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Abstract

We consider two-dimensional water-waves of permanent shape with a constant prop-
agation speed. Two theorems concerning the uniqueness of certain solutions are re-
ported. Uniqueness of Crapper’s pure capillary waves is proved under a positivity
assumption. The proof is based on the theory of positive operators. Also proved is
the uniqueness of the positive gravity waves of infinite depth with moderately large
amplitude. This is accomplished by a combination of new inequalities and a numerical
verification algorithm. Possibilities and impossibilities of other uniqueness theorems
are discussed.

1 Introduction

We consider progressive waves of permanent shape on a 2D irrotational flow of incom-
pressible inviscid fluid. We show that, under a positivity assumption, the pure capillary
waves of Crapper are unique. Also, the positive gravity waves of infinite depth are shown
to be unique if their amplitudes are not large.
The shape of a water-wave is determined by solving a free boundary problem for the

Laplace equation with a nonlinear boundary condition, which is derived from Bernoulli’s
theorem. This is a mathematically difficult problem in its primitive form, but, thanks to a
happy idea of Stokes, Nekrasov, and Levi-Civita, the set of governing equations is actually
transformed into a problem of finding a certain analytic function in a fixed domain ( =
the unit disk ). In the present paper, we use the following concise form:

e2Hθ dHθ
dσ

− pe−Hθ sin θ + q
d
dσ

(
eHθ dθ

dσ

)
= 0 (−π ≤ σ ≤ π). (1.1)

Here H is the Hilbert transform (or can be called the conjugate operator; its concrete
form is given in [11]), and p, q are dimensionless parameters defined by

p =
gL

2πc2
, q =

2πT
mc2L

,
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where g is the gravity acceleration, c is the propagation speed of the wave, L is the wave
length, m is the mass density, and T is a surface tension. The unknown θ represents the
angle between the tangent at the free boundary and the horizontal line. σ is a Lagrangian
variable along the free boundary. See [11] for more detail. In this way we get to the
problem to seek a 2π-periodic θ which satisfies (1.1) and

∫ +π

−π
θ(σ) d σ = 0. (1.2)

Once θ is obtained, we can compute from it the wave profile and the velocity vector field
([11]).
For p > 0, q > 0, a lot of numerical solutions have been found (see [11] and the references

therein ). What we are going to consider in the present paper is the cases where either
p or q vanishes. In this case, numerical experiments by various authors suggest that the
set of the solutions is rather simply structured ([11]). In fact, as we will soon show, some
uniqueness theorems holds true.
From now on, only symmetric waves are considered: this means that we assume that

θ(−σ) = −θ(σ). (1.3)

We first consider pure capillary waves. Namely, we neglect the gravity ( p = 0 ). We
then obtain, after integrating (1.1) once,

q
d θ

d σ
= −sinh(Hθ) (−π ≤ σ ≤ π). (1.4)

(See [11].)
In 1957, G.D. Crapper [5] found a family of solutions of (1.4), which are written, in our

context, as follows:

q =
1 +A2

1−A2
,

θ(σ) = −2 arctan
(
2A sinσ
1−A2

)

= −4
(
A sinσ +

A3

3
sin 3σ +

A5

5
sin 5σ + · · ·

)
,

where A is a parameter satisfying −1 < A < 1. One easily notices that (q/n, θ(nσ)) are
also solutions for n = 2, 3, · · · . These solutions are called solutions of mode n.
A natural question would be: Does the differential equation (1.4) has a solution other

than Crapper’s waves?
We have suspected that the answer would be No. The reason we believe so is stated

in [11] and we do not reiterate. The first author recently found a uniqueness theorem
([12]), which guarantees that Crapper’s solutions are only possible solutions among positive
solutions.
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2 Result of [12]

The theorem in [12] is stated here:

Theorem 1. Suppose that a solution of (1.2)(1.3)(1.4) satisfies either the following A1
or A2.

