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Abstract

This paper aims to study the q-wavelets and the q-wavelet transforms, using only the
q-Jackson integrals and the q-cosine Fourier transform, for a fix q ∈]0, 1[. For this
purpose, we shall attempt to extend the classical theory by giving their q-analogues.

1 Introduction

Wavelets were introduced by J. Morlet in 1982 as tool to study the analysis of seismic
data. Taking account of the success of this method, this author joint with A. Gossmann
(see [8]) gave mathematical assizes for the so-called wavelet transform. In 1985 Y. Meyer
recognized this theory and contributed for showing that it can be used to explain easily
many mathematical tools. This motivated many authors who published intensively in this
way.
The continuous wavelet transform on R was presented, in particular, by T. H. Koornwinder
in [15]. Since we are concerned, in the present paper, by showing the q-analogue of this,
we summarize some of their results in the even case as follows:

Let F0 be the even Fourier transform

F0(f)(λ) =
∫ ∞

0
f(x) cos(λx)dx, λ ∈ C. (1.1)

We have

F0oσx(λ) = cos(λx)F0(λ), F0oHa = H−1
a oF0, (1.2)

where σx, x ≥ 0, is the even translation operator defined by

σx(f)(y) =
1
2

[f(x + y) + f(x− y)], y ∈ [0, +∞[ (1.3)

and Ha and H−1
a , a > 0, are the dilatation operators defined by{

Ha(f)(x) = 1√
a
f(x

a );
H−1

a (f)(x) =
√

af(ax).
(1.4)
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A wavelet is an even function g defined on R, square integrable (with respect the
Lebesgue measure), such that for λ > 0,

Cg =
∫ ∞

0
| F0(g)(aλ) |2 da

a
, (1.5)

is finite, positive and independent of λ.
We construct a family of wavelets by putting for all a > 0 and b ≥ 0,

ga,b(x) = σboHa(g)(x), x ≥ 0, (1.6)

where σb and Ha are defined respectively in (1.3) and (1.4).
The continuous wavelet transform of an even square integrable function f on R is given
by

Φg(f)(a, b) =
∫ ∞

0
f(x)ga,b(x)dx. (1.7)

This transform Φg satisfies the following Plancherel formula∫ ∞

0
| f(x) |2 dx =

1
Cg

∫ ∞

0
| Φg(f)(a, b) |2 dadb

a2
(1.8)

and can be inverted as follows

f(x) =
1
Cg

∫ ∞

0

∫ ∞

0
Φg(f)(a, b)ga,b(x)

dadb

a2
. (1.9)

In the present paper, we give and study the q-analogue of the continuous wavelet trans-
form (1.7) by the use of the q-Jackson integral and some elements of q-harmonic analysis.
We also give its inversion formula which is a q-analogue of (1.9). Furthermore, a q-analogue
of Plancherel formula is proved and a q-analogue of the Parseval formula is established.

This paper is organized as follows: in Section 2, we present some preliminaries results
and notations that will be useful in the sequel. In Section 3, we summarize some results
stated in [4] and [2] and we establish some properties of the dilatation operators and
the q-Fourier cosine transform. In Section 4, we define the q-wavelet and the q-wavelet
transform, and discuss their properties. A special attention is devoted to the q-analogue
of the Plancherel formula and the Parseval formula, and an inversion formula is proved.
In Section 5, we characterize the image set of the q-wavelet transform.

2 Notations and preliminaries

For the convenience of the reader, we provide in this section a summary of the mathe-
matical notations and definitions used in this paper. We refer the reader to the general
references [7] and [12]. Throughout this paper, we will fix q ∈]0, 1[.
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2.1 Basic symbols.

