄ + sk/2k
− 2k

)
.

Notice that if ϕ(x) is a traveling wave of (1.1), then also x �→ −ϕ(−x) is a traveling wave
of (1.1) with k, respectively c, replaced by −k, respectively −c. In particular, replacing

(ϕ(x), c,M,m, k) �→ (−ϕ(−x),−c,−M,−m,−k), (1.8)

transforms the statements (a′), (b′) of Lemma 1 into (a), (b). In the geometrical inter-
pretation the replacements (1.8) amount to mapping Γ− corresponding to k, into Γ+
corresponding to −k. Combining (1.8) with our theorem we get a bijection between Γ−
(corresponding to k) and Π (corresponding to −k).

Remark The Camassa-Holm equation admits peaked and cusped weak traveling wave
solutions (see [3, 4], respectively [38]), whereas all traveling waves of (1.2) are smooth. As
we approach these peaked and cusped solutions the correspondence between solutions of
(1.1) and (1.2) breaks down as the amplitude of the corresponding traveling waves of (1.2)
blows up.

2 Proof of the Theorem

Let u(x, t) = ϕ(x− ct) be a traveling wave solution of (1.1) corresponding to

(m,M, c) ∈ Γ+ ∪ ∂1Γ+ = {z ≤ m < M < c}. (2.1)

We get from (1.1) that

−cϕx + cϕxxx + 3ϕϕx + 2kϕx = 2ϕxϕxx + ϕϕxxx. (2.2)
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Integrate to get

−cϕ+ cϕxx +
3
2
ϕ2 + 2kϕ = ϕϕxx +

1
2
ϕ2

x +
a

2
, (2.3)

for some constant a. We multiply by 2ϕx and integrate again to obtain

−cϕ2 + cϕ2
x + ϕ3 + 2kϕ2 = ϕϕ2

x + aϕ+ b, (2.4)

where b is another constant. We write this as

ϕ2
x(c− ϕ) = P (ϕ), (2.5)

where P is the third order polynomial

P (ϕ) = ϕ2(c− 2k − ϕ) + aϕ+ b. (2.6)

Since m = minx∈R ϕ(x) and M = maxx∈R ϕ(x), by the smoothness of ϕ it is easy to
see that ϕx → 0 as ϕ → m or ϕ → M . Therefore, m and M are zeros of P . We denote
the third zero by z so that

P (ϕ) = (M − ϕ)(ϕ−m)(ϕ− z). (2.7)

Hence (2.6) becomes

ϕ2
x(c− ϕ) = (M − ϕ)(ϕ−m)(ϕ− z). (2.8)

Now we differentiate and divide by ϕx to find

2ϕxx(c− ϕ)− ϕ2
x = −(ϕ−m)(ϕ− z) + (M − ϕ)(ϕ− z) + (M − ϕ)(ϕ−m).

Identifying the coefficients of ϕ2 in (2.6) and (2.7), we get z = c− 2k −M −m. Hence

2ϕxx(c− ϕ)− ϕ2
x = (ϕ−m)(c− ϕ)− (ϕ−m)(2k +M +m)− (M − ϕ)(c− ϕ)

+(M − ϕ)(2k +M +m) + (M − ϕ)(ϕ−m). (2.9)

We rearrange terms to infer that

2(ϕxx − ϕ+
M +m

2
)(c− ϕ) = ϕ2

x + (M +m− 2ϕ)(2k +M +m)

+ (M − ϕ)(ϕ−m).

Using (2.8) we rewrite this as

(2ϕxx − 2ϕ+M +m)(c− ϕ) =
(M − ϕ)(ϕ−m)(ϕ− z)

c− ϕ

+(M +m− 2ϕ)(2k +M +m) + (M − ϕ)(ϕ−m).

Multiply by c− ϕ and recall that z = c− 2k −M −m, to obtain

(2ϕxx − 2ϕ+M +m)(c− ϕ)2 = (M − ϕ)(ϕ−m)(2k +M +m)
+ (M +m− 2ϕ)(2k +M +m)(c− ϕ).
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Note that the right hand side can be rewritten as

(2k +M +m)
(
(M − c)(c−m) + (c− ϕ)2

)
,

and so
2(ϕxx − ϕ− k)(c− ϕ)2 = (2k +M +m)(M − c)(c−m).