A1 0 ≤ θ(σ) ≤ π everywhere in 0 ≤ σ ≤ π;

A2 dτ
dσ (σ) ≥ 0 everywhere in 0 ≤ σ ≤ π, where τ = Hθ.

Then it is one of Crapper’s solutions of mode one.

The proof in [12] uses the Perron-Frobenius theory for positive operators. By applying
the theory it is shown in [12] that θ satisfies

dθ

dσ
= γ sin(Hθ) (−π ≤ σ ≤ π), (2.1)

where γ is a constant. This was called by Toland [17] the Peierls-Nabarro equation, all
solutions of which were concretely written down in [17]. By his theory we can write down
the solution θ in terms of elementary functions, which leads to our conclusion.
In writing the solution of (2.1), [17] used an unexpected relation between (2.1) and the

stationary Benjamin-Ono equation. Thus our result revealed a relation between Crapper’s
waves and the Benjamin-Ono equation. More specifically, Toland discovered the following
fact. He considered

H
df

dσ
= sin f (2.2)

(the Peierls-Nabarro equation ), and showed that there existed two solutions, say g1 and
g2, of

H
dg

dσ
= −g + g2 (2.3)

such that df
dσ = g1 − g2. But (2.3) is actually the stationary Benjamin-Ono equation. All

of its solutions are concretely written in [2, 3].
This is fine, but one may feel that our proof is unnecessarily indirect. Note that, by

putting f = Hϕ, the equation (2.2) can be written as

dϕ

dσ
= − sin (Hϕ) .

The equation for Crapper’s waves, (1.4), differs from this equation only in sin and sinh.
We may therefore expect that there exists a direct relation between the solutions of (1.4)
and (2.3). We tried to find this relation but we did not succeed.
Also, we note that the relation between (1.4) and (2.1) was established only for positive

solutions. Since we relied on a theory of positive operators, no conclusion was derived for
solutions of mixed signs ( solutions of mode ≥ 2 ). Although we could not prove, we believe
that the uniqueness holds true without assuming a positivity assumption for Crapper’s
waves.
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3 A uniqueness theorem on the gravity waves

We now move on to a uniqueness theorem on the gravity waves, which has been recently
obtained by the second author. Now the assumption is that the surface tension is neglected
and only the gravity acts. Putting q = 0 in (1.1) and integrating, we obtain what is called
Nekrasov’s equation:

θ(σ) =
1
3π

∫ π

0
log

∣∣∣∣sin
σ+s

2

sin σ−s
2

∣∣∣∣ µ sin θ(s)
1 + µ

∫ s
0 sin(θ(u))du

ds. (3.1)

Here µ is a new parameter, which is related to p in a nontrivial manner.
The equation (3.1) has a rather long history but the structure of the solutions had long

been unclear except for those solutions of small amplitude. See [11]. The first satisfactory
answer about the existence was given by [8] as in the following form:

Theorem 2 (Keady & Norbury, ’78). For all 3 < µ < ∞, there exists at least one
non-trivial solution satisfying 0 ≤ θ ≤ π/2.

As µ tends to 3, the solution tends to the trivial solution θ ≡ 0. Namely, the solution
branches off the trivial solution at µ = 3. As µ tends to ∞, however, the solution tends
to what is called Stokes’ extreme wave. See, for instance, [11].
The Levi-Civita equation (1.1) ( with q = 0 ) possesses solutions which change signs

in 0 ≤ σ ≤ π. It is known ( numerically by [4] and mathematically [7] ) that secondary
bifurcations exist along the branch of such solutions. However, based on numerical com-
putation by [4] and others, there persisted a speculation that no secondary bifurcation
exists along the branch of positive solutions. This was partly proved rigorously by [7],
which seems to be a nice step toward the uniqueness of the positive solutions. The second
author proved in [10] the following

Theorem 3. For all 3 < µ ≤ 170.0, there exists at most one non-trivial solution satisfying
0 ≤ θ ≤ π/2.

