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Abstract

In this paper, we study some remarkable spaces of S
′

q,∗(Rq,+) space of the q-tempered
distribution introduced by M.A. Olshanetsky and V.B.K. Rogov [14], namely the
q-analogue of the pseudo-measure FqL

∞(Rq,+), the q-function of the positive type
FqM

′
, and we give a q-version of the Bochner-Shwartz theorem related to q-cosine

Fourier transform.

1 Preliminaries

To make this paper self containing we begin by recalling some notions used in Quantum
Calculus. For deep study the reader is invited to consult the Gasper-Rahman book [6]
and the references joint with this work. We will assume 0 < q < 1 and we will use the
same notation in [12].
A q-shifted factorial is defined by

(a; q)0 = 1 , (a; q)n =
n−1∏
k=0

(1− aqk) ;n = 1, 2, · · · ,∞. (1.1)

And more generally:

(a1, · · · , ar; q)n =
r∏

k=1

(ak; q)n. (1.2)

The basic hypergeometric series or q-hypergeometric series is given for r , s integers by

rϕs(a1, · · · , ar; b1, · · · , bs; q, x) =
∞∑
n=0

(a1, · · · , ar; q)n
(b1, · · · , bs; q)n(q, q)n

[(−1)nq
n(n−1)

2 ]1+s−rxn

The q-derivative Dq,xf of a function f on an open interval is given by :

Dq,xf(x) =
f(x)− f(qx)

(1− q)x
, x 6= 0 (1.3)

and (Dqf)(0) = f
′
(0) provided f

′
(0) exist. The q-shift operators are

(Λq,xf)(x) = f(qx) (1.4)
(Λ−1

q,xf)(x) = f(q−1x). (1.5)
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We consider the q-operator

∆q,x = Λ−1
q,xD

2
q,x. (1.6)

The q-Jackson integral from 0 to a and to ∞ are respectively defined by∫ a

0
f(x)dqx = (1− q)a

∞∑
n=0

f(aqn)qn, (1.7)

∫ ∞

0
f(x)dqx = (1− q)

+∞∑
−∞

f(qn)qn. (1.8)

The q-analogue of the elementary exponential functions are crucial, they are defined by :

E(x; q) = (−(1− q)x; q)∞ =
∞∑
0

q
n(n−1)

2
(1− q)n

(q; q)n
xn , x ∈ R, (1.9)

and

e(x; q) =
1

((1− q)x; q2)∞
=

∞∑
0

(1− q)n

(q; q)n
xn , | x |< 1

1− q
. (1.10)

Because of its product representation, e(x; q2) has an analytic continuation to
R\{ 1

1−q2 q
−k, k ∈ N}. Further these functions satisfy the identity :

e(x; q)E(−x; q) = 1 . (1.11)

Some q-functional spaces will be used in the remainder. We begin by putting

Rq,+ = {+qk, k ∈ Z}. (1.12)

R̂q,+ = {+qk, k ∈ Z} ∪ {0}. (1.13)

and we denote by
• Sq,∗(Rq,+) the q-analogue of Schwartz space of even functions defined on Rq,+ such that
Dk
q,xf(x) is continuous in 0 for all k ∈ N and

Nq,n,k(f) = sup
x∈Rq,+

| (1 + x2)nDk
q,xf(x) |< +∞ (1.14)

• Dq,∗(Rq,+) the space of even functions infinitely q-differentiable on Rq,+ with compact
support in Rq,+. We equip this space with the topology of the uniform convergence of the
functions and their q-derivatives.
• Cq,∗,0(Rq,+) the space of even functions f defined on Rq,+ continuous on 0, infinitely
q-differentiable and

lim
x→∞

f(x) = 0 , ‖ f ‖Cq,∗,0= sup
x∈Rq,+

| f(x) |< +∞. (1.15)

• Hq,∗(Rq,+) the space of even functions f defined on Rq,+ continuous on 0 with compact
support such that

‖ f ‖Hq,∗= sup
x∈Rq,+

| f(x) | < +∞. (1.16)
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• Lpq(Rq,+), p ∈ [1,+∞[, ( resp L∞q (Rq,+) )be the space of functions f such that,

‖ f ‖q,p= (
∫ ∞

0
| f(x) |p dqx)

1
p < +∞. (1.17)

(resp

‖ f ‖∞,q= ess sup
x∈Rq,+

| f(x) |< +∞ .) (1.18)

Jackson in [10] defined the q-analogue of the Gamma function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x , 0 < q < 1;x 6= 0,−1,−2, ... (1.19)

moreover the q-duplication formula holds

Γq(2x)Γq2(
1
2
) = (1 + q)2x−1Γ2

q(x)Γq2(x+
1
2
). (1.20)