For a ∈ C, the q-shifted factorials are defined by

(a; q)0 = 1; (a; q)n =
n−1∏
k=0

(1− aqk), n = 1, 2, . . . ; (a; q)∞ =
∞∏

k=0

(1− aqk). (2.1)

We also denote

(a1, a2, . . . , ap; q)n = (a1; q)n(a2; q)n . . . (ap; q)n, n = 0, 1, 2, 3, . . .∞, (2.2)

[x]q =
1− qx

1− q
, x ∈ C and [n]q! =

(q; q)n

(1− q)n
, n ∈ N. (2.3)

2.2 Operators and elementary functions.

The q-derivative Dqf of a function f is given by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, if x 6= 0, (2.4)

(Dqf)(0) = f ′(0) provided f ′(0) exists. If f is differentiable, then (Dqf)(x) tends to f ′(x)
as q tends to 1.
For a function f , we note

D1
qf = Dqf, Dn

q f = Dq(Dn−1
q f), n ∈ N∗, (2.5)

Λq(f)(x) = f(qx), Λ−1
q (f)(x) = f(q−1x) (2.6)

and

∆qf = Λ−1
q D2

qf. (2.7)

We remark that if f is two times continuously differentiable, we have

lim
q→1−

∆q(f) =
d2f

dx2
. (2.8)

The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by (see [10])∫ a

0
f(x)dqx = (1− q)a

∞∑
n=0

f(aqn)qn, (2.9)

∫ ∞

0
f(x)dqx = (1− q)

∞∑
n=−∞

f(qn)qn, (2.10)

provided the sums converge absolutely.
The q-Jackson integral in a generic interval [a, b] is given by∫ b

a
f(x)dqx =

∫ b

0
f(x)dqx−

∫ a

0
f(x)dqx. (2.11)
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The improper integral is defined in the following way (see [14])∫ ∞
A

0
f(x)dqx = (1− q)

∞∑
n=−∞

f

(
qn

A

)
qn

A
. (2.12)

In particular, for n ∈ Z, we have∫ ∞
qn

0
f(x)dqx =

∫ ∞

0
f(x)dqx. (2.13)

The q-trigonometric functions q-cosine and q-sine are given by ( see [4] and [16])

cos(x; q2) =1 ϕ1

(
0, q; q2, (1− q)2x2

)
=

∞∑
n=0

(−1)nqn(n−1) x2n

[2n]q!
(2.14)

and

sin(x; q2) = x 1ϕ1

(
0, q3; q2, (1− q)2x2

)
=

∞∑
n=0

(−1)nqn(n−1) x2n+1

[2n + 1]q!
. (2.15)

Here 1ϕ1 is a basic hypergeometric function (see [7]).

The functions q-cosine and q-sine are majorized by
1

(q; q)2∞
and we have for λ ∈ C:

cos(λx; q2) is the unique solution of{
∆qu(x) = −λ2u(x),
u(0) = 1, u′(0) = 0.

(2.16)

2.3 Sets and spaces.

We denote by

Rq = {±qn : n ∈ Z} ∪ {0}, Rq,+ = {qn : n ∈ Z} and R̃q,+ = Rq,+ ∪ {0}. (2.17)

• E∗q(Rq) the space of the restrictions on Rq of even infinitely q-differentiable functions
on R, equipped with the induced topology of uniform convergence on all compact, for all
functions and its q-derivatives.
• D∗q(Rq) the space of the restrictions on Rq of even infinitely q-differentiable functions
on R with compact supports, equipped with the induced topology of uniform convergence,
for all functions and its q-derivatives.
• C∗q,0(Rq) the space of the restrictions on Rq of even smooth functions, continued in 0
and vanishing at ∞, equipped with the induced topology of uniform convergence.
• S∗q(Rq) the space of the restrictions on Rq of infinitely q-differentiable, even and fast
decreasing functions and all its q-derivatives i.e.

∀n, m ∈ N, Pn,m,q(f) = sup
x∈R;0≤k≤n

| (1 + x2)mDk
q f(x) |< +∞.