The proof in [10] uses the validated numerics or “interval analysis”, which gives us
exact ( i.e., including round-off errors ) bound for numerical computations.
The idea of the proof is easily stated, although its real implementation is far from

trivial. To explain the idea, we use the following setting;

E = {f ∈ C[0, π] ; f(0) = f(π) = 0 },
which we regard as a Banach space with the usual norm ‖f‖ = max0≤σ≤π |f(σ)|. A closed
subset of E is defined as follows:

Kα = {f ∈ E ; α sinσ ≤ f(σ) ≤ π/2 (0 ≤ σ ≤ π ) },
where α is a sufficiently small positive number.
Nekrasov’s equation can be written as an abstract form θ = F (θ). Then our goal

is realized if we have shown that any positive solution is contained in Kα and that F :
Kα → Kα has a unique fixed point. Uniqueness would be proved if F are shown to be
a contraction mapping. However, it is very unlikely that F is a contraction in the whole
Kα. But, based upon numerical experiments in [11] and others, we may expect that F is
a contraction in a small neighborhood of the solution. So our task is to show the following
three propositions:
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• There exists a small positive number α such that any positive solution of Nekrasov’s
equation is contained in Kα;

• There exist an integer n and a closed subset K̃ of Kα such that if θ ∈ Kα then
Fn(θ) ∈ K̃, where Fn denotes the n iterates of F ;

• F : K̃ → K̃ is a contraction mapping.

The second author proved these propositions with the aid of validated numerical com-
putations. K̃ is in our case the continuous functions bounded from and below by two
functions shown in Fig. 1. Actually, he defined a sequence of functions such that

0 < θ−0 (σ) ≤ θ−1 (σ) ≤ · · · ≤ θ(σ) ≤ · · · ≤ θ+
1 (σ) ≤ θ+

0 (σ) (0 < σ < π).

Such upper bounds {θ+
n } and lower bounds {θ−n } are constructed numerically by a certain

iteration scheme. After 30–700 times of iterations depending on µ, these upper and lower
bounds become nearly stationary as is shown in Fig. 1. With such θ+

n and θ−n , we define
K̃ as

K̃ = {f ∈ K ; θ−n (σ) ≤ f(σ) ≤ θ+
n (σ) (0 ≤ σ ≤ π) }.

The numerical solutions in the figure was obtained by approximating the function by
piecewise quadratic functions. See [10].

/6π

0 π

Figure 1. Convergence of the upper and lower bounds. 31 iterations are plotted. 38.96 ≤ µ ≤ 40.0

The restriction that µ ≤ 170.0 is a technical one. Uniqueness actually seems to hold
for much larger µ. We do not know, however, whether or not the uniqueness holds for all
µ ∈ (3,∞). The wave profile at µ = 170.0 is plotted in Figure 2
The technique in [10] can be applied to other problems. For instance, the case of µ =∞

( Stokes’ extreme wave ) is treated in a similar fashion. In this case, the governing equation
becomes:

θ(σ) =
1
3π

∫ π

0
log

∣∣∣∣sin
σ+s

2

sin σ−s
2

∣∣∣∣ sin θ(s)∫ s
0 sin(θ(u))du

ds. (3.2)

The second author recently applied his method to (3.2), and he is confident that the
following theorem holds true:



Uniqueness Issues on Permanent Progressive water-Waves 477

σ = −π σ = π

µ

0

=170

Figure 2. Wave profile at µ = 170.0. This is a wave of infinite depth; the horizontal line is just
a reference.

Theorem 4. Among solutions satisfying (i) 0 ≤ θ ≤ π/2 in 0 ≤ σ ≤ π and (ii) θ is
monotone decreasing in 0 ≤ σ ≤ π, there exists at most one non-trivial solution.

The solution of (3.2) is called Stokes’ extreme wave and a numerical solution looks like
the one in Fig. 3. (The reader may notice that the solution in Fig. 2 is not very far from
the extreme wave. ) The solution is continuous but is no longer smooth at σ = 0.