We take the definition of q-trigonometric given by T.H.Koornwinder and R.F.Swarttouw
(see [12]) with simple changes and we write q-cosine and q-sinus as a series of functions

cos(x; q2) = 1ϕ1(0, q, q2; (1− q)2x2) =
∞∑
n=0

(−1)nbn(x; q2) (1.21)

sin(x; q2) = (1− q)x1ϕ1(0, q3, q2; (1− q)2x2) =
∞∑
n=0

(−1)ncn(x; q2) (1.22)

where we have put

bn(x; q2) = bn(1; q2)x2n = qn(n−1) (1− q)2n

(q; q)2n
x2n (1.23)

cn(x; q2) = cn(1; q2)x2n+1 = qn(n−1) (1− q)2n+1

(q; q)2n+1
x2n+1. (1.24)

The reader will notice that the previous definition (1.21) derived from those given in [12]
with minor change, and we have

lim
x−→+∞


cos(x; q2)

sin(x; q2)
= 0 . (1.25)

These functions are bounded and for every x ∈ Rq we have

| cos(x; q2)| ≤ 1
(q; q2)2∞

, (1.26)

| sin(x; q2) ≤ 1
(q; q2)2∞

. (1.27)

More generally in [5], the q-Bessel function is written as

jα(x; q2) =
∞∑
n=0

(−1)nbn,α(x, q2) (1.28)
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with

bn,α(x, q2) = bn,α(1, q2)x2n =
Γq2(α+ 1)qn(n−1)

(1 + q)2nΓq2(n+ 1)Γq2(α+ n+ 1)
x2n , (1.29)

jα(x; q2) = Γq2(α+ 1)
qα(1 + q)α

xα
Jα((1− q)x; q2) (1.30)

where Jα(x; q2) is the q-Bessel Han Exton [16], defined by

Jα(x; q) =
(

x

1− q

)α ∞∑
k=0

(−1)kqk(k−1)/2qk

Γq(k + 1)Γq(α+ k + 1)

(
x

1− q

)2k

. (1.31)

and

bn,− 1
2
(x; q2) = bn(x; q2). (1.32)

The q-jα Bessel function jα(x; q2) is defined on R and tends to the jα Bessel function as
q −→ 1−.
By simple computation using (1.19) and (1.20) we obtain

j− 1
2
(x; q2) = cos(x; q2), (1.33)

j 1
2
(x; q2) =

sin(x; q2)
x

. (1.34)

Finally, let f be a function in L1
q(Rq,+), the q-even translation operator Tq,x is defined (see

[4]) by

Tq,xf(y) =
∫ ∞

0
f(t)dqµx,y(t) , (1.35)

where dqµ(t) is the measure defined for x and y in Rq,+ by

dqµx,y(t) =
+∞∑
−∞

(
x

y
)2s

(q(xy )
2; q)∞

(q; q)∞
1φ1(0, q(

x

y
)2, q; q1+2s)qsδyqs(t) (1.36)

and δu is the mass unit supported at u.

Note that in [4], for f in Dq,∗(Rq,+) the authors proved that the q-even translation Tq,x
can be written in the following form

Tq,xf(y) =
∞∑
k=0

qk(
x

y
)2k

s=k∑
s=−k

(−1)k−sq(k−s)(k−s−1)/2

(q; q)k+s(q; q)k−s
f(qsy), y 6= 0 (1.37)

and also written as the form

Tq,xf(x) =
∞∑
n=0

bn(x; q2)∆n
q,xf(x), (1.38)
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where ∆q,x given by (1.6).

Furthermore for f and g be two functions in L1
q(Rq,+), we have∫ ∞

0
Tq,xf(y)dqy =

∫ ∞

0
f(y)dqy, (1.39)∫ ∞

0
Tq,xf(y)g(y)dqy =

∫ ∞

0
f(y)Tq,xg(y)dqy, (1.40)

in particular the following product formula holies

Tq,y cos(tx; q2) = cos(tx; q2) cos(ty; q2). (1.41)

The q-convolution and the q-cosine Fourier transform studied and given in [4], for f, g ∈
L1
q(Rq,+) by:

f ∗q g(x) =
(1 + q−1)

1
2

Γq2(
1
2)

∫ ∞

0
Tq,xf(y)g(y)dqy, (1.42)

Fq(f)(λ) =
(1 + q−1)

1
2

Γq2(
1
2)

∫ ∞

0
f(t) cos(λt; q2)dqt. (1.43)

Note that from ([4],[5],[13],...) the q-translation operators and the q-cosine Fourier trans-
form satisfies the following properties

i. Tq,xf(y) = Tq,yf(x).

