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Abstract

We consider a symmetric, steady, and periodic water wave. It is shown that a locally
vanishing vertical velocity component implies a flat or oscillating surface profile.

1 Introduction

From focusing mainly on irrotational flows, mathematical research has shifted partly to-
wards water waves travelling on currents with vorticity. Several recent papers deal with
this issue [1, 2, 4, 5, 6, 7, 11, 13, 14, 15] with much interest devoted to steady symmetric
periodic waves with vorticity. Whereas waves travelling into still water can be suitably
regarded as irrotational [10], other situations require taking the vorticity into account. As
the wind blows over a flat water surface capillary waves of small amplitude arise, due to
the restoring action of surface tension. As the process continues, the waves grow slightly
and the influence of gravity becomes relevant. We get gravity-capillary waves, governed
by surface tension as well as by gravity. Finally, as the waves further increase in ampli-
tude, the role of gravity outplays that of surface tension. This is the dominating regime
of the open sea: gravity waves. An important effect of this process is vorticity. For water
waves created by the wind vorticity appears as a process starting first at the surface and
thereafter penetrating deeper into the fluid. The presence of a nonvanishing vorticity in
the fluid is guaranteed when studying waves propagating into a water flow with a current.

We shall consider such waves that are periodic and steady, i.e. they travel with a
constant speed and unchanged shape. Under a growth condition on the vorticity, it was
recently proved that for such gravity waves, strict monotonicity of the surface between
trough and crest implies symmetry around the crest [1, 2]. In [8] we made the observation
that such gravity waves are nowhere flat (unless they are so everywhere). Whereas those
papers draw conclusions about the entire fluid motion from the surface behaviour, in this
paper we investigate the effects of having a small region within the fluid where the water
moves solely horizontally. In the case of irrotational flow or of a flow of constant vorticity,
this implies that there is no vertical movement in all of the fluid domain. In that setting,
it is a consequence of the real analyticity of the vertical velocity. When a general vorticity
is present it might be possible that this result does not hold. However, we prove that
if a symmetric wave has finitely many peaks and troughs in each period with a strictly
monotone profile in between, any small region of purely horizontal flow forces the surface
to be flat.
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2 Formulation and preliminaries

Let η ∈ C3(R,R) be the surface, periodic of period L, with the trough ηmin at x = ±L/2,
and the crest ηmax at x = 0. Assume that the origin is located at the mean water level,
i.e.

∫ L
0
η(x) dx = 0. Define the fluid domain to be

Ωη = {(x, y) ∈ R2 ; x ∈ R,−d < y < η(x)},

where we accept also d = ∞, i.e. the setting of infinite depth. Let u, v ∈ C2(Ωη,R) be
the horizontal and vertical velocity, respectively, with the properties that for a fixed speed
constant c > 0, we have u − c < 0. This last assumption is supported by experimental
and field data [12]. The stream function

ψ(x, y) = ψ0 −

∫ x

0

v(ξ,−d0) dξ +

∫ y

−d0

[u(x, ξ) − c] dξ,

where −d ≤ −d0 < ηmin, then satisfies −ψx = v, ψy = u − c < 0, and ψ(x, η(x)) = 0.
Also, let the vorticity function γ ∈ C1 be a real-valued function defined in the range of
ψ, and let α > 0 represent the surface tension. With these prerequisites, we deal with the
problem (see e.g. [5] for further details)























∆ψ = −γ(ψ), (x, y) ∈ Ωη

|∇ψ|2 + 2gy − αη′′(1 + η′2)−3/2 = C, y = η(x)

ψx + ψyη
′ = 0, y = η(x)

ψx → 0 as y → −d, uniformly for x ∈ R.

(2.1)

In order to simplify the proofs to come, we recall two classical results (see [9]). Here
Ω ⊆ R2 denotes a region in the plane with a C2 boundary1.

Lemma 2.1 (Hopf’s boundary point lemma). For any function c ∈ C(Ω,R), put L =
∆ + c(x), and let u ∈ C2(Ω) be such that Lu ≥ 0. If there exists x0 ∈ ∂Ω such that

0 = u(x0) > u(x)x∈Ω,

then the directional derivative ∂u
∂µ(x0) > 0 for any normal µ pointing outwards from Ω at

x0.

