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An asymptotic expansion of the q-gamma function Γq(x)
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Abstract

In this paper, we get an asymptotic expansion of the q-gamma function Γq(x). Also, we deduced
q-analogues of Gauss’ multiplication formula and Legendre’s relation which give the known results
when q tends to 1.

1 Introduction

Analogous to Gauss’ infinite product representation for the gamma function [6]

Γ(x) = x−1
∞∏

n=1

[(1 + 1/n)x(1 + x/n)−1] (1.1)

the q−gamma function Γq(x) is defined by [4]

Γq(x) =
(q, q)∞
(qx, q)∞

(1− q)1−x, 0 < q < 1, (1.2)

where the q−shifted factorials are defined by [5]
(a, q)0 = 1,
(a1, ..., ar; q)k =

∏r
i=1

∏k−1
j=o (1− aiq

j), k = 0, 1, 2, ... ,

(a; q)∞ =
∏∞

i=0(1− aqi).
This function is a q−analogue of the gamma function since we have

lim
q→1

Γq(x) = Γ(x) (1.3)

The q−gamma function satisfies the functional equation

Γq(x + 1) = (1− qx)/(1− q)Γq(x), Γq(1) = 1, (1.4)

which is a q−extension of the well-known functional equation

Γ(x + 1) = xΓ(x), Γ(1) = 1. (1.5)

Boher, H. and Mollerup , J. (1922) proved the following theorem for Γ(x) function
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Theorem 1. If a function f(x) satisfies the following three conditions, then it is identical in its domain
of definition with the gamma function:

(1) f(x + 1) = xf(x),
(2) f(1) = 1,

(3) The domain of definition of f(x) contains all x > 0,

and is log convex for these x.

For the proof of this theorem see [2]. In 1978, R. Askey [3] gave the q−analogy of this theorem

Theorem 2. If a function f(x) satisfies the following three conditions

(1) f(x + 1) = [x]qf(x) for some q, 0 < q < 1,

(2) f(1) = 1,

(3) log f(x) is convex for x > 0,

then f(x) = Γq(x), where [x]q = 1−qx

1−q .

2 The behavior of the function Γq(x) for large x

In order to study the behavior of the function Γq(x) for large x, we consider a function of the form

f(x) = (1− q)1/2−xeµ(x). (2.1)

Our goal is to make f(x) satisfy the basic conditions for the gamma function by choosing µ(x) in an
appropriate way.

f(x + 1)
f(x)

=
eµ(x+1)−µ(x)

1− q
(2.2)

Then f(x) satisfy condition (2) in Theorem (2) iff

µ(x)− µ(x + 1) = − log(1− qx), (2.3)

holds for µ(x).
Let g(x) is the write side of the equation (2.3). If we set

µ(x) =
∞∑

n=0

g(x + n) (2.4)

then equation (2.3) holds, provided that the series in equation (2.4) converges. In order to study
the convergence, we will combine this with an approximation of the function µ(x). Let us begin by
considering the expansion

− log(1− z) =
∞∑

n=1

zn

n
, |z| < 1 (2.5)

If we put z = qx the expansion is valid whenever x > 0 and 0 < q < 1.

g(x) = − log(1− qx)

=
∞∑

n=1

qnx

n
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Now we can approximate g(x). If the integers 1, 2, 3, ... are all replaced by 1, then the result is an infinite
geometric series having qx

1−qx . But g(x) is positive, hence

0 < g(x) <
qx

1− qx
(2.6)

Since every term of the series in equation (2.4) is positive, it suffices to show the convergence of

∞∑
n=0

qx+n

1− qx+n
(2.7)

which converges from the ratio test. This gives the approximation

0 < µ(x) <
qx

(1− q)− qx
(2.8)

i.e.