ii. ∆q,xTq,xf(y) = ∆q,yTq,yf(x).

iii. Tq,x tends to σx whenever q tends to 1−,where

σx(f)(y) =
1
2
[f(x+ y) + f(x− y)], y ∈ [0,+∞[.

iv. Fq is an isomorphism from Sq,∗(Rq,+) onto itself and F2
q = Id.

v. Fq can be extended to a one to one map from L1(Rq,+) into Cq,∗,0(Rq,+) and we have

‖ Fq(f) ‖Cq,∗,0≤
1

(q(1− q))
1
2

||f ||q,1.

vi. Inversion formula
For f ∈ L1(Rq,+) such that Fq(f) ∈ L1(Rq,+), we have f = Fq(Fq(f)).

vii. q-Plancherel theorem type
The q-cosine Fourier transform Fq is an isometric isomorphism of L2(Rq,+) onto
itself. The inverse F−1

q coincides with Fq.
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viii. For f, g ∈ L1(Rq,+),Fq(f ∗q g) = Fq(f)Fq(g).

ix. Fq : S
′
∗,q(Rq,+) −→ S

′
∗,q(Rq,+) is an isomorphism satisfying Fq = F−1

q ; and we have
〈Fq(T ), ϕ〉 = 〈T,Fq(ϕ)〉; T ∈ S′∗,q(Rq,+), ϕ ∈ Sq,∗(Rq,+).

x.
∫ ∞

0
Fq(f)(ξ)g(ξ)dqξ =

∫ ∞

0
f(ξ)Fq(g)(ξ)dqξ; f, g ∈ L1(Rq,+).

xi. Fq(Tq,xf)(ξ) = cos(x; q2)Fq(f)(ξ); f ∈ L1(Rq,+).

In the remainder of this work we choose q such that log(1−q)
log q ∈ Z and we put

cq =
(1 + q−1)

1
2

Γq2(
1
2)

. (1.44)

2 The q-pseudo-measure FqL∞ space

In this section, we introduce the notion of the q-pseudo-measure, taking in the account of
the fact that L∞(Rq,+) ⊂ S

′
q,∗(Rq,+) and via the inversion theorem we have FqL∞(Rq,+) ⊂

FqS
′
q,∗(Rq,+) ⊂ S

′
q,∗(Rq,+), we obtain the following definition

Definition 1. Let T in S
′
q,∗(Rq,+) a q-tempered distribution. If T is in FqL∞ then it’s

called a q-pseudo-measure.

Definition 2. Let T be a q-distribution in D′
q,∗(Rq,+) and let f in Dq,∗(Rq,+), we define

the q-convolution product T ∗q f for all ϕ in Dq,∗(Rq,+) by

< T ∗q f, ϕ >=< T, f ∗q ϕ > . (2.1)

Proposition 1. Let T be a q-Tempered distribution in FqL∞(Rq,+) then for all f in
L2(Rq,+), we have

1. The operator L(f) defined by

L(f) = T ∗q f = Fq[(FqT )(Fqf)] (2.2)

is continued in L2(Rq,+) and we have for all x in Rq,+

T ∗q (Tq,xf) = Tq,x(T ∗q f). (2.3)

2. for ϕ in L∞(Rq,+), let the operator Lϕ : f 7−→ (Fqϕ) ∗q f defined in L2(Rq,+) then
we have

||| Lϕ |||q=‖ ϕ ‖∞,q (2.4)

where

||| Lϕ |||q= sup
f ∈ L2(Rq,+)

f 6= 0

‖ Lϕ(f) ‖2,q

‖ f ‖2,q
(2.5)
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Proof. Let f in L2(Rq,+) so Fqf ∈ L2(Rq,+) and FqT ∈ L∞(Rq,+) then we obtain
(Fqf)(FqT ) in L2(Rq,+) further the q-Plancherel theorem give

‖ T ∗q f ‖2,q = ‖ Fq(T ∗q f) ‖2,q=‖ (FqT )(Fqf) ‖2,q

≤ ‖ FqT ‖∞,q‖ Fqf ‖2,q

≤ Cst ‖ f ‖2,q , Cst =‖ FqT ‖∞,q

Now we prove the second propriety,

‖ Lϕ(f) ‖2,q = ‖ Fq((Fqϕ) ∗q f) ‖2,q

≤ ‖ Fqf ‖2,q‖ ϕ ‖∞,q

≤ ‖ f ‖2,q‖ ϕ ‖∞,q

�

2.1 The q-Function of positive type, q-Bochner theorem

In this subsection, we characterize the q-cosine Fourier Transform of a positive bounded
measure FqM

′
+(Rq,+).

