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Abstract

We survey recent results on well-posedness, blow-up phenomena, lifespan and global
existence for the Camassa-Holm equation. Results on weak solutions are also consid-
ered.

1 Introduction

The Camassa-Holm equation reads

(C-H)
{
ut − utxx + 3uux = 2uxuxx + uuxxx, (t, x) ∈ IR2

u(0) = u0

It has been derived by Camassa and Holm [3] as a model for the evolution of a shallow
water layer under the influence of gravity. The idea is to write the Green-Naghdi equations
in Lie-Poisson Hamiltonian form and then make an asymptotic expansion which keeps the
Hamiltonian structure. The validity of this model for water waves is addressed in [20].
Note that (C-H) was also found independently by Dai [15] as a model for nonlinear waves
in cylindrical hyperelastic rods and was, in fact, first discovered by the method of recursive
operator by Fokas and Fuchsteiner [18] as an example of bi-Hamiltonian equation. Finally,
(C-H) is also a re-expression of geodesic flow on the diffeomorphism group of the line, see
[26], [10], [11].
(C-H) possesses a Lax pair and is thus, at least formally, completely integrable, see

[3],[4]. For a discussion on the direct/inverse scattering approach we refer to [6], [23]. The
first three invariants of the motion are :

I(v) =
∫

IR
u(x) dx, E(u) =

∫
IR
u2(x) + u2

x(x) dx

and F (u) =
∫

IR
u3(x) + u(x)u2

x(x) dx .

Camassa and Holm exhibited solitary waves of the form

uc(x, t) = cϕ(x− ct), x ∈ IR , (1.1)
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where ϕ(x) = e−|x|, x ∈ IR. These solitary waves are orbitally stable ([12], [14]). They are
solitons in the sense that they retain their individuality under interaction and eventually
emerge with their original shapes and speeds, see [3], [2]. They are peaked waves and can
only be understood as weak solutions of (C-H), i.e. solutions of the following weaker form
of (CH)

ut + uux + ∂xp � [u2 + u2
x/2] = 0 , (1.2)

with p(x) = 1
2e

−|x|. Note that (1.2) has a conservation law structure.
In this paper we would like to present an overview of the available results on the

following problems :

1. Local well-posedness of the Cauchy problem for (C-H).

2. Blow-up criteria and blow-up phenomena.

3. Lifespan and global existence.

4. Weak solutions.

2 Local well-posedness results

Since the Hamiltonian E is nothing else but the H1-norm of the solution, the Sobolev
spaces are natural spaces for the Cauchy problem associated with (C-H).
A first result is due to Constantin and Escher [7] who proved the local well-posednes

of (C-H) in Hs, s ≥ 3, by applying Kato’s theory for hyperbolic quasi-linear PDE to
y = u− uxx. The equation satisfied by y reads

{
yt + (Q−2y)yx + 2y∂x(Q−2y) = 0, (t, x) ∈ IR2

y(0) = u0 − u0,xx
(2.1)

where Q = (I − ∂2
x)

1/2.
This result was improved to s > 3/2 by Li and Olver [24] and Rodriguez-Blanco [27]. A
Besov spaces approach can also be found in [16]. The statement of the local existence
theorem is the following :

Theorem 1. Given u0 ∈ Hs(IR), with s > 3/2, there exists T = T (‖u0‖
H

3
2+)1 > 0 and a

unique associated solution

u ∈ C([0, T ];Hs(IR)) ∩ C1([0, T ];Hs−1(IR))

to (CH).Moreover, the flow-map is continuous from Hs(IR) to the class defined above.