Lemma 2.2 (The strong maximum principle). For a non-positive function c ∈ C(Ω,R),
let L = ∆ + c(x), and let u ∈ C2(Ω) be such that Lu ≥ 0. If there exists x0 ∈ Ω such that

0 ≤ max
x∈Ω

u(x) = u(x0),

then u(x) ≡ u(x0) throughout Ω. Moreover, if u(x0) = 0, the sign condition on the function
c is not relevant.

For further use, we note that differentiating the first line of (2.1) with respect to x
yields

Lv = (∆ + γ′(ψ))v = 0. (2.2)

1Hopf’s boundary point lemma originally concerns a boundary point satisfying an interior ball condition.

Our regularity assumption guarantees that this is the case.



486 M Ehrnström

3 Results

3.1 Surface profile for monotone symmetric water waves

Before dealing with our main problem we would like to comment on [8]. One need not
restrict the attention only to gravity waves. Indeed, it has nothing to do with the Bernoulli
surface condition, and is therefore equally valid for capillary and capillary-gravity waves.
Moreover, the formulation with a locally flat surface may be loosened. Without giving the
explicit proof (which is based on Lemma 2.1 and Lemma 2.2), we state here a somewhat
improved version of the main result in [8]: symmetric monotone waves are nowhere flat.

Theorem 3.1. For a steady symmetric water wave with non-increasing vorticity γ′(ψ) ≤
0, if the surface profile is monotone from trough to crest, i.e. η′(x) ≥ 0,−L/2 ≤ x ≤ 0, it
is in fact strictly monotone. More precisely, η′(x) = 0 implies that η′′′(x) > η′′(x) = 0 for
any x ∈ (−L/2, 0).

Remark 3.2. In [1, 2] it is proved that if the vorticity is non-increasing with greater depth,
i.e. γ′(ψ) ≤ 0, and we deal with gravity waves, then strict monotonicity of the surface
profile between troughs and crests implies symmetry. It is thus quite natural to assume
symmetry of a monotone wave.

Remark 3.3. As follows from Lemma 2.2, steady water waves given by (2.1) consists of
open regions where v > 0 and v < 0, respectively, and they are separated by closed sets
where v = 0. This is true regardless of the vorticity and the surface conditions.

3.2 Surface profiles for water waves with locally vanishing vertical ve-

locity

Since proving the main theorem of this section is a somewhat lengthy process, we first
state it. The assertion is equally valid for capillary waves, gravity-capillary waves and
gravity waves, as well as for finite and infinite depth.

Theorem 3.4. Let (u, v, η) define a steady symmetric periodic water wave with finitely
many peaks and troughs in each period, in between which the surface profile is strictly
rising or falling, i.e. η′ 6= 0 here. If there is an open ball B ⊆ Ωη where the vertical
velocity v vanishes, then the surface profile is flat.

Remark 3.5. As was noted in the Introduction, if the vorticity is constant, the surface
profile must be flat. This follows since v is then harmonic.

Throughout this section, we deal with an open bounded region Ω with a boundary
given by a piecewise continuous curve, and a function v ∈ C2(Ω), satisfying the maximum
principle of Lemma 2.2 for both v and −v. We say that a nonempty open region Ω0 ⊂ Ω
is an Ω0-set if v = 0 on Ω0 and Ω0 is maximal, i.e.

Ω0 = sup{Ω∗ : v(Ω∗) = 0, Ω0 ⊆ Ω∗ ⊆ Ω},

Ω∗ being an open region. In a similar fashion we say that a maximal region Ω+ ⊆ Ω with
v(Ω+) > 0 is an Ω+-set, and a maximal region Ω− ⊆ Ω with v(Ω−) < 0 is an Ω−-set. Note
that an Ω±-set need not be open since it may contain some part of the free boundary ∂Ω.
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Lemma 3.6. Let Ω0 be an Ω0-set and let x0 ∈ ∂Ω0∩Ω. Then there is a sequence {xn
+} and

a sequence {xn
−}, both converging to x0 as n → ∞, for which v(xn

+) > 0 and v(xn
−) < 0,

n ∈ N.