Definition 3. A measure µ is called bounded if for all f in Hq,∗(Rq,+), we have

µ(f) ≤ Cq ‖ f ‖Hq,∗ (2.6)

where Cq > 0 is a positive constant.
We note by M′

(Rq,+) the set of bounded measure on Rq,+.

Definition 4. The q-cosine Fourier transform of measure µ in M′
(Rq,+) , is defined :

for all ϕ ∈ Sq(Rq,+) by

< Fqµ, ϕ >=< µ,Fqϕ >=
∫ +∞

0
Fqϕ(λ)dqµ(λ). (2.7)

Remark 1. In theory of measure, for µ in M′
(Rq,+) the q-Jackson integral < µ,ϕ >=∫ +∞

0
ϕ(x)dqµ(x) have a sense if ϕ is a continuous and bounded function on Rq,+(for

example ϕ = cos(λ.; q2), λ in Rq,+ and relation (1.26)). More else, taking in the account
of the fact that L1(Rq,+) ⊂ M′

(Rq,+) ⊂ S
′
q,+(Rq,+), the q-cosine Fourier transform Fq

in L1(Rq,+) given by (1.43) can be generalized to M′
(Rq,+). We obtain the following

proposition:

Proposition 2. 1. The q-cosine Fourier transform of a measure µ in M′
(Rq,+) is the

q-tempered distribution Fqµ given by :

Fqµ(λ) = cq

∫ +∞

0
cos(λx; q2)dqµ(x). (2.8)

2. for all x, λ ∈ Rq,+ we have

Tq,xFqµ(λ) = cq

∫ +∞

0
cos(xt; q2) cos(λt; q2)dqµ(t). (2.9)
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Proof. for all ϕ in Sq,∗(Rq,+),

< µ,Fqϕ > = cq

∫ +∞

0

∫ +∞

0
ϕ(λ) cos(λt; q2)dqλdqµ(t)

=
∫ +∞

0
ϕ(λ)(cq

∫ +∞

0
cos(λt; q2)dqµ(t))dqλ

=
∫ +∞

0
ϕ(λ)Fqµ(λ)dqλ

= < Fqµ, ϕ >

the result follows immediately. We prove (2) in the same way as (1). �

Definition 5. A measure µ is called positive if for all f in Hq,∗(Rq,+),
f ≥ 0 we have µ(f) ≥ 0.

Definition 6. Let f in L∞(Rq,+), f is called a q-function of positive type if for all ϕ in
Dq,∗(Rq,+), we have∫ +∞

0
ϕ ∗q ϕ(x)f(x)dqx ≥ 0 . (2.10)

Proposition 3. Let f ∈ L∞(Rq,+) ∩ L1(Rq,+).
f is a q-function of positive type if and only if there exist ci, cj ≥ 0 such that

(1− q)2
+∞∑
i,j=0

cicjTq,xif(xj) ≥ 0. (2.11)

Proof. Let ϕλ a q-approximation of unity we can show ψλ = ϕλ∗qϕλ is a q-approximation

of unity . Consider θλ =
+∞∑
i=0

ciTq,xiϕ(x), we have for f ∈ L∞(Rq,+) ∩ L1(Rq,+),

+∞∑
i,j=0

cicjTq,xif(xj) = lim
λ−→0

+∞∑
i,j=0

cicjTq,xif ∗q ψλ(xj) = lim
λ−→0

+∞∑
i,j=0

cicjf ∗q Tq,xiψλ(xj)

= lim
λ−→0

+∞∑
i,j=0

cicjf ∗q Tq,xi(ϕλ ∗q ϕλ)(xj)

= lim
λ−→0

+∞∑
i,j=0

cicj

∫ +∞

0
f(y)Tq,y((Tq,xiϕλ) ∗q ϕλ(xj))dqy

= lim
λ−→0

+∞∑
i,j=0

cicj

∫ +∞

0
f(y)(Tq,xiϕλ ∗q Tq,xjϕλ)(y)dqy

= lim
λ−→0

∫ +∞

0
f(y)θλ ∗q θλ(y)dqy ≥ 0.
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Conversely, for all ϕ in Dq,∗(Rq,+) with supp ϕ = [0, h] , h > 0 , we have∫ +∞

0
ϕ ∗q ϕ(x)f(x)dqx =

∫ +∞

0

∫ +∞

0
Tq,yϕ(x)ϕ(y)f(x)dqxdqy

=
∫ +∞

0

∫ +∞

0
ϕ(x)ϕ(y)Tq,yf(x)dqxdqy

=
∫ h

0

∫ h

0
ϕ(x)ϕ(y)Tq,yf(x)dqxdqy

= (1− q)2
+∞∑
i,j=0

h2qi+jTq,qjf(qih)ϕ(qih)ϕ(qjh)

= (1− q)2
+∞∑
i,j=0

cicjTq,xif(xj) ≥ 0,

where ck = xkϕ(xk), xk = qkh ; k = i, j . �

Proposition 4. Let µ a positive measure in FqL∞(Rq,+) then µ is in M(Rq,+).