1 3
2
+ denotes any real number larger but close enough to 3

2
.
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2.1 Sketch of the proof of Theorem 1

Step 1. We look at the following parabolic regularization

(Pε)
{
uε

t − ε ∂2
xut = −uεuε

x − px � [(uε)2 + 1
2(u

ε
x)

2], (t, x) ∈ IR2

u(0) = uε
0

where uε
0 → u0 in Hs(IR) as ε↘ 0. Since

G 
→ (Id− 1/ε ∂2
x)

−1
(
−uux − px � [u2 +

1
2
u2

x]
)

is locally Lipschitz on Hs(IR), s > 3/2, by the Cauchy-Lipschitz-Picard theorem, there
exists T = T (‖φ‖Hs) > 0 and a unique solution uε ∈ C1([0, T ];Hs) to (Pε).
Step 2. Taking the Hs-scalar product of (Pε) with uε, using Kato-Ponce commutator
estimates and that

‖f g‖Hs ≤ C ‖f‖Hs ‖g‖L∞ + ‖f‖L∞‖g‖Hs , s > 1/2,

we get the following uniform estimate for s > 3/2,

d

dt
‖uε‖2

Hs ≤ C ‖uε
x‖L∞‖uε‖2

Hs . (2.2)

This obviously yields

‖uε(t)‖Hs ≤ C
( 1

‖φ‖1/2
Hs

− t
)−2

. (2.3)

(2.2) and (2.3) force ‖uε‖Hs to be uniformly bounded on [0, T ] with T = T (‖u0‖
H

3
2 +).

It then follows from (Pε) that {uε
t} is bounded on L∞(0, T ;L2) and using the Aubin-

Lions compactness lemma (see [25]) we can pass to the limit in the nonlinear terms of
(1.2). We thus obtain a solution u ∈ L∞(0, T ;Hs(IR)) to (C-H). Moreover, {uε} and {uε

t}
being bounded in respectively L∞(0, T ;Hs) and L∞(0, T ;L2), for any v ∈ C∞

0 (IR) fixed,
the family t 
→ (uε(t), v)Hs is equicontinuous on [0, T ]. It follows from the Arzela-Ascoli
theorem that t 
→ (u(t), v)Hs is continuous on [0, T ] and from the density of C∞

0 (IR) in
Hs(IR) we deduce that u ∈ Cw([0, T ];Hs).
Step 3. The uniqueness follows directly by writing the equation for the difference w =
u1 − u2 of two solutions to (1.2) and taking the scalar product in Hs−1 with w. Indeed,
using that

‖f g‖Ht ≤ C ‖f‖Hr ‖g‖Ht , r > 1/2, −r < t < r,
to treat the convolution term, we get

d

dt
‖w‖2

Hs−1 ≤ C
(
‖u1‖Hs + ‖u2‖Hs

)
‖w‖2

Hs−1

which permits to conclude thanks to Gronwall lemma.
Step 4. The fact that u belongs to C([0, T ];Hs(IR)) ∩ C1([0, T ];Hs−1(IR)) and the conti-
nuity of the flow-map in Hs(IR) follows from Bona-Smith type argument (see, for instance,
[1]) : For a good choice of the approximative sequence {uε

0} ⊂ H∞ to u0, the sequence of
associated solutions {uε} to (1.2) is shown to be a Cauchy sequence in C([0, T ];Hs(IR)).
Finally, it is easy to see that these solutions satisfies (C-H) at least in the distributional
sense and the continuity with respect to initial data clearly implies that E(u(t)) is con-
served in time.



524 L Molinet

2.2 Some Remarks on well-posedness results

We just saw that (C-H) and (1.2) are locally well-posed (in the Hadamard sense2) in
Hs(IR) for s > 3/2. (C-H) does not make sense in Hs for s < 3/2 (this can be easily seen
using the solitons) but one can ask the following question:what is the minimum Sobolev
index s for (1.2) to be well-posed ? This is certainly a hard question. In this direction, in
[19], by using the specific form of the solitons, it is shown that the flow-map associated
to (1.2) is not uniformly continuous in Hs(IR) for s < 3/2. Of course it is not reasonable
to require the flow map to be uniformly continuous in Hs(IR), even for s > 3/2. So this
remark does not seem to be very pertinent. Actually, since (C-H) has much in common
with the Burgers equation, it is likely that the flow-map for (C-H) is not locally uniformly
continuous in Hs(IR) even for large s . It would be very interesting to prove this result (if
it is true !) as it was done recently for the Benjamin-Ono equation [22]. Finally, note that
in [17] it is shown that the flow-map cannot be continuous in the Besov space B3/2,∞

2 (see
[17] for the definition of this space). But again this does not have too much interest since
it is not reasonable to ask for a flow-map to be continuous in Bs,∞

2 whatever the value of
s is.

