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Abstract

We consider the direct/inverse spectral problem for the periodic Camassa-Holm equa-
tion. In fact, we survey the direct/inverse spectral problem for the periodic weighted
operator Ly = m’l(—y”—i—iy) acting in the space L?(R, m(z)dz), where m = g, —u >
0 is a 1-periodic positive function and w is the solution of the Camassa-Holm equation
Up — Uppt + SUUE = 2Uzplzy + Ulgee. For the operator L we describe the complete
solution of the inverse spectral problem: i) uniqueness, prove that the spectral data
uniquely determines the potential, ii) characterization, give conditions for some data
to be the spectral data of some potential, iii) reconstruction, give an algorithm for
recovering the potential from the spectral data, iv) a priori estimates, obtain two-sided
a priori estimates of u, m in terms of gap lengths.

Consider the well known Camassa-Holm equation [2]:
Ut — Uggt + WUy = 2UgUgy + Ulpps- (1)

This equation describes the motion of solitary waves on shallow water, u(z,t) being the
fluid velocity in the z-direction. We add some backgraund of the Camassa-Holm equation.
Firstly, note that the paper [17] presents an alternative derivation of the equation, different
from the original approach devised by Camassa-Holm. Secondly, we remark that the
Camassa-Holm equation was derived as a model in elasticity in the paper [13]. Finally, the
Camassa-Holm equation is a re-expression of geodesic flow on the diffeomorphism group
on the circle (see [37] for a formal derivation and see [11, 12] for a detailed discussion of
the geometric viewpoint and its physical implications). Thus, there is a purely geometric
interpretation of the Camassa-Holm equation as a geodesic flow on the diffeomorphism
group of the circle [37, 11, 12].

It is known (see [7]) that m = wu,, — u retains its signature under the shallow water
flow if it is of one sign to start with. In looking for spatially periodic solutions of Eq.(1)
a key point is to understand the associated spectral problem:

1
—f”+1f:)\mf, m=ugy —u, MeC. (2)
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Throughout this paper we assume that a 1-periodic function m(xz) > 0,2 € R and
m,m’ € L?*(R),T = R/Z. Tt is clear from the results in [36], [9] that this restriction
in the spectral problem which we consider in this paper corresponds precisely to the
physically relevant case of periodic waves that do not break. Define the periodic weighted
operator Lf = m~Y(—f" + 1f) in L*(R,m(z)dz). Let ¥(z,\),¢(z,A) be fundamental
solutions of the Eq. —f” + 1f = Amf, with the condition ¥'(0,\) = ¢(0,A) = 0 and
9(0,A) = ¢'(0,A) = 1. Define the Lyapunov function A(X) = 3(¢'(1,A) + 9(1, ). Let
ftn;n > 1 be be the Dirichlet spectrum of the equation —f” + 1f = Amf. It follows
from standard arguments (see [33], [31]) that the spectrum of L is absolutely continuous
and consists of intervals o, = [Af | AJ], where 0 < Af | < Ay < Af,n > 1. These
intervals are separated by gaps v, = (A5, AT) of length |y,| > 0. If a gap 7, is degenerate,
i.e. |y, = 0, then the corresponding segments ¢,,0,.1 merge. Note that A(\E) =
(=1)",n > 1 and recall that p, € [A,;,\f]. It is well known that the sequence 0 < A\J <
Al < )\f < ... is the spectrum of the operator with 2-periodic boundary conditions,
ie. f(x+2)= f(z),z € R. Here equality means that A, = A} is a double eigenvalue.
The lowest eigenvalue )\a’ is simple and the corresponding eigenfunction is 1-periodic. The
eigenfunctions corresponding to /\f have period 1 when n is even and they are antiperiodic,
flx+1)=—f(x), z € R, when n is odd.