We conclude that

ϕ− ϕxx + k =
(2k +M +m)(c−M)(c−m)

2(c− ϕ)2
.

With w = ϕ− ϕxx + k and α = (2k +M +m)(c−M)(c−m) > 0 we can write this as

w =
α

2(c− ϕ)2
. (2.10)

Physically w has the interpretation of momentum [3, 32].
Notice that (2.10) and (2.1) imply w(x) > 0 for all x. Therefore we may perform the

following Liouville transformation. Let

y =
∫ x

x0

√
w(ξ)dξ, dy =

√
w(x)dx. (2.11)

The substitution
φ(y) = w(x)1/4ψ(x)

converts the isospectral problem for the Camassa-Holm equation

ψxx =
1
4
ψ + λwψ,

into
−φyy +Q(y)φ = µφ,

where

Q(y) =
1

4q(y)
+
qyy(y)
4q(y)

− 3q2
y(y)

16q2(y)
− sk

4k
, q(y) = w(x), µ = − sk

4k
− λ,

and sk is defined in (1.3). As a function of x, we have

Q(y) =
1

4w(x)
+
wxx(x)
4w2(x)

− 5w2
x(x)

16w3(x)
− sk

4k
. (2.12)

Differentiating (2.10) we find

wx =
αϕx

(c− ϕ)3
, wxx = α

(
ϕxx

(c− ϕ)3
+

3ϕ2
x

(c− ϕ)4

)
.

Putting this into (2.12) yields

Q(y) +
sk

4k
=

1
2α

(
(c− ϕ)2 + 2ϕxx(c− ϕ) + ϕ2

x

)
.
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We may simplify this further by noting that (2.9) can be written as

2ϕxx(c− ϕ) = ϕ2
x + (M +m− 2ϕ)(2k +M +m)

+ (2ϕ−M −m)(c− ϕ) + (M − ϕ)(ϕ−m).

Therefore

Q(y) +
sk

4k
=

1
2α(c− ϕ)

(
(c− ϕ)3 + 2ϕ2

x(c− ϕ) + (M +m− 2ϕ)(2k +M +m)(c− ϕ)

+ (2ϕ−M −m)(c− ϕ)2 + (M − ϕ)(ϕ−m)(c− ϕ)
)
.

Since z = c− 2k −M −m, (2.8) gives us

ϕ2
x(c− ϕ) = −(M − ϕ)(ϕ−m)(c− ϕ) + (2k +M +m)(M − ϕ)(ϕ−m).

Therefore

Q(y) +
sk

4k
=

1
2α

(
(c−ϕ)2 − 2(M −ϕ)(ϕ−m) + (2ϕ−M −m)(c−ϕ) + (M −ϕ)(ϕ−m)

)

+
2k +M +m

2α(c− ϕ)
(
(M +m− 2ϕ)(c− ϕ) + 2(M − ϕ)(ϕ−m)

)
.

This can be simplified to

Q(y) +
sk

4k
=

(c−M)(c−m)
2α

(2k +M +m)(c−M)(m− ϕ)
2α(c− ϕ)

+
(2k +M +m)(c−m)(M − ϕ)

2α(c− ϕ)
.

Recall that α = (2k +M +m)(c−M)(c−m). Hence

Q(y) +
sk

4k
=

1
2(2k +M +m)

(m− ϕ)
2(c−m)(c− ϕ)

+
(M − ϕ)

2(c−M)(c− ϕ)
.

We conclude

2Q(y) = − 2
c− ϕ

+
1

(2k +M +m)
1

(c−m)
+

1
(c−M)

− sk

2k
. (2.13)

To establish (1.4) of the Theorem we have to show that Q(y) is a traveling wave of
(1.2) with minimum m̄, maximum M̄ and speed c̄ as in (1.5). We first prove a lemma.