3 Blow-up criteria and blow-up results

Even though the Camassa-Holm equation is integrable, unlike the KdV equation, there
are no invariants which control the Hs-norm higher than H1-one. This does not permit
to extend automatically the above local solutions to the whole line and, actually, we will
see in this section that blow-up in finite time can occur.

3.1 Blow-up criteria

For u0 ∈ Hs(IR), s > 3/2, we call T ∗
u0
> 0 the maximal time of existence in Hs(IR) of the

associated solution u to (C-H). Recall that according to the local well-posedness theory,
the maximal time of existence of u in Hs(IR) does not depend on s > 3/2 but only on u0.
First from (2.2) one can easily check that for any u0 ∈ Hs(IR), s > 3/2,

T ∗
u0
<∞ ⇔

∫ T ∗
u0

0
‖ux(t)‖L∞ dt = +∞ (3.1)

Actually, one can be more precise and prove that the singularities can arise only in the
form of wave breaking, i.e. the solution remains bounded while its slope goes to −∞ in
finite time. Setting m(t) = infx∈IR u(t, x), the following blow-up criterion holds :

T ∗
u0
<∞ ⇔

∫ T ∗
u0

0
m(t) dt = −∞ . (3.2)

Indeed, taking the L2-scalar product of (2.1) with y, one gets

d

dt
‖y‖2

L2 = −2
∫

IR
uyxy − 4

∫
IR
uxy

2 = −3
∫

IR
uxy

2 ≤ −3m(t)‖y‖2
L2 .

2This ensures that the trajectory is a continuous curve in Hs(IR) as well as the continuity of the
flow-map in Hs(IR).



On Well-Posedness Results for Camassa-Holm Equation on the Line 525

Hence,

‖u‖L∞
T H2 ≤ C ‖y‖L∞

T L2 ≤ exp
(
−3

∫ T

0
m(t) dt

)
‖y(0)‖L2 ,

which proves (3.2) for u0 ∈ Hs(IR) with s ≥ 2. Following Danchin [16], the assumption
s ≥ 2 can be weakened to s > 3/2. The key point is to prove the following a priori estimate
for any u0 ∈ Hs(IR), s > 3/2,

sup
t∈[0,T ∗

u0
[
M(t) ≤ max

(
‖u0‖H1/

√
2 , M(0)

)
, (3.3)

where
M(t) = sup

x∈IR
ux(t, x) = ux(t, ξ(t)) .

To prove (3.3), we first assume that u0 ∈ H3(IR). Differentiating (1.2) with respect to the
space variable, one gets

utx + uuxx + u2
x = −∂2

xp ∗ (u2 + u2
x/2)

= u2 + u2
x/2− p ∗ (u2 + u2

x/2) . (3.4)

On the other hand, according to [8], M(·) is almost everywhere differentiable on [0, T ∗
u0
[

and for almost every t ∈ [0, T ∗
u0
[,

Ṁ(t) = utx(t, ξ(t)) .

Therefore, using that clearly uxx(t, ξ(t)) = 0, one deduces from (3.4) that

Ṁ(t) +
M2

2
(t) = u2(t, x)− p ∗ (u2 + u2

x/2)(t, ξ(t)) .

Finally, the following estimates proven in [5],

p ∗ (v2 + v2
x/2) ≥ v2/2 and 2 v2(x) ≤ ‖v‖2

H1 , (3.5)

yield

Ṁ(t) +
M2(t)
2

≤ u2(t, x)
2

≤ ‖u0‖2
H1

4
a.e. on ]0, T ∗

u0
[, (3.6)

where one makes use of the conservation of the H1-norm. This proves (3.3) for u0 ∈
H3(IR). Now, for u0 ∈ Hs(IR), s > 3/2, we approximate u0 by a sequence {un

0} ⊂ H3(IR)
which tends to u0 in Hs. Since v 
→ supx∈IR vx is continuous in Hs(IR) for s > 3/2, (3.3)
follows by passing to the limit thanks to the continuity of the flow-map.
One thus deduces that M is uniformly bounded on the maximal interval of existence of u
which clearly implies that

∫ T ∗
u0

0
|ux(t)|L∞ dt = +∞ ⇔

∫ T ∗
u0

0
m(t) dt = −∞ . (3.7)