Proof. By definition B(x0,
1

n) contains inner points for which v = 0 as well as points for
which v 6= 0. If v has the same sign in all of B(x0,

1

n), then either v or −v attains its
maximum v = 0 at an interior point, so that by the strong maximum principle v ≡ 0 in
B(x0,

1

n). This however contradicts the definition of the boundary of Ω0, and thus there
exist xn

+, x
n
− ∈ B(x0,

1

n) with v(xn
+) > 0 and v(xn

−) < 0. �

Before moving on, we note that if Ω0 is an Ω0-set, then ∂Ω0∩Ω is either void or it contains
infinitely many points.

Lemma 3.7. Any x+ ∈ Ω with v(x+) > 0 is part of an Ω+-set intersecting the boundary
∂Ω. The pre-image of this intersection is open.

Proof. Let Ω+ be the Ω+-set containing x+. Suppose that this set does not intersect ∂Ω.
By continuity and the definition of Ω+, v(∂Ω+) = 0 and v attains its maximum at an
interior point of Ω+. Lemma 2.2 then forces v ≡ α > 0 in Ω+, contradicting v(∂Ω+) = 0.
Hence ∂Ω ∩ Ω+ is non-void. It now follows by continuity of v that the pre-image of any
connected part of this intersection, regarded as part of the curve ∂Ω, is open. �

We can now state the following: if we have an open ball with v = 0 inside the region Ω,
then either v oscillates on ∂Ω, or Ω0 is connected to the boundary ∂Ω via Ω+-sets.

Lemma 3.8. Let Ω0 ⊆ Ω be an Ω0-set. Then either

i. the boundary ∂Ω includes a limit point x0 for two sequences {xn
0}, {x

n
+} ⊂ ∂Ω, with

v(xn
+) > v(xn

0 ) = 0, n ∈ N, or

ii. for any x0 ∈ ∂Ω0 ∩ Ω there exists an Ω+-set intersecting ∂Ω and with distance 0 to
x0. Moreover, the intersection Ω+ ∩ Ω is open.

Proof. By Lemma 3.6 there is a sequence of points {xn
+} converging to x0, all satisfying

v(xn
+) > 0. Also, for any such xn

+, there is a corresponding set Ωn
+ as in Lemma 3.7 in

which v is positive and that includes some point pn at the boundary ∂Ω. Since the support
of v on the boundary,

S = {x ∈ ∂Ω; v(x) 6= 0},

is compact, by Bolzano-Weierstrass {pn}n∈N has a point of accumulation q0 in S.



488 M Ehrnström

q
0

v > 0

v = 0

If v oscillates on ∂Ω, i.e. if (i) holds, there is nothing to prove. Suppose not. v(pn) > 0 for
all n then implies that there is a connected subset of ∂Ω of positive curve length in which
v > 0 with distance 0 to q0. Thus v > 0 in a connected part of S including infinitely many
pn’s, implying that infinitely many Ωn

+’s are in fact connected in their union
⋃

Ωnk
+ which

we call Ωq0

+ . Then there is a subsequence

{xnk
+ } ⊆ {xn

+} with xnk
+ ∈ Ωq0

+ , lim
k→∞

xnk
+ = x0.

Hence Ωq0

+ has distance 0 to x0, and Ωq0

+ is a connected set including some part of the
surface and reaching to x0 ∈ Ω0. Furthermore, since Ωn

+ ∩ Ω is open by Lemma 3.7, so is
Ωq0

+ ∩ Ω. �

Lemma 3.9. Let Ω0 ⊂ Ω be an Ω0-set, and suppose that v does not oscillate on ∂Ω, so
that (ii) of Lemma 3.8 holds. Then, for x1 6= x2 in ∂Ω0 ∩ Ω, there are two corresponding
Ω+-sets, Ω1

+ and Ω2
+, with

d(Ωj
+, xj) = 0, Ωj

+ ∩ ∂Ω 6= ∅, j = 0, 1

and

d(Ω1
+,Ω

2
+) > 0.

Moreover, these two sets are separated at the boundary curve ∂Ω by a curve piece where
v < 0.