µ(x) =
θqx

(1− q)− qx
, (2.9)

where θ is a number independent of x between 0 and 1.
Now let us consider the condition (3) of theorem (2). The factor (1 − q)1/2−x in equation (2.1) is

log convex because the second derivative of its logarithm equal to zero for all x. If the factor eµ(x) is
log convex, in other words µ(x) is convex, then f(x) also satisfies condition (2.4). The function µ(x)
is convex if the general term of the series g(x + n) is convex. To show this, it suffices to prove the
convexity of g(x) itself. But we have

g′′(x) =
qx log2(q)
(1− qx)2

> 0 (2.10)

By a suitable choice of the constant a, we get

Γq(x) = a(1− q)1/2−xe
θqx

(1−q)−qx (2.11)

If we let x be an integer n, we get the approximation

[n]q! = Γq(n + 1) = a(1− q)−1/2−ne
θqn+1

(1−q)−qn+1 (2.12)

Now we will determine the exact value of the constant a. Let p be a positive integer. We consider the
function

f(x) = [p]xqΓqp(x/p)Γqp((x + 1)/p)...Γqp((x + p− 1)/p), x > 0 (2.13)

The second derivative of log[p]xq is zero, and Γqp((x + k)/p) is log convex ∀k = 1, 2, 3, ... then f(x) is log
convex. Also,

f(x + 1) = [p]q
Γqp((x + p)/p)

Γqp(x/p)
f(x)

= [p]q[x/p]qpf(x)
= [x]qf(x)

Then the function f(x) satisfies the conditions (1) and (3) in theorem (2). Then

[p]xqΓqp(x/p)Γqp((x + 1)/p)...Γqp((x + p− 1)/p) = apΓq(x), (2.14)
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where ap is a constant depending on p and by putting x = 1 , we get

ap = [p]qΓqp(1/p)Γqp(2/p)...Γqp(p/p). (2.15)

But the q−gamma function Γq(x) function is defined by

Γq(x) = lim
n→∞

(q, q)n

(qx, q)n
(1− q)1−x, (2.16)

then

Γqp(k/p) = lim
n→∞

(qp, qp)n

(qk, qp)n
(1− qp)1−k/p (2.17)

and

ap = [p]q(1− qp)(p−1)/p lim
n→∞

((qp, qp)n)p∏p
k=1(q

k, qp)n
(2.18)

By using equation (2.12) and the relation

[n]q! =
(q, q)n

(1− q)n
, (2.19)

then

((qp, qp)n)p = ap(1− qp)−p/2e
θ1qp(n+1)

(1−q)−qp(n+1) . (2.20)

Also,
p∏

k=1

(qk, qp)n = (q, q)np

= a(1− q)−1/2e
θ2qpn+1

(1−q)−qpn+1 .

Then

ap = [p]1/2
q ap−1 (2.21)

From the equations (2.15) and (2.21), we have

a2 = [2]1/2
q a, a2 = [2]qΓq2(1/2), (2.22)

then

a = [2]1/2
q Γq2(1/2) (2.23)

and

ap = [p]1/2
q ([2]qΓ2

q2(1/2))(p−1)/2 (2.24)

Now in this paper we get the following expressions

Γq(x) = [2]1/2
q Γq2(1/2)(1− q)1/2−xe

θqx

(1−q)−qx , 0 < θ < 1, (2.25)

[n]q! = [2]1/2
q Γq2(1/2)(1− q)−1/2−ne

θqn+1

(1−q)−qn+1 . (2.26)
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Γqp(x/p)Γqp((x + 1)/p)...Γqp((x + p− 1)/p) = [p]1/2−x
q ([2]qΓ2

q2(1/2))(p−1)/2Γq(x). (2.27)

In particular, for p = 2

Γq2(x/2)Γq2((x + 1)/2) = [2]1−x
q Γq2(1/2)Γq(x). (2.28)

The formulas in equations (2.25) and (2.26) are similar to Stirling’s formulas in the usual case. The
functional equation (2.27) is called q−Gauss’ multiplication formula. Also, equation (2.28) is called
q−Legendre’s relation.
If we take the limit as q → 1, then we get

Γ(x/p)Γ((x + 1)/p)...Γ((x + p− 1)/p) = p1/2−x(2Γ2(1/2))(p−1)/2Γ(x), (2.29)

and

Γ(x/2)Γ((x + 1)/2) = 21−xΓ(1/2)Γ(x). (2.30)

These relations are called Gauss’ multiplication formula and Legendre’s relation (resp.) [1].
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