(3.2) is of course a direct consequence of (3.1) and (3.7).
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3.2 Blow-up results

Two of the main results on blow-up for the Camassa-Holm equation on the line are the
following ones :

Theorem 2. ([7]) Assume that u0 ∈ H3(IR) is odd with u′0(0) < 0. Then the correspond-
ing solution of (C-H) does not exist globally. The maximal time of existence is estimated
above by 1/(2|u′0(0)|).
Theorem 3. ([8]) Assume that the initial profile u0 ∈ H3(IR) has at some point a slope
which is less than −(1/√2)‖u0‖H1. Then wave breaking for the corresponding solution of
(C-H) occurs.

Note that Theorem 2 clearly shows that initial data with arbitrary small initial Hs-
norm can product solutions that blow-up in finite time. The proof of Theorem 2 is simple
and makes use of the conservation of antisymmetry by the flow of (C-H). Indeed, for u0

odd, setting g(t) = ux(t, 0), one infers from (3.4) and the antisymmetry of u(t) that g
satisfies

ġ(t) +
1
2
g2(t) = −[p ∗ (u2(t) + u2

x(t)](0) ≤ 0 .

Therefore,

g(t) ≤ 2g(0)
2 + tg(0)

, (3.8)

and consequently T ∗
u0
< −2/u′0(0).

To prove Theorem 3, one uses (3.4)-(3.5) and the fact that, according to [8],

m(t) = inf
x∈IR

ux(t, x) = ux(t, θ(t))

is almost everywhere differentiable on ]0, T ∗
u0
[ to obtain as in (3.6),

ṁ(t) +m2(t)/2 ≤ 1
4
‖u0‖2

H1 a.e. on ]0, T ∗
u0
[. (3.9)

But by the assumption on u0, there exists x0 ∈ IR and ε > 0 such that

‖u0‖2
H1 ≤ (2− 2ε)(u′0(x0))2 ≤ (2− 2ε)m2(0)

and consequently,

ṁ(t) +
m2(t)
2

≤ 1− ε
2

m2(0) a.e. on ]0, T ∗
u0
[. (3.10)

Then using that (3.10) forces on [0, T ∗
u0
[,

m2(t) > (1− 1
2
ε)m2(0)

(Assuming that there exists t0 > 0 such that m2(t0) = (1 − 1
2ε)m

2(0) leads to a contra-
diction.). One finally gets

ṁ(t) ≤ −1
4
εm2(t) a.e. on ]0, T ∗

u0
[

⇒ m(t) ≤ 4m(0)
4 + εtm(0)

. (3.11)
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Hence, blow-up in finite time occurs. Note that by the continuity of the flow-map, (3.8)
and (3.11) also hold for u0 ∈ Hs(IR) with s > 3/2 and thus Theorems 2-3 also hold for
u0 ∈ Hs(IR) with s > 3/2.

4 Lifespan and global existence results

As noticed in [16], one can derive a sharp lower bound for the maximal time of existence
T ∗

u0
in Hs(IR), s > 3/2, of the solutions to (C-H). Indeed, given u0 ∈ H3(IR), according

to (3.4) for almost every t ∈]0, T ∗
u0
[, one has

ṁ(t) +
m2(t)
2

= u2(t, ξ(t))− [p � (u2 +
u2

x

2
)](t, θ(t)) a.e. on ]0, T ∗

u0
[.

Since ‖p‖L∞ ≤ 1/2 this implies

ṁ(t) +
m2(t)
2

≥ −1/2 ‖u(t)‖2
H1 = −1/2 ‖u0‖2

H1 a.e. on ]0, T ∗
u0
[.