S∗q(Rq) is equipped with the induced topology defined by the semi-norms Pn,m,q.
• Lp

q(Rq,+), p > 0, the set of all functions defined on Rq,+ such that

‖f‖q,p =
{∫ ∞

0
| f(x) |p dqx

} 1
p

< ∞. (2.18)
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3 The q-even translation and the q-cosine Fourier transform

The q-even translation operator Tq,x, x ∈ Rq,+ was defined (see [4]) on D∗q(Rq) by

Tq,x(f)(y) =
∞∑

s=−∞
D(x, y, qs)f(qsy), y ∈ Rq,+, (3.1)

where

D(x, y, qs)f(qs) = qs(
x

y
)2s

(q x2

y2 ; q)∞
(q; q)∞

1φ1(0; q
x2

y2
; q, q2s+1). (3.2)

It verifies the following properties (see [4]), for f, g ∈ D∗q(Rq),

Tq,x(f)(y) = Tq,y(f)(x), x, y ∈ Rq,+, (3.3)∫ ∞

0
Tq,x(f)(y)dqy =

∫ ∞

0
f(y)dqy, x ∈ Rq,+, (3.4)∫ ∞

0
Tq,x(f)(y)g(y)dqy =

∫ ∞

0
f(y)Tq,x(g)(y)dqy, x ∈ Rq,+, (3.5)

Tq,x cos(ty; q2) = cos(tx; q2) cos(ty; q2), x, y, t ∈ Rq,+ (3.6)

and Tq,x tends to σx, defined by (1.3), when q tends to 1−.
It was shown in [2], that if we note

S̃ = {q ∈ [0, 1[: 1φ1(0; q1+2r; q, q1+2s) ≥ 0,∀r, s ∈ N}, (3.7)

then, [0, 3−
√

5
2 [⊂ S̃ and for all q ∈ S̃ and x ∈ Rq,+, the operator Tq,x is positive.

In the sequel, we suppose that q ∈ S̃.
The q-cosine Fourier transform and the q-convolution product are defined (see [4]), by:

Fq(f)(λ) = cq

∫ ∞

0
f(x) cos(λx; q2)dqx, f ∈ D∗q(Rq), (3.8)

f ∗q g(x) = cq

∫ ∞

0
Tq,xf(y)g(y)dqy, f, g ∈ D∗q(Rq), (3.9)

where

cq =
(1 + q−1)

1
2

Γq2(1
2)

. (3.10)

In [4], the authors proved that Fq can be extended to L1
q(Rq) and we have:

Theorem 1. For f ∈ L1
q(Rq),

Fq(f) ∈ C∗q,0(Rq) (3.11)

and

‖Fq(f)‖C∗q,0(Rq) ≤
1

(q(1− q))
1
2 (q; q)∞

‖f‖q,1. (3.12)
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Theorem 2. For f, g ∈ D∗q(Rq), we have

Fq(f ∗q g) = Fq(f)Fq(g), (3.13)

Fq(Tq,xf)(λ) = cos(λx; q2)Fq(f)(λ), x ∈ R̃q,+, λ ∈ Rq,+ (3.14)

and

Fq(∆qf)(λ) = −λ2Fq(f)(λ), λ ∈ C. (3.15)

In [2], the authors proved the following result.

Theorem 3. .
1) If f and Fq(f) are in L1

q(Rq,+), then for all x ∈ Rq,+, we have

f(x) = cq

∫ ∞

0
Fq(f)(y) cos(xy; q2)dqy, (3.16)

where cq is given by (3.10).
2) Fq(f) is an isomorphism of S∗q(Rq) and F2

q = Id.

They also proved that Fq can be extended to L2
q(Rq,+) and we have

Theorem 4. Fq is an isomorphism of L2
q(Rq,+), F−1

q = Fq and for f ∈ L2
q(Rq,+), we

have

‖Fq(f)‖q,2 = ‖f‖q,2. (3.17)

Remak 1.
Using the previous theorem and the relation (3.14), one can see that, for f ∈ L2

q(Rq,+),
we have for all x ∈ R̃q,+, Tq,xf ∈ L2

q(Rq,+) and

‖Tq,xf‖q,2 ≤
1

(q; q)2∞
‖f‖q,2. (3.18)

Theorem 5. Let p, p′, r ∈]1, 2], such that
1
p

+
1
p′
− 1 =

1
r

. If f ∈ Lp
q(Rq,+) and g ∈

Lp′
q (Rq,+), then f ∗q g ∈ Lr

q(Rq,+)

‖f ∗q g‖q,r ≤ Bq,pBq,p′Bq,r′‖f‖q,p‖g‖q,p′ , (3.19)

where Bq,p =

(
1

(q(1− q))
1
2 (q; q)∞

)1− p
2

and r′ is given by
1
r

+
1
r′

= 1.