Proof. Let Lµ : f 7−→ µ ∗q f for L2(Rq,+) in L2(Rq,+) and let f be the indicator function
of the set [0, r] ; r ∈ Rq,+ defined by

f(x) = 1[0,r](x) =


1 , x ∈ [0, r]

0 , otherwise .
(2.12)

for all y ∈ [0, r], we have

f ∗q f(y) = cq

∫ r

0
Tq,x1[0,r](y)dqy

= cqTq,x(
∫ r

0
1[0,r](y)dqy) ≥ cq

r

2

to prove the proposition, it is suffices to notice that for all h in Hq,∗(Rq,+)

sup
‖h‖∞,q≤1

| µ(h) |< +∞, (2.13)

but, when supp h ⊂ [0, r], we obtain

µ(f ∗q f) = cq

∫ +∞

0
f ∗q f(y)dqµ(y) = c2q

∫ +∞

0

∫ +∞

0
f(x)Tq,yf(x)dqµ(y)dqx

= cq

∫ +∞

0
f(x)µ ∗q f(x)dqx

≤ cq ‖ µ ∗q f ‖2,q‖ f ‖2,q

≤ cq ||| Lµ |||q‖ f ‖2,q‖ f ‖2,q= cqr ||| Lµ |||q .

On the other hand

µ((f ∗q f) | h |) = cq

∫ +∞

0
f ∗q f(y) | h(y) | dqµ(y) ≥ cq

r

2
| µ(h) |



Distribution of positive type in Quantum Calculus 575

then
r

2
| µ(h) |≤ µ((f ∗q f) | h |) ≤‖ h ‖∞,q µ(f ∗q f) ≤ r ||| Lµ |||q

i.e

| µ(h) |≤ 2 ||| Lµ |||q < +∞ . (2.14)

Hence the result follows. �

Lemma 1. For xi, xj in Rq,+ such that xi 6= xj, we have :∫ +∞

0
cos(λxi; q2) cos(λxj ; q2)dqλ = 0 , λ ∈ Rq,+. (2.15)

Indeed, using (1.41) and (1.39), we deduce that∫ +∞

0
cos(λxi; q2) cos(λxj ; q2)dqλ =

∫ +∞

0
Tq,xi cos(λxj ; q2)dqλ

=
∫ +∞

0
cos(λxj ; q2)dqλ

=
[sin(λxj ; q2)

xj

]+∞

0

= 0

the result follows by (1.25).

Proposition 5. If µ ∈M′
+(Rq,+), his q-cosine Fourier transform Fqµ = f is a q-function

of positive type.

Indeed,

(1− q)2
+∞∑
i,j=0

cicjTq,xif(xj) = (1− q)2
+∞∑
i,j=0

cicjTq,xiFqµ(xj)

= (1− q)2cq
+∞∑
i,j=0

cicj

∫ +∞

0
cos(λxi; q2) cos(λxj ; q2)dqµ(λ)

= (1− q)2cq
+∞∑
i=0

c2i

∫ +∞

0
cos2(λxi; q2)dqµ(λ) ≥ 0

3 Examples

In this section we give some basic functions where are q-function of positive type :

Example 1. The function x 7−→ e(−tx2; q2) ( see [4]) is a q-function of positive type
since :

Fq(G(., t; q2))(λ) = e(−tλ2; q2) (3.1)
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where

G(x, t; q2) = A−1(t, q)e(− x2

qt(1 + q)2
; q2) (3.2)

A(t, q) = q−
1
2 (1− q)

1
2

(−1−q
1+q

1
t ,−

1+q
1−q q

2t; q2)∞

(−1−q
1+q

1
qt ,−

1+q
1−q q

3t; q2)∞
(3.3)

which is a positive function in L1(Rq,+).

Example 2. The function x 7−→ jα(x; q2) ( see [5] , [2]) is a q-function of positive type,
indeed it’s the q-cosine Fourier transform of :

Fq(
Γq2(α+ 1)
Γq2(α+ 1

2)
Wα(.; q2)1[0,1](.))(λ) = jα(λ; q2) (3.4)

where Wα(x; q2) defined in [5] by :

Wα(x; q2) =
(x2q2; q2)∞

(x2q2α+1; q2)∞
(3.5)

which is a positive function in L1(Rq,+).