So, integration in time yields

−m(t) ≤ ‖u0‖H1

‖u0‖H1 tan
(
t ‖u0‖H1/2

)
−m(0)

‖u0‖H1 +m(0) tan
(
t ‖u0‖H1/2

) , ∀t ∈]0, T ∗
u0
[. (4.1)

By continuity with respect to initial data, (4.1) also holds for u0 ∈ Hs(IR) with s > 3/2.
The criterion (3.2) then gives the following lower bound for the lifespan

T ∗
u0

≥ Tu0 := − 2
‖u0‖H1

arctan
(
‖u0‖H1/m(0)

)
. (4.2)

Now, taking u0 = −xe−x2
and defining un

0 = n−1/2u0(nx), one can easily check that un
0

satisfies the hypotheses of Theorem 2 and thus

T ∗
un
0
≤ −2(un

0,x(0))
−1 (4.3)

Since, on the other hand, straightforward calculations yield

Tun
0
→ −2(un

0,x(0))
−1 , (4.4)

the sharpness of (4.2) follows.

4.1 A global existence result

It was first noticed in [7] that the solutions are global in time provided the potential
y0 = u0 − u0,xx associated with the initial value u0 is a bounded measure with definitive
sign. Let us show this result. So let u0 ∈ Hs(IR), s > 3/2 such that y0 is a non negative
bounded measure. For a classical sequence of mollifiers ρn, we define yn

0 = ρn ∗ y0 ≥ 0,
‖yn

0 ‖L1 ≤ ‖y0‖M and yn
0 → y0 in M. For the solutions un associated with the initial data

un
0 = ρn ∗ u0, we define the integral curves q(t, ·) by{

qnt = u
n(t, q)

qn(0, x) = x, x ∈ IR
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According to [5], for all x ∈ IR, t ∈ [0, T ∗
u0
[,

yn
0 (x) = y

n(t, q(t, x))
(
qnx(t, x)

)2
. (4.5)

Note that Relation (4.5) has an interesting geometric interpretation, see [11].
In particular yn(t) stays non negative on the interval of existence of u. On the other hand,
note that if g = f − fxx then

f(x) =
1
2

∫ x

−∞
ey−x g(y) dy +

1
2

∫ ∞

x
ex−y g(y) dy, x ∈ IR,

fx(x) = −1
2

∫ x

−∞
ey−x g(y) dy +

1
2

∫ ∞

x
ex−y g(y) dy, x ∈ IR.

Hence, if g(·) ≥ 0 on IR, then f2
x(·) ≤ f2(·) on IR. It thus follows that u2

x(t, ·) ≤ u2(t, ·)
on IR for t ∈ [0, Tu∗

0,n
[. The conservation of the H1-norm, Sobolev embedding and the

blowup criterion (3.1) then clearly imply that T ∗
u0,n

= +∞. Passing to the limit in n, we
infer that ∀t ∈ [0, T ∗

u0
[,

u2
x(t, ·) ≤ u2(t, ·) on IR

which again by the blow-up criterion (3.1) implies the global existence of u.

5 Weak solutions

As indicated in the Introduction the solitons of (C-H) (see (1.1)) are peaked waves. They
cannot be seen as solutions of (C-H) but only of the weak formulation (1.2).
One can define two notions of weak solutions. On one hand, there are what we could

call “strong” weak solutions. These solutions are unique in their class and exists until the
blow-up time. On the other hand, there are “weak” weak solutions. These solutions are
always global (they are defined even after the blow-up time). They are not unique and
the energy is not known to be preserved for these solutions.

5.1 “Strong” weak solutions

In [9], Constantin and Escher used compensated-compactness arguments in space-time to
get the existence of global weak solutions for3 u0 ∈ H1(IR) with y0 = u0 − u0,xx ∈ M+.
In [13], Constantin and the author proved that actually these solutions are not that weak
since they are unique in their class and are continuous with values in H1(IR). Moreover
they showed that the functionals I, E and F are conserved along the trajectory. Finally,
in [16], Danchin noticed that the time of existence of a solution u ∈ Hs(IR), s > 3/2, is
bounded below by a positive real number T = T (‖y0‖M) which permits to obtain local
weak solutions without the positivity assumption on y0.
We summarize all these results in the following theorem :

3M is the space of Radon measures on IR with bounded total variation and M is the subset of positive
measures.
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Theorem 4. Let u0 ∈ H1(IR) with y0 := u0 − u0,xx ∈ M(IR) then there exists T =
T (‖y0‖M) > 0 and a unique solution4 to (1.2),

u ∈ C([0, T ];H1(IR)) ∩ L∞(0, T ;W 1,1(IR)), ux ∈ L∞(0, T ;BV (IR)) (5.1)

with initial data u0. Moreover, the functionals E(·) and F (·) are constant along the tra-
jectory and if y0 has a definite sign then u is global in time.