σ=-π 0 σ=π

Figure 3. Stokes’ extreme wave. This is again a wave of infinite depth.

The first proof of the existence of a solution of (3.2) was given by Toland [16]. The
details of the solution were studied later ( see the references in [11] ) but its uniqueness
does not seem to be established. Recently, Plotnikov and Toland [14] proved the existence
of a continuous decreasing solution of (3.2). An ideal uniqueness theorem would be such
a one that guarantees the uniqueness of a continuous positive solution (without assuming
the monotonicity ). But this seems to be difficult; what the second author can claim is
the uniqueness in a restricted class of solutions.

4 Comments

As for the solutions of pure capillary waves, we may consider the case of finite depth. In
this case, Kinnersley’s explicit solutions, which are written by the elliptic functions, are
known. But, the method in [12] cannot be applied to them. This is because we use a
certain eigenvalue problem in the proof, which is not available for Kinnersley’s solutions.

There is another important issue on the uniqueness; the uniqueness of the solitary
gravity waves. Solitary gravity waves are constructed by the solution θ of the following
equation:

e2τ dτ

dσ
=

p

cos(σ/2)
e−τ sin θ (−π ≤ σ ≤ π), (4.1)
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where τ = Hθ + τ0 with the constant τ0 being so determined that τ(±π) = 0. Amick
and Toland [1] proved that for p0 < p < 1/π there exists at least one non-trivial solution
satisfying 0 ≤ θ ≤ π/2. Here p0 = 0.1925 · · · . As p → p0, the solitary wave tends to
the extreme wave, which has a 120◦ angle at the crest. Thus, the existence and some
geometric properties are already established. Plotnikov [13] claims that there exists a
secondary bifurcation along the branch of positive solutions to (4.1). Nonuniqueness is
therefore claimed affirmatively by the paper. This shows a striking contrast to the periodic
water-waves, for which no secondary bifurcation along the branch of positive solutions is
expected ( see [11, 6] ). Tanaka [15] showed numerically that the solitary waves became
unstable as the amplitude became large enough. But he also concluded that the situation
was the same as in the case of periodic gravity waves. Namely, he concluded that no
secondary bifurcation was likely to occur at the onset of instability. The results of [13]
and [15] are not necessarily contradictory to each other: Tanaka’s numerical computation
applies only to the first instability, whence the secondary bifurcation may occur at solutions
of higher amplitude.

In view of Plotnikov’s result, we must be able to numerically compute the solutions
on the secondary branch. This seems to be a future challenge.

The periodic gravity waves of finite depth are governed ([11]) by Yamada’s equation:

e2τ dτ
dσ

− pe−τ sin θ√
1− k2 sin2(σ/2)

= 0 (−π ≤ σ ≤ π). (4.2)

where τ is the same as in (4.1) and k ∈ [0, 1] is a parameter depending on the depth. If
k = 0, this becomes the periodic gravity waves of infinite depth, and (4.2) with k = 0
is equivalent to (3.1). As k → 1, the flow becomes shallower. If k = 1, the equations
describe the solitary waves (4.1). Since secondary bifurcations are predicted by Plotnikov,
and the numerical computation is easier in k < 1 than in k = 1, it may be worth trying
to numerically solve (4.2) with k < 1.

We can also consider the pure capillary solitary waves, which are governed by

q
dθ

dσ
= − sinh(τ)

cos (σ/2)
(−π ≤ σ ≤ π). (4.3)

Numerical solutions can be obtained ( [11] ), but we do not know the structure of them.
The equation (4.3) is generalized as

q
dθ

dσ
= − sinh(τ)√

1− k2 sin2(σ/2)
(−π ≤ σ ≤ π), (4.4)

where k is the same as in (4.2). Kinnersley’s solutions are solutions of this equation. We
cannot deny the possibility that the pure capillary waves of mode one lose their uniqueness
as k increases.
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