Proof. By Lemma 3.8, there exist sets Ωq1

+ and Ωq2

+ , corresponding to x1 and x2, re-
spectively. Here, Ω

qj

+ is a maximal connected set for which v > 0 with d(Ω
qj

+ , xj) = 0
and including a point qj ∈ ∂Ω. Suppose, for a contradiction, that Ωq1

+ ∩ Ωq2

+ 6= ∅. The
continuity of v then implies

Ωq1

+ ∩ Ωq2

+ ∩ Ω 6= ∅,

and we denote this intersection by Ω+.
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v = 0

v > 0

v > 0

v > 0

Ω+ being open and connected, it is possible to construct a simple continuous curve
γ+ : (0, 1) −→ Ω+, with

lim
t↓0

γ+(t) = x1 6= x2 = lim
t↑1

γ+(t).

Since also Ω0 is open and connected there exists a simple continuous curve γ0 : [1, 2] −→ Ω0,
with

γ0(2) = x1 6= x2 = γ0(1).

γ+ and γ− have no points in common since v > 0 in Ω+ and v = 0 in Ω0. Combining
these curves we get a closed continuous simple curve γ : [0, 2] −→ Ω. By the Jordan Curve
Theorem this curve separates the plane into two regions, one of them being the curve’s
interior, which we call γ̊. Then, v ≥ 0 on the boundary ∂γ̊ so that applying Lemma 2.2
shows that v(̊γ) ≥ 0.

Now, pick x0 ∈ Ω0 ∩ γ̊ and x+ ∈ Ω+ ∩ γ̊. Since v(x0) = 0 and v(x+) > 0 and these
points are connected by arcs within γ̊ there is an interior point x̊ ∈ γ̊ which belongs to
the boundary ∂Ω0. But then Lemma 3.6 implies that x̊ is an accumulation point for a
sequence {xn

−} of points for which v < 0. This contradicts v(̊γ) ≥ 0 and shows that

Ωq1

+ ∩ Ωq2

+ = ∅.

Suppose then that Ωq1

+ and Ωq2

+ were connected on the boundary ∂Ω via a set for which
v ≥ 0. Since ∂Ω is a piecewise continuous curve we could follow the same method as
above and once again create an open region γ̊ for which v ≥ 0, contradicting Lemma 3.6.
Hence, Ωq1

+ and Ωq2

+ are separated at the boundary ∂Ω by a curve piece where v < 0. Take

Ω
qj

+ = Ωj
+, j = 1, 2. �

We are now in a position to state the main lemma. Theorem 3.4 is then just an application
of this.

Lemma 3.10. Let Ω0 ⊆ Ω be an Ω0-set, and suppose that v does not oscillate on the
boundary ∂Ω, i.e. (ii) of Lemma 3.8 holds. Then Ω0 = Ω.

Proof. Suppose that Ω0 ⊂ Ω in the strict sense. Iterated application of Lemma 3.9 to a
sequence of points {xn} ∈ ∂Ω0, shows that there is a corresponding sequence of points,

{yn} ⊂ ∂Ω, v(yn) > 0,



490 M Ehrnström

all pairwise separated on ∂Ω by curve pieces where v < 0. But since ∂Ω is compact
by assumption, the Bolzano-Weierstrass lemma implies that there is an accumulation
point y = limk→∞ ynk

, and it follows that v oscillates near y. Since this contradicts the
assumptions, we must have Ω0 = Ω. �

Proof of Theorem 3.4. It is enough to consider

Ω = {(x, y) ∈ Ωη ; −L/2 < x < 0}.

Here, symmetry forces v(x) = 0 for x = 0, x = −L/2, so v certainly does not oscillate on
the vertical boundaries. As in (2.1) we have that

v(x, y) → 0 as y → −d uniformly in x ∈ R.

In view of (2.2), applying the maximum principle of Lemma 2.2 to v on a suitable cut-off

Ωn = {(x, y) ∈ Ω ; −n < y < η(x)},

using n = d in the case of finite depth, we find that any region where v > 0 or v < 0 must
reach the surface {(x, η(x)) ; x ∈ [−L/2, 0]}. Thus this is the only part of the boundary
that is of interest. From the surface condition ψx + ψyη

′ = 0 and the assumption that
ψy < 0, we deduce that if η′ does not oscillate on the surface, nor does v = −ψx. The
proposition is then an immediate consequence of Lemma 3.10. �
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