Sketch of the proof. It is convenient to first prove the uniqueness result since this will
be useful for the proof of the continuity of the solution in H1(IR).
Uniqueness. Let u and v be two solution of (1.2) within the class defined by (5.1). The
main idea is to use exterior regularization techniques to get the following integral inequality
for the W 1,1-norm of the difference u− v (see [13] for details) :

∫
IR
|u− v|(t, x) + |ux − vx|(t, x) dx ≤ e6Mt

∫
IR
|u0 − v0|(x) + |u0,x − v0,x|(x) dx (5.2)

where
M = sup

(0,T )
‖u− uxx(t, ·)‖M + ‖v − vxx(t, ·)‖M .

The uniqueness then follows directly from Gronwall Lemma.
Existence. We will decompose the proof into three steps.
Step 1. This first step consists in constructing a sequence of smooth solutions of (C-H)
with initial data that approximate u0. Let ρn be the classical Friedrichs mollifier sequence.
For u0 as in the statement of the theorem, we define un

0 = ρn ∗ u0 ∈ H∞(IR) and we call
un the associated smooth solution of (C-H). Setting yn = un − un,xx, from (2.1) we infer
that

∂tyn + ∂x(unyn) = −yn∂xun

and thus
∂t|yn|+ ∂x(un|yn|) = −|yn|∂xun .

Integrating in space, it follows that

d

dt
‖y(t)‖L1 ≤ inf

(0,t)
(∂xu(t))‖y(t)‖L1

and since

‖∂xun‖L∞ = ‖∂xp ∗ yn‖L∞ ≤ 1
2
‖yn‖L1 , (5.3)

one deduces that

‖yn(t)‖L1 ≤ 2‖yn(0)‖L1

2− t‖yn(0)‖L1

=
2‖yn(0)‖M

2− t‖yn(0)‖M . (5.4)

4W 1,1(IR) is the space of L1(IR) functions with derivatives in L1(IR) and BV (IR) is the space of function
with bounded variation
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(5.3)-(5.4) and the blow-up criterion (3.1) show that un ∈ C([0, T ];H∞(IR)) with T =
T (‖y0‖M) > 0. Furthermore,

‖un,x‖L∞
T,x

≤ C(T, ‖y0‖M) , ‖un(t)‖H1 = ‖un
0‖H1 on [0, T ] , (5.5)

‖un‖L∞
T W 1,1 = ‖p ∗ yn‖L∞

T W 1,1 ≤ C(T, ‖y0‖M), (5.6)
and ‖un,xx‖L∞

T L1
x
≤ ‖un‖L∞

T L1
x
+ ‖yn‖L∞

T L1
x
≤ C(T, ‖y0‖M) . (5.7)

Moreover, from Section 4.1 we see that if y0 has a definite sign then T = +∞ and

‖un,x‖L∞
t,x

≤ ‖un‖L∞
t,x

≤ ‖un‖L∞
t H1(IR) = ‖un

0‖H1 . (5.8)

Actually, one can prove (see [7]) that if y0 has a definite sign then

‖yn(t)‖L1 = ‖yn
0 ‖L1 , ∀t ∈ IR . (5.9)

Step 2. In this step we pass to the limit to get the existence of a weak solution. Indeed,
from (1.2) and (5.4)-(5.5), {un} is bounded in H1(IR) and {un,x} is bounded in BV on
(0, T ). Hence, from classical compactness theorems in Sobolev spaces together with Helly’s
theorem there exists a subsequence {unk

} and an element u of H1(IR) with ux ∈ BV such
that

unk
⇀ u weakly in H1((0, T )× IR) (5.10)

unk
→ u a.e. on (0, T )× IR (5.11)

∂xunk
→ ∂xu a.e. on (0, T )× IR (5.12)

The main difficulty for passing to the limit in (1.2) comes from the nonlinear term ∂xp ∗
[u2

nk
+ 1

2u
2
nk,x]. But we note that {u2

nk
(t) + 1

2u
2
nk,x(t)} is uniformly bounded in L1(IR) and

therefore (5.10)-(5.12) imply that for a.e. t ∈ (0, T ), its weak limit is u2(t) + 1
2u

2
x(t). As

∂xp ∈ L2(IR), a.e. in (0, T )× IR we thus have

∂xp ∗ [u2
nk
+
1
2
u2

nk,x] →
nk→∞ ∂xp ∗ [u2 +

1
2
u2

x]

which proves that u satisfies (1.2) at least in the distributional sense. Moreover by the
same argument as in Section 2.1, u ∈ Cw([0, T ];H1(IR)).