First results about the periodic weighted operator were obtained by Lyapunov [33]. He
proved that the spectrum of the periodic weighted operator has band structure. Later
Krein [31] extended this result to a more general setting including 2 x 2 systems. These
results cover L (and T, Ty see below). Some spectral problems for L were considered in [3,
4], [7]. The general weighted Sturm-Liouville (direct) problem was studied by Constantin
[5], i.e., in this case m changes sign. Unfortunately, for the last case there is no a deep
result from inverse spectral theory. In the case m > 0 Korotyaev [22] obtained the following
results about ”the direct problem” for periodic weighted operators:

i) sharp asymptotics of various parameters,
ii) two-sided estimates,
iii) the global quasimomentum.
Now we consider the inverse spectral problem for the operator L.
The inverse spectral problem consist of the following parts:
i) Uniqueness. Prove that the spectral data uniquely determines the potential.
i1) Characterization. Give conditions for some data to be the spectral data of some poten-
tial.
ii1) Reconstruction. Give an algorithm for recovering the potential from the spectral data.
iv) A priori Estimates: Obtain two-sided a priori estimates of q in terms of gap lenghts.

First results (the reconstruction problem) about the inverse spectral problem for the
operator L was obtained by Constantin [3]. Using the Liouville substitution he transformed
L to the Hill operator £ = —j—; + Q(y) acting in L?(R), where the potential Q is given
by

"

m m’ 2 x
Q) = g+ oz~ g 9@ = [l Q

here m = m(z(y)) and = = z(y) is the inverse function of y(z). Using methods from
[14, 38], Constantin [3] proved that m € C5(T) can be recovered from the anti/periodic and
the Dirichlet spectra. The necessary exact asymptotics were obtained by a transformation
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of Eq.(2) to the Hill equation. In fact Constantin [3] derived the trace formula (a new
one) and solved the so-called Dubrovin equation. We formulate the result of Constantin

[3].
Theorem 1. Assume that m € C*(T). Then
11 1 1\ 1 1
=——+z - — — .z €[0,1].
o =-p 1 2w (@) ~wem) Te0

>1

Here p,(t),t € [0,1],n > 1 is a unique periodic solution of the system

dpn(t) pn () /A2 (pn(t)) — 1 _
dt sinbh g [ e (1= (n(8)/ 10 (1)) pn(0) = pin: (4)

where the signature of the radical \/A?(uy) — 1 is given by

1 1
A%0n) =1 = ~Aun) = gy [ m@)eH oo, n> 1
o\

We consider the other inverse problems (uniqueness, characterization and a priori esti-
mates) for the case m,m’ € L?(T) and m > 0. Let G be the unitary transformation

G : L*(R,m(z)dz) — L*(R, p*(y)dy), Gf(y) = f(x(y)), (5)

and z(y) is the inverse function of y(x) = [ y/m(z)ds. Then without loss of generality
we may furthermore assume that fol vm(x)dx = 1, m(0) = m(1) = 1. We obtain the
operator T' given by

1

T=GLG ' =Ty+r, Tof =—p 2(0*W)f) = —f"=2af", r v (6)

where

/

1
pP(y) = Vml(a(y)) = o 1%, q=%eﬂzﬁe%m%/q@@=@'
0
We identify g with its periodic extension to the real line.

The inverse spectral theory for the periodic weighted operator Ty has been studied in
[21, 22, 18]. The operator T with respect to g = p'/p is non-linear perturbation of Ty,
and this produces an additional complication for the inherently non-linear inverse spectral
theory which cannot be resolved by simple appeal to some trivial general principles.

Let pn,n > 1, be the Dirichlet spectrum of the equation —f” — 2qf' + rf = Af with
boundary condition f(0) = f(1) = 0. For technical reasons (in order to apply the results
of [25, 26]), it is convenient to consider a shift in the spectral parameter by looking at
T — A . Thus we introduce the fundamental solutions y; (, A, q), y2(z, A, ¢) of the equation

—f"=2qf +rf =M+ X)f, AeC, (7)

satisfying the conditions: y2(0,\,¢) = y1(0,A,q) =0, v5(0,\,q) = 11(0,\,q) = 1. Here
and below we use the notation (') = 9/0z,() = 9/0\. Next we introduce the Lya-
punov function A(X,q) = 2(44(1, A, q) + y1(1, A, ¢)) and note that A(AE, ¢) = (=1)", n >
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1, A(0,q) = 1. For each n > 1 there exists a unique point A, € [\, \}] such that
A(Mn,q) = 0. It follows from the arguments in [22] that p, € [\, A}] for any n > 1.