Indeed ,∫ +∞

0

Γq2(α+ 1)
Γq2(α+ 1

2)
Wα(x; q2)1[0,1](x)dqx =

Γq2(α+ 1)
Γq2(α+ 1

2)

∫ 1

0
Wα(x; q2)dqx

=
(1 + q−1)
Γq2(

1
2)

jα(0; q2) =
(1 + q−1)
Γq2(

1
2)

.

Proposition 6. Let T in D′
q,∗(Rq,+), these assertions are equivalents:

1. for all ϕ ∈ Dq,∗(Rq,+), we have < T, f2 >≥ 0.

2. T is a positive q-distribution
( i.e for all ϕ ∈ Dq,∗(Rq,+); ϕ ≥ 0 implies that < T,ϕ >≥ 0 ).

3. T is a positive measure.

Indeed ,
(1)=⇒ (2), it is sufficient to say that for all ϕ ∈ Dq,∗(Rq,+);ϕ ≥ 0, is a limit of functions

f2
k where fk ∈ Dq,∗(Rq,+). Let fk(x) = χq(x)

√
ϕ(x) + 1

k , where χq in D′
q,∗(Rq,+) positive

equal to 1 in the support of ϕ then :

f2
k (x)− ϕ(x) =

χ2
q(x)
k

−→ 0 , k →∞ inD′
q,∗(Rq,+)

and the result follows.
(3)=⇒ (1) evident.
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(2)=⇒(3), it is sufficient to prove that T ∈ H′
q,∗(Rq,+). Let K a compact of Rq,+, consider

ψK ∈ Dq,∗(Rq,+) such that ψK ≥ 0 and ψK ≡ 1 on K, then for all ϕ ≥ 0, supp ϕ ⊂ K,

− ‖ ϕ ‖∞ ψK ≤‖ ϕ ‖∞ ψK (3.6)

then

|< T,ϕ >|≤ CK ‖ ϕ ‖∞ ;CK =< T,ψK > (3.7)

then T ∈ H′
q,∗(Rq,+).

Theorem 1. (of Bochner) Let f ∈ L∞(Rq,+), if f is a q-function of positive type, there
exist µ ∈M′

+(Rq,+) such that

f = Fqµ. (3.8)

Proof. Let f ∈ L∞(Rq,+), of positive type and putting T = Fqf .
for all g ∈ Dq,∗(Rq,+), we have : Fqg in Sq,∗(Rq,+) ⊂ L1(Rq,+) then

< T, g2 > = < Fqf, g2 >=< f,Fq(g2) >
= < f,Fqg ∗q Fqg > ≥ 0

thus T is a positive q-distribution. Again, by using proposition 6 it’s a measure of positive
type. But since T ∈ FqL∞(Rq,+), by proposition 4 this measure is bounded, the result
follows after minor computation. �

Remark 2. the following result leads that for all f in L∞(Rq,+),

FqH
′
q,∗(Rq,+) =

{
q-function of positive type

}
= P(Rq,+).

In the following, we shall give some properties

Proposition 7. We have :

1. If f1, f2, · · · , fk ∈ P(Rq,+) then f1 + f2 + · · ·+ fk ∈ P(Rq,+).

2. If f ∈ P(Rq,+), λ ∈ Rq,+ then λf ∈ P(Rq,+).

3. If f1, f2 ∈ P(Rq,+) then f = f1f2 ∈ P(Rq,+).

Indeed ,
If µ1, µ2 are two bounded measures in Rq,+, µ = µ1 ∗q µ2 defined by :
for all ϕ in Hq,∗(Rq,+)

< µ,ϕ >=< µ1 ∗q µ2, ϕ >= cq

∫ +∞

0

∫ +∞

0
Tq,xϕ(y)dqµ1(x)dqµ2(y) (3.9)

defined a bounded measure in Rq,+. If we take ϕ = cq cos(λx; q2), we obtain :

< µ,ϕ > = c2q

∫ +∞

0

∫ +∞

0
Tq,x cos(λy; q2)dqµ1(x)dqµ2(y)

= c2q

∫ +∞

0

∫ +∞

0
cos(λx; q2) cos(λy; q2)dqµ1(x)dqµ2(y)

= Fq(µ1)(λ)Fq(µ2)(λ)
= Fq(µ)(λ)
= Fq(µ1 ∗q µ2)(λ).
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Moreover if µ1, µ2 are positive then µ1 ∗q µ2 too, the q-Bochner theorem leads that the
product of two functions of positive type is of positive type too.