To achieve this section, we state the following propositions, useful for the sequel.

Proposition 1. .
i) The dilatation operators satisfy

H1 = id; (3.20)

HaoHb = Hab, a, b ∈ Rq,+; (3.21)

H−1
a = Ha−1 , a ∈ Rq,+. (3.22)

ii) For all a ∈ Rq,+, the operator Ha is linear and isometric from L2
q(Rq,+) into itself.

iii) For all a ∈ Rq,+, the operator Ha is a topological automorphism of S∗q(Rq) (resp
C∗q(Rq)).
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Proposition 2. For a ∈ Rq,+, we have

FqoHa = H−1
a oFq. (3.23)

Proof. The change of variables rule ( see [12]) gives for a suitable function f

FqoHa(f)(x) =
cq√
a

∫ ∞

0
f(

t

a
) cos(tx; q2)dqt

=
√

acq

∫ ∞

0
f(u) cos(axu; q2)dqu

= H−1
a (Fq(f))(x).

�

Proposition 3. Let f and g be in L2
q(Rq,+). Then

1) f ∗q g ∈ L2
q(Rq,+) iff Fq(f)Fq(g) ∈ L2

q(Rq,+),
2) ∫ ∞

0
| f ∗q g(x) |2 dqx =

∫ ∞

0
| Fq(f)(x) |2| Fq(g)(x) |2 dqx, (3.24)

where both sides are finite or infinite.

Proof. The proof is a direct consequence of Theorem 4 and the fact that
Fq(f ∗q g) = Fq(f)Fq(f). �

4 q-Wavelet transforms

Definition 1. A q-wavelet is an even function g defined on Rq and square q-integrable
such that

0 < Cg =
∫ ∞

0
| Fq(g)(a) |2 dqa

a
< ∞. (4.1)

Example

Put ex
q2 =

1
((1− q2)x; q2)∞

the q-analogue of the exponential function ( see [7], and [12]).

Let G(x, t; q2) = A(t; q2)e
− x2

qt(1+q2)

q2 , where A(t; q2) = (q−1 − 1)

(
−1+q

1−q q2t,− 1−q
(1+q)t ; q

2
)
∞(

− 1−q
(1+q)qt ,−

1+q
1−q q3t; q2

)
∞

.

We have (see [4]) for all t ∈ Rq2,+, x 7→ G(x, t; q2) is in S∗q(Rq) and

Fq(G(., t; q2))(x) = e−tx2

q2 , x ∈ Rq,+.

Then, g = ∆qG(., t; q2) is in S∗q(Rq) and we have

Fq(g)(x) = −x2Fq(G(., t; q2))(x) = −x2e−tx2

q2 , x ∈ Rq,+.

Thus,

∀a ∈ Rq,+, 0 <| Fq(g) |2 (a) ≤ a4e−ta2

q2
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and

0 <

∫ ∞

0
| Fq(g) |2 (a)

dqa

a
≤

∫ ∞

0
a3e−ta2

q2 dqa

=
1

(1 + q)t2
(−q4,−q−2; q2)∞
(−q2,−1; q2)∞

=
1

q2(1 + q)t2
.

So, g is a q-wavelet and it constitutes a q-analogue of the so-called Mexican hat wavelet.
Remark 2.

1) For all λ ∈ Rq,+, we have

Cg =
∫ ∞

0
| Fq(g)(aλ) |2 dqa

a
.

2) Let f be a nonzero function in S∗q(Rq) (resp. C∗q(Rq)). Then g = ∆qf is a q-wavelet,
in S∗q(Rq) (resp. C∗q(Rq)) and we have

Cg =
∫ ∞

0
a3 | Fq(f)(a) |2 dqa.

Proposition 4. Let g 6= 0 be a function in  L2
q(Rq,+) satisfying:

1. Fq(g) is continuous at 0.

2. ∃α > 0 such that Fq(g)(x)−Fq(g)(0) = O(xα), as x → 0.

Then, (4.1) is equivalent to

Fq(g)(0) = 0. (4.2)

Proof. - Assume that (4.1) is satisfied.
If Fq(g)(0) 6= 0, then there exist p0 ∈ N and M > 0, such that

∀n ≥ p0, | Fq(g)(qn) |≥ M.