By analogy with the Marchenko-Ostrovski mapping, introduced in [21] for the periodic
weighted operator, we construct the mapping h : ¢ — h(q) = {h,}$° from H into ¢ @ (2

by the rule: hy, = (hen, hsn) € R?, where the components have the form

hen = =1og[(=1)"y5(L, i, @)} hon = [[An]® = B2, *sign(An — p1n), (8)
and the function |h,|? = h2, + h?, is defined by the equation

cosh [h,| = (=1)"A(An, q). 9)

It is necessary to check that h is actually well defined by these formulae (which amounts
to showing that h2 — h2, > 0), and we shortly recall the argument from [21]. Note that
the Wronskian identity p?(yby1 —yiy2) = 1 at x = 1 implies (—1)"y5(1, 1 (q), ) > 0, since
(=1D)™y1(1, un(q),q) > 0. Using the relation

V(1 1n(q), q) = (—1)"e hen(@),

we deduce that y;(1, un(q),q) = (—1)"e"n(@ and then

(—1)"A(un(q),q) = coshhen(q), n > 1. (10)

Thus, by (9) and (10), we get h2 — h2, > 0, since (—1)"A(), ¢) has a maximum at ), on
the segment [\, AF]. In particular, hg, is well defined.

Using the periodic spectrum {\f} and the Dirichlet spectrum {,}, we now construct
the gap length mapping ¢ — g(q) = {¢,}5°, introduced in [24] for the Hill operator. The
vector gn = (gen, gsn) € R? has the components:

1/2

2
[l 2 signhgy, . (11)

A+ A,
— % - ,unv gsn :’ 4 gcn

Gen =

Note that from the vector g we can compute the gaps lengths |v,|, signhs,, and g, for any
n > 1. However, we do not know the position of the gaps and the Dirichlet eigenvalues.

By EIQ,, p = 1, we denote the space of real sequences f = { f,}7° equipped with the norm
Hfo, =Y (27n)?|f,|. In the case p = 0 we write | - [[o = | - ||

To describe the geometric picture in the complex plane C, we finally need the relation
between the quasimomentum domain K and the spectral domain Z. The quasimomentum
domain is given by K = C\ UI'y,, where I';, = (mn — i|hy,|, 7n + i|hy| ) is an excised slit
of height |hy| = |h—n| = 0, n > 1. The spectral domain is given by Z = C \ Ug,, where
Gn = (2,,2F) = —=G_n,n > 1 are horizontal slits of length |g,| > 0 and zF = \/A\F — A\ >
0,n > 1. Recall that a map f : H — H; is a real analytic isomorphism between the

Hilbert spaces H and H; if f is bijective and both f and f~' are real analytic maps
between H, H;. We formulate the results from [26] and [1].

Theorem 2. i) The mappings h : H — (> ® (* g : H — (%, ® (*, are real analytic
isomorphisms and the following two-sided estimates are fulfilled:

lal < 2v2lIR@)IIL +4[a@)1)*, h@)] < 3lall(L + 4llq] +2¢*)?, (12)
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lall < Om)*llg(@ -1 (L + lg(@l-0)7  llg(@)l-1 < 2llgll(1 + 4]lql| + 2¢*19N7. (13)
ii) For each h* € (> & (2 there exists a unique function ¢ € H such that h(q) = h* and
a unique conformal mapping k : Z — K such that cosk(z) = A(2%,q),z € Z, and the
following identities and asymptotics are fulfilled:

be) — o Il 2 = X+ o)
2z

k(zn £i0) = 7n £ ilhn|,  k(my £i0) =m0+ ihen, n>1, (15)

where m,, = \/,un—)\ar >0 and z, = \/)\n—)\a“ >0

Remark. 1) The mappings corresponding to h and g for the unperturbed operator T were
shown to be real analytic isomorphisms in [21], [22], [18]. For the perturbed operator T,
assuming ¢,¢ € H, it was shown in [26] that h, g are real analytic isomorphisms also. If
q € H, it was shown in [26] that h, g are real analytic local isomorphisms and injections.
In [1] a surjection for the case ¢ € H was proved.