4 The q-Distributions of positive Type : q-Bochner-Schwartz
theorem

In this section, we summarize some of properties studied by A. Fitouhi, M. M. Hamza and
F. Bouzeffour in [5]. The q-analogue of Kober-Erdely transform is given by :
For α 6= −1

2 ,−1,−3
2 , ... and f in Dq,∗(Rq,+)

χα,q(f)(x) = C(α, q2)
1 + q

x

∫ x

0
Wα(

t

x
; q2; q2)f(xt)dqt , x 6= 0 (4.1)

and

χα,q(f)(0) = f(0) (4.2)

where

C(α, q2) =
Γq2(α+ 1)

Γq2(
1
2)Γq2(α+ 1

2)
(4.3)

and

Wα(x; q2) =
(x2q2; q2)∞

(x2q2α+1; q2)∞
= 1φ1(q1−2α,−, q2, x2q2α+1) (4.4)

and the q-transposed operator tχα,q of χα,q is given for f in Dq,∗(Rq,+) and α 6= −1
2 , −1,

−3
2 ,... by :

tχα,q(f)(x) =
q(1 + q−1)−α+ 1

2 Γq2(α+ 1)
Γ2
q2

(α+ 1
2)

∫ +∞

qx
Wα(

x

t
; q2)f(t)t2αdqt. (4.5)

The operators χα,q and tχα,q define isomorphisms on Dq,∗(Rq,+) ( see [5] ).
The q-generalized Bessel translation can be defined via the q-transmutation operator by

Tαx f(y) = χα,q,xχα,q,y(T
− 1

2
q,x χ

−1
α,q,y(f)(y)) (4.6)

where T
− 1

2
q,x is the q-even translation defined by (1.35).

For f and g in Dq,∗(Rq,+), the q-Bessel convolution and the Fourier transform are given
by :

f ∗α g(x) =
(1 + q−1)−α

Γq2(α+ 1)

∫ +∞

0
Tαx f(y)g(y)y2α+1dqy, (4.7)

Fα,q(f)(λ) =
(1 + q−1)−α

Γq2(α+ 1)

∫ +∞

0
f(x)jα(λx; q2)dqx. (4.8)
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It satisfies

χα,q(f ∗q g) = χα,q(f) ∗α (g), (4.9)
Fα,q(f ∗α g) = Fα,q(f)Fα,q(g), (4.10)

Fα,q = Fq ◦ tχα,q. (4.11)

where ∗q design the q-even convolution given by (1.42).
If we proceed as in [5], we can show easily that

tχα,q(f ∗α g) = tχα,q(f) ∗q tχα,q(g). (4.12)

Definition 7. Let T be in D′
q,∗(Rq,+), T is called of positive type if for all ϕ in Dq,∗(Rq,+),

we have

< T,ϕ ∗q ϕ > ≥ 0 . (4.13)

Example 3. The q-distribution T of D′
q,∗(Rq,+) defined by :

< T, f >= (tχq,α)−1(f)(0) , f ∈ Dq,∗(Rq,+) (4.14)

is a q-distribution of positive type
where tχq,α is given by (4.5).

Proof. Let f in Dq,∗(Rq,+), using the relation (4.12), we obtain :

f ∗α f(0) = < T, tχq,α(f ∗α f) >
= < T, tχq,α(f) ∗q tχq,α(f) >

on the other hand by (4.7)

f ∗α f(0) = cq

∫ +∞

0
f2(y)x2α+1dqy ≥ 0 (4.15)

the result follows immediately. �

Theorem 2. (Bochner-Schwartz)
Let T in D′

q,∗(Rq,+), the following assertions are equivalent

1. T is of positive type.

2. T is a q-tempered distribution, and it’s the q-cosine Fourier transform of a q-tempered
positive measure.

3. there exist a positive measure µ and integer k ≥ 0 such that :

(a)
∫ +∞

0
(1 + x2)−kdqµ(x) < +∞

(b) T = Fqµ.
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Proof. (2)=⇒ (1) if FqT = µ ∈ H′
q,∗(Rq,+)

⋂
S
′
q,∗(Rq,+) we have, for all ϕ ∈ Dq,∗(Rq,+)

< Fqµ, ϕ ∗q ϕ > = < µ,Fq(ϕ ∗q ϕ) >
= < µ, (Fqϕ)2 > ≥ 0

(3)=⇒ (2) evident.