Step 3. In this last step we prove the continuity in H1(IR) and the conservation laws.
Since for almost every t ∈ [0, T ], unk

(t)⇀ u(t) weakly in H1(IR), one has

‖u(t)‖H1 ≤ lim inf
nk→∞ ‖unk

‖H1 = lim inf
nk→∞ ‖unk

0 ‖H1 = ‖u0‖H1 . (5.13)

But u belonging to Cw([0, T ];H1(IR)), (5.13) is actually true for all t ∈ [0, T ]. Now, it is
worth noticing that one can reverse time for the Camassa-Holm equation. Hence, taking
u(t) with t > 0 as initial data and reversing time, one obtains by uniqueness for all t ≥ 0,

‖u0‖H1 ≤ ‖u(t)‖H1 .

The H1-norm of u is thus constant in time. This combined with the weak continuity of
u in H1(IR) implies the strong continuity of u in H1(IR). Note that for a.e. t ∈ [0, T ],
unk

(t)⇀ u(t) weakly in H1(IR) and that

lim
nk→∞ ‖unk

(t)‖H1 = lim
nk→∞ ‖unk

0 ‖H1 = ‖u0‖H1 = ‖u(t)‖H1 .



On Well-Posedness Results for Camassa-Holm Equation on the Line 531

This implies that unk
(t) converges in fact strongly to u(t) in H1(IR) for a.e. t ∈ (0, T ).

Hence, using that F (·) is continuous from H1(IR) to IR, we deduce that for all t ∈ (0, T ),

F (u(t)) = lim
nk→∞F (unk

(t)) = lim
nk→∞F (u

nk
0 ) = F (u0) .

5.2 “Weak” weak solutions

In [28] Xin and Zhang proved the existence of global weak solutions of (1.2) for initial data
in H1(IR). They are able to pass to the limit in viscous approximations by using Young
measures associated to ∂xuε where uε is the viscous approximation. The key elements are
the uniform a priori estimates (5.14) and (5.15) below.

Theorem 5. [28] Assume that u0 ∈ H1(IR). Then (1.2) has a global weak solution

u ∈ C(IR+ × IR) ∩ L∞(IR+;H1(IR)) ,

with u0 as initial data, such that

‖u(t, ·)‖H1 ≤ ‖u0‖H1 , ∀t > 0 .

Moreover,

p ∗ (u2 +
1
2
u2

x) ∈ L∞(R,W 1,∞(IR)), ∂xu ∈ Lp

loc(IR+ × IR), p < 3, (5.14)

and there exists C = C(‖u0‖H1) such that

‖∂xu(t, ·)‖L∞(IR) ≤ (C +
1
t
) ∀t > 0 . (5.15)

Unfortunately there is a priori no uniqueness result for these solutions and their energy
is only known to be non increasing. However, in [29], Xin and Zhang proved that if one
has a better temporal integrability on ‖∂xu‖L∞ that the one given by (5.15), uniqueness
holds. More precisely,

Theorem 6. [29] If further there exists b ∈ L2
loc(IR+) such that

‖∂xu(t, ·)‖L∞ ≤ b(t) (5.16)

then the weak solution given by Theorem 5 is unique in some class.

Note that Theorem 5 insures only the existence of a function b ∈ Lp(IR), with p < 1,
such that (5.16) holds. On the other hand, from (5.8), if y0 = u0 − u0,xx is a positive
bounded measure then ‖∂xu(t)‖L∞ is uniformly bounded on IR+ and thus satifies the
hypotheses of Theorem 6. But then u is actually a “strong” weak solution ” which can be
handled by Theorem 4.
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