2) Assertion i) gives a full characterization of the spectrum in terms of {h,} or {g,}
for the case ¢ € H. Assertion ii) explains the geometric sense of the mapping h, which
is analogous to the Marchenko-Ostrovski mapping for the Hill operator (see [34]). We
emphasize that both mappings h and k(-) give deep geometric insight into the global
spectral structure of our operator. Using h, we may construct all of the spectrum. In
fact, h determines (uniquely) the conformal mapping k(-) from the spectral domain Z
with slits g, onto the quasimomentum domain K with slits I';, (specified by &), and the
two banks of these slits are identified as follows: The horizontal slit g, is transformed to
the vertical slit I';,. The points mn + 0 on the right and left sides of I';, are images of the
edge points z& of the slit §,. The points 2, £ 0 on the upper and lower sides of g, are
transformed to the edge points mn =+ i|h,| of the slit I';, (see (15)). The points m,, £ i0
on the upper and lower sides of g,, are transformed to the points wn =+ ih., on one of the
sides of the slit ', (see (15)). Thus, the mapping k (and, therefore, h) allows to recover
the sequences {zF}, {m,} from {h,} and inversely {h,} from {z*}, {m,}. In addition,
the quasimomentum k is crucial to derive the double-sided estimates in assertion i) (see
[22], [27], [29]).

In the proof of Theorem 2 useful factorizations h(q) = h°(V(q)) and g(q) = ¢°(V(q))
were used, where h° : H — 2 @ (? is a Marchenko-Ostrovski mapping (i.e. it is similar
to the mapping h) and ¢° : H — ¢2 @ £? is the gap-length mapping for the Hill operator
—y” + p'y in L?(R) with a periodic potential p’, where p = V(q) and V : H — H is the
nonlinear mapping defined by

, as  z — 100, (14)

1
p=V(g), P)=d@)+¢@) +r@) - /0 (¢*(s) +r(s))ds, q€H. (16)

All derivatives here are in the distributional sense. In order to use the factorization
h=h0V and g = ¢” o V we need precise control on h%, ¢° and V. Concerning h°, ¢° it
is sufficient for our purpose to use the following result from [25]:

The mappings h° : H — 0?®0%, ¢° : H — (2® 02 are real analytic isomorphisms. Moreover,
the following estimates are fulfilled:

lall < 2lR°(@)I(1 + 4R, 1K@l < 3llall (1 +2llal), ¢ € H, (17)
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lgll < 487 [lyll1 (1 + Vl-1)%,  Ivll-1 < 2gll @ +2lgl)®, v = {lwml}5-  (18)

Concerning V, the analysis in [26] is not yet sufficient for our purpose. As a preliminary
step, we shall however use the following result from [26]:
The mapping V : H — H 1is real analytic, one-to-one and locally invertible, and an
estimate of ||V (q)|| in terms of ||q|| holds.
The analytic problem is to obtain an additional one-sided estimate on V' and to show that
V is a surjection. We formulate the needed result from [1].

Theorem 3. The mapping V : H — H is a real analytic isomorphism and the following
two-sided estimates are fulfilled:

lal < V2IIplI(L+ V2], lipll < llgll(L + 4llg] +2¢*9), =V (q). (19)

From Theorem 2 a priori estimates of the solution u(z, t) of the Camassa-Holm equation
(1.2) at fixed time ¢ are follow. We formulate these results by estimating the function
m(z,t) = ugy(x,t) — u(x,t) in terms of the spectral parameters.