(1)=⇒ (3) we remark that for all ϕ ∈ Dq,∗(Rq,+), the function ϕ 7−→ T ∗q ϕ ∗q ϕ is
of positive type, because for all ψ ∈ Dq,∗(Rq,+)

< T ∗q ϕ ∗q ϕ,ψ ∗q ψ > = < T,ϕ ∗q ϕ ∗q ψ ∗q ψ >
= < T, (ϕ ∗q ψ) ∗q (ϕ ∗q ψ) > ≥ 0;

then by the theorem 1, there exist a measure µϕ ∈ H
′
q,∗(Rq,+) such that µϕ = Fq(T ∗qϕ∗qϕ)

we choose ψ ∈ Dq,∗(Rq,+) such that Fqψ(λ) 6= 0 , λ ∈ Rq,+ and let µ = (Fqψ)−2(λ)µψ
then µ is a positive measure, we can write :

Fq(T ∗q ϕ ∗q ϕ ∗q ψ ∗q ψ) = (Fqψ)2µϕ = (Fqϕ)2µψ (4.16)

then

µϕ = (Fqϕ)2µ , ϕ ∈ Dq,∗(Rq,+). (4.17)

we deduce that

< T,ϕ ∗q ϕ > = < T ∗q ϕ,ϕ >=< T ∗q ϕ,ϕ ∗q δq >=< T ∗q ϕ ∗q ϕ, δq >
= (Fqµϕ)(0)

=
∫ +∞

0
dqµϕ(t)

=
∫ +∞

0
(Fqϕ)2(t)dqµ(t)

i.e for all χq = ϕ ∗q ϕ ; ϕ ∈ Dq,∗(Rq,+) we have

< T, χq >=
∫ +∞

0
(Fqχq)(t)dqµ(t) =< Fqµ, χq > . (4.18)

so the result follows.
Now we prove (a), let χ ∈ Dq,∗(Rq,+) such that supp χ ⊂ [0, 1] and Fqχ(λ) be > 0 in Rq,+.
Since for 0 < ε ≤ 1, putting χε(x) = ε−1χ(ε−1x) and m = inf

λ≤1
| Fqχ(λ) |. Furthermore if
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we use the theorem 3 in [13], there exist k ≥ 0 and C > 0 such that

µ(0 ≤ λ ≤ ε−1) ≤ m−1

∫ ε−1

0
Fqχ(ελ)dqµ(λ) ≤ m−1

∫ +∞

0
Fqχ(ελ)dqµ(λ)

= m−1 |< T, χε >|

≤ C sup
p < k

x ∈ Rq,+

|∆p
qχε(x)|

≤ C1ε
−1−2k sup

p < k
x ∈ Rq,+

|∆p
qχ(x)|

= C2ε
−1−2k.

This prove that for R → ∞, the measure µ defined in [0, R] is an Θ(R1+2k) this achieve
the proof of (a). �

Example 4. The q-distribution x 7−→ qν+
1
2 (1+ q)ν+

1
2
Γq2(

ν+1
2 )

Γq2(−ν
2 )

| x |−ν−1 , Reν > −1 is

a q-distribution of positive type.

Indeed,
In [5] we have,

Fq(| x |ν) = qν+
1
2 (1 + q)ν+

1
2
Γq2(

ν+1
2 )

Γq2(−ν
2 )

| x |−ν−1 . (4.19)

On the other hand : for all ϕ ≥ 0

<| x |ν , ϕ >=
∫ +∞

0
xνϕ(x)dqx ≥ 0 (4.20)

Theorem 3. All q-distribution of positive type T defined in D′
q,∗(Rq,+), can be written as:

T = (1−∆q,x)kf(x) , k ∈ N

where f is a q-function of positive type.

Proof. We have for all ϕ ∈ Dq,∗(Rq,+), by theorem 2 there exist k ∈ N and µ a positive
measure such that

< T,ϕ >=< FqT,Fqϕ >=< µ,Fqϕ >=
∫ +∞

0
Fqϕ(λ)dqµ(λ) (4.21)

and ∫ +∞

0

1
(1 + λ2)k

dqµ(λ) < +∞
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and putting dqν(λ) = (1 + λ2)−kdqµ(λ), the measure ν is a positive measure, bounded.
Then by proposition 5 we have f1(λ) = Fqν(λ) is a q-function of positive type , furthermore
for all ϕ ∈ Dq,∗(Rq,+),

< T,ϕ > =
∫ +∞

0
Fqϕ(λ)dqµ(λ)

= cq

∫ +∞

0

∫ +∞

0
cos(λt; q2)ϕ(t)(1 + λ2)kdqν(λ)dqt

= cq

∫ +∞

0

∫ +∞

0
(1−∆q,t)k(cos(λt; q2))ϕ(t)dqν(λ)dqt

= cq

∫ +∞

0

∫ +∞

0
(1−∆q,t)k(ϕ(t)) cos(λt; q2)dqν(λ)dqt

=
∫ +∞

0
(1−∆q,t)kϕ(t)f1(t)dqt.

where

f1(t) = cq

∫ +∞

0
cos(λt; q2)dqν(λ) = Fqν(λ) (4.22)

then

< T,ϕ >=< f1, (1−∆q,t)kϕ >=< (1−∆q,t)kf1, ϕ > ;ϕ ∈ Dq,∗(Rq,+) .

�
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