Lemma 3. Let Q(y) be a smooth function with m̄ = miny∈R Q(y) and M̄ = maxy∈R Q(y).
Then u(y, t) = Q(y − c̄t) is a traveling wave of KdV with speed c̄ if and only if

1
2
Q2

y = (M̄ −Q)(Q− m̄)(z̄ −Q), (2.14)

for z̄ = − c̄
2 − M̄ − m̄.
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Proof. Q(y − c̄t) is a traveling wave if and only if

−c̄Qy − 6QQy +Qyyy = 0. (2.15)

We integrate to get

−c̄Q− 3Q2 +Qyy = A, (2.16)

for a constant A. Multiply by Qy and integrate to find that

− c̄

2
Q2 −Q3 +

1
2
Q2

y = AQ+B, (2.17)

for some constant B. Thus Q satisfies the equation

1
2
Q2

y = Q3 +
c̄

2
Q2 +AQ+B. (2.18)

Let m̄ = miny∈R Q(y) and M̄ = maxy∈R Q(y). Since Q is smooth, Qy → 0 as Q → m̄ or
Q → M̄ . Therefore the polynomial Q3 + c̄

2Q
2 +AQ+B has zeros at m̄ and M̄ . Let z̄ be

the third zero, so that

Q3 +
c̄

2
Q2 +AQ+B = (M̄ −Q)(Q− m̄)(z̄ −Q).

We identify the coefficients of Q2 to infer that z̄ = − c̄
2 − M̄ − m̄. This shows (2.14).

Conversely, if Q satisfies (2.14), then we can trace these steps backwards to deduce that
(2.15) holds. Hence Q(y − c̄t) is a traveling wave. This proves the lemma. �

Let

γ =
1
2

(
1

(2k +M +m)
+

1
(c−m)

+
1

(c−M)
− sk

2k

)
, (2.19)

so that (2.13) becomes

Q(y) = γ − 1
c− ϕ

.

Since m = minx∈R ϕ(x) and M = maxx∈R ϕ(x), it is easy to see that m̄ = miny∈R Q(y)
and M̄ = maxy∈R Q(y), where

m̄ = γ − 1
c−M

, M̄ = γ − 1
c−m

.

We will show that Q solves (2.14) for c̄ = sk
k − γ. By Lemma 3 this will prove (1.4).

Differentiation of (2.12) yields

Qy = − ϕx

(c− ϕ)2
dx

dy
,

so in view of (2.11), we obtain

Q2
y = − ϕ2

x

w(c− ϕ)4
.
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Replacing w using (2.10) gives

Q2
y = − 2ϕ2

x

α(c− ϕ)2
.

Furthermore, using (2.8), we arrive at

Q2
y = −2(M − ϕ)(ϕ−m)(ϕ− z)

α(c− ϕ)3
.

The right hand side is actually a third order polynomial in Q. Indeed, we can write

1
2
Q2

y =

(
(c− ϕ)− (c−M)

)(
(c− ϕ)− (c−m)

)(
(c− ϕ)− (2k +M +m)

)
(2k +M +m)(c−M)(c−m)(c− ϕ)3

=
(

1
c−M

− 1
c− ϕ

)(
1

c−m
− 1
c− ϕ

)(
1

2k +M +m
− 1
c− ϕ

)
.

With
m̄ = γ − 1

c−M
, M̄ = γ − 1

c−m
, z̄ = γ − 1

2k +M +m
,

we get

1
2
Q2

y = (M̄ −Q)(Q− m̄)(z̄ −Q). (2.20)

This is exactly (2.14), because a calculation shows that

z̄ = γ − 1
2k +M +m

= − c̄

2
− M̄ − m̄.

This proves (1.4).
It remains to show that the mapping (m,M, c) → (m̄, M̄ , c̄) defined in (1.5) is a bijection

Γ+ ↔ Π and ∂1Γ+ ↔ ∂1Π, with inverse as in (1.7). This is straightforward using the
definitions and the proof of the main result is complete. �
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