Theorem 4. The following identities are fulfilled:
lm G017 = llul, O + 201’ GO+ "GOl =1 2,

I (O = 1 GO + 2llu” ) + [l ¢ ). (20)

Let m,m’ € L*(T),m > 0 and h = h(q),v = g(q), where ¢ = %, and p is connected with

m by the transformation (5). Then the following estimates are fulfilled:
Iml| < ePr,(lm|| < Bue®™ /%, By = 8V2|[h[(1 + 4|, (21)
Iml| < e, [lm/[| < Cye*2, Oy = (A8m) |yl -1 (L + [lv]l-1)". (22)

As our final result in this paper, we describe the trace formula for the operator T'. Let
tn(7) be the Dirichlet eigenvalues of the equation

—f”+%f:)\m(3:+7')f, AeC, T1€]0,1]. (23)

Renark that A, < (7)) < AF (see [K1]). We formulate the following result from [1].

Theorem 5. Let m,m’ € L*(T) and m > 0. Then each function p,(-) € C*(T),n > 1
and the following trace formula is fulfilled:

o
—logm(r) = log(4)\]) + Z (log A+ log A, — 2log ,un(T)), TeT. (24)
1

The series converges absolutely and uniformly on [0,1]. It is differentiable with respect to
7 and its derivative belongs to L*(T).
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Remark. i) The identity (24) is called the trace formula for 7. It is the analogue of the
well known trace formula

o) = do + i(xx )

for the Hill operator —92+¢q, where pu,, (7) denotes the Dirichlet eigenvalue for the 7—shifted
eigenvalue. This formula was proved firstly in the case of more regular potentials (see e.g.
[33]), and then extended to potentials in L? in [24], the method from [24] was used in the
proof.

ii) Note that in view of Theorem 2, the function & determines A\ and p,,(0). Furthermore,
h € H implies b, b’ € L?(T). Thus the trace formula is valid for h € H and allows - at least
formally - to reconstruct ¢ from the spectral data of the shifted potential.

Assuming, as above, that m(z) > ¢ > 0, the trace formula for the Camassa Holm
equation was proved in [7] for the finite gap case assuming, of course, that periodic finite
gap potentials ¢ do exist for the Camassa-Holm equation (the invariance principle in [26]
implies that they actually do). In Theorem 5 the result for the finite gap case [7] is extened
to the case m’ € L?(T).

The proof of these results is by a (nontrivial) generalization of methods developed for
the Hill operator. The corresponding inverse spectral problem for the Schrodinger operator
with periodic potential V(x) was considered in a great number of papers. Marchenko
and Ostrovski constructed in [34, 35] the mapping h : V' — h(V) and proved that this
mapping is a continuous isomorphism. Garnett and Trubowitz [16] proved that h and
g are real analytic isomorphisms in the case of even potentials. Kargaev and Korotyaev
[19] reproved the result of [16] (in the case of even potentials) by a direct method. We
remind the reader that the proofs by the direct method are short and efficient, but that
this approach needs some a priori estimates of potentials in terms of spectral data. For the
general case (including non-even potentials) Korotyaev [23] proved that h is a real analytic
isomorphism by the direct method. The gap length mapping ¢ for the Hill operator was
constructed by Korotyaev [24]. Moreover, it was proved in [24] that g is a real analytic
isomorphism. Two-sided estimates for various parameters of the Hill operator (the norm of
a periodic potential, effective masses, gap lengths, height of slits |h,| etc.) were obtained
in [27, 28, 29]. The results for the Hill operator [34, 35], [23, 24] were extended in [25] to
the case of singular potentials V' with V' € L?(T). This paper proves that the mappings
h, g are real analytic isomorphisms in this class of potentials.

The inverse problem in terms of the vertical slits mapping h for the periodic weighted
operator Ty (or, in other words, for the equation —f” = Amf with positive m) was solved
in [21, 22], and the corresponding problem for the gap length mapping was solved in
[21, 18]. As we already mentioned above, the mappings h, g were constructed for a certain
class of perturbations of T and used to solve the inverse problem in [25, 26].

We mention that inverse scattering for the Camassa-Holm equation is not developed
(see [6]). Here there is an open interesting problem.

Finally we want to mention that a nonstationary problem for the Camassa-Holm equa-
tion was investigated in a series of papers of Constantin et al. (see [8, 9, 11, 10] and the
references given in these papers).
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