Then, the integral in (4.1) would be equal to ∞.
- Conversely, assume that Fq(g)(0) = 0.
Since g 6= 0, we deduce from Theorem 4, that the first inequality in (4.1) holds.
On the other hand, from the relation (2), there exist n0 ∈ N and ε > 0, such that for all
n ≥ n0, we have

| Fq(g)(qn) |≤ εqnα.
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Then, using the definition of the q-integral and Theorem 4, we obtain∫ ∞

0
| Fq(g)(a) |2 dqa

a
= (1− q)

∞∑
n=−∞

| Fq(g)(qn) |2

= (1− q)
n0∑

n=−∞
| Fq(g)(qn) |2 +(1− q)

∞∑
n=n0+1

| Fq(g)(qn) |2

≤ (1− q)
qn0

∞∑
n=−∞

qn | Fq(g)(qn) |2 +(1− q)ε
∞∑

n=0

q2nα

≤
‖Fq(g)‖2

q,2

qn0
+

1− q

1− q2α
ε

=
‖g‖2

q,2

qn0
+

1− q

1− q2α
ε.

Which completes the proof. �

Remark 3.
Owing to (3.11), the continuity assumption in the previous proposition will certainly hold
if g is moreover in L1

q(Rq,+). Then (4.2) can be equivalently written as∫ ∞

0
g(x)dqx = 0.

Using a q-wavelet, the operator Ha, a ∈ Rq,+ and the q-even translation operator Tq,b,
b ∈ R̃q,+, we are able to construct a family of q-wavelets, by

ga,b(x) = Tq,b(Ha(g))(x), forall x ∈ Rq,+, (4.3)

where Tq,b and Ha are defined respectively by (3.1) and (1.4).

Proposition 5. Let g be a q-wavelet in L2
q(Rq,+). Then for all a ∈ Rq,+ and b ∈ R̃q,+,

ga,b is a q-wavelet in L2
q(Rq,+) and we have

Cga,b
= a

∫ ∞

0
cos2

(
xb

a
; q2

)
| Fq(g)(x) |2 dqx

x
. (4.4)

Proof. According to Remark 1 and to the properties of Ha, we can easily see that ga,b is
an even function in L2

q(Rq,+).
Now, using Proposition 2 and the properties of the q-even translation, we obtain for
a ∈ Rq,+ and b ∈ R̃q,+,

Fq(ga,b)(x) = cq

∫ ∞

0
Tq,b(Ha(g))(t) cos(xt; q2)dqt

= cq

∫ ∞

0
Ha(g)(t)Tq,b cos(xt; q2)dqt

= cos(xb; q2)cq

∫ ∞

0
Ha(g)(t) cos(xt; q2)dqt

= cos(xb; q2)Fq(Ha(g))(x) = cos(xb; q2)H−1
a Fq(g)(x)

=
√

a cos(xb; q2)Fq(g)(ax).
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So,

Cga,b
= a

∫ ∞

0
cos(xb; q2)2 | Fq(g)(ax) |2 dqx

x

= a

∫ ∞

0
cos2(

xb

a
; q2) | Fq(g)(x) |2 dqx

x
,

by the change of variable u = ax.
Thus,

0 < Cga,b
≤ a

(q; q)4∞

∫ ∞

0
| Fq(g)(x) |2 dqx

x
=

aCg

(q; q)4∞
,

which proves the result. �

Proposition 6. Let g be a q-wavelet in L2
q(Rq,+). Then the mapping

F : (a, b) 7→ ga,b

is continuous from Rq,+ × R̃q,+ into L2
q(Rq,+).

Proof. It is clear that F is a mapping from Rq,+× R̃q,+ into L2
q(Rq,+) and it is continuous

at all (a, b) ∈ Rq,+ × Rq,+.
Now, let a ∈ Rq,+. For b ∈ R̃q,+, we have

‖ F (a, b)− F (a, 0) ‖2
q,2 = ‖ Tq,b(Ha(g))−Ha(g) ‖2

q,2

= ‖ Fq (Tq,b(Ha(g))−Ha(g)) ‖2
q,2

=
∫ ∞

0
| 1− cos(xb; q2) |2| Fq(Ha(g)) |2 (x)dqx.

However, for all x ∈ Rq,+ and b ∈ R̃q,+, we have

| 1− cos(xb; q2) |2| Fq(Ha(g)) |2 (x) ≤ (1 +
1

(q; q)2∞
)2 | Fq(Ha(g)) |2 (x)

and Fq(Ha(g)) ∈ L2
q(Rq,+). So, the Lebesgue theorem leads to

lim
b → 0

b ∈ R̃q,+

‖ F (a, b)− F (a, 0) ‖q,2= 0.

Then, for all open neighborhood V of F (a, 0) in L2
q(Rq,+), there exists an open neighbor-

hood U of 0 in R̃q,+ such that, ∀b ∈ U , we have

F (a, b) ∈ V.

Thus, {a}×U is an open neighborhood of (a, 0) in Rq,+× R̃q,+ and F ({a}×U) ⊂ V . The
continuity of F at (a, 0) holds. �
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Definition 2. Let g be a q-wavelet in D∗q(Rq). We define the continuous q-wavelet
transform associated with the operator ∆q by

Φq,g(f)(a, b) = cq

∫ ∞

0
f(x)ga,b(x)dqx, a ∈ Rq,+, b ∈ R̃q,+ and f ∈ D∗q(Rq), (4.5)

which is equivalent to

Φq,g(f)(a, b) = f ∗q Ha(g)(b)

= Fq(Fq(f ∗q Ha(g)))(b)
= Fq [Fq(f).Fq(Ha(g))] (b)

=
√

a cq

∫ ∞

0
Fq(f)(x).Fq(g)(ax) cos(bx; q2)dqx,

where cq is given by (3.10).

We establish some properties of Φq,g in the two following propositions.

Proposition 7. Let g be a q-wavelet in L2
q(Rq,+) and f ∈ L2

q(Rq,+). Then
i) for all a ∈ Rq,+ and b ∈ R̃q,+, we have

| Φq,g(f)(a, b) |≤ cq

(q; q)2∞
‖f‖q,2‖g‖q,2; (4.6)

ii) for all a ∈ Rq,+, the mapping b 7→ Φq,g(f)(a, b) is continuous on R̃q,+ and we have

lim
b→∞

Φq,g(f)(a, b) = 0. (4.7)

Proof. i) From the relation (3.18), we have for a ∈ Rq,+ and b ∈ R̃q,+,

| Φq,g(f)(a, b) | = cq |
∫ ∞

0
f(x)ga,b(x)dqx |

≤ cq

∫ ∞

0
| Tq,bf(x) | 1√

a
| g(

x

a
) | dqx

≤ cq

(q; q)2∞
‖f‖q,2‖g‖q,2.

ii) It is sufficient to prove the continuity at 0. For b ∈ R̃q,+, we have

Φq,g(f)(a, b) = Fq [Fq(f).Fq(Ha(g))] (b)

and

∀x ∈ Rq,+, | cos(bx; q2) |≤ 1
(q; q)2∞

.

Since f, g ∈ L2
q(Rq,+), then from Theorem 4, we have Fq(f) and Fq(Ha(g)) are in L2

q(Rq,+).
and the product Fq(f).Fq(Ha(g)) is in L1

q(Rq,+). Thus, the Lebesgue theorem, gives

lim
b → 0

b ∈ R̃q,+

Φq,g(f)(a, b) = lim
b → 0

b ∈ R̃q,+

cq

∫ ∞

0
Fq(f)(x).Fq(Ha(g))(x) cos(bx; q2)dqx

= Φq,g(f)(a, 0).
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Which proves the continuity of Φq,g(f)(a, .) at 0.
Finally, (3.11) implies that

Φq,g(a, b) =
√

aFq[Fq(f).Fq(Ha(g))](b)

tends to 0 when b tends to ∞. �

Proposition 8. i) For all a ∈ Rq,+ and f ∈ Lp
q(Rq,+), p ∈]1, 2], the mapping b 7→

Φq,g(f)(a, b) is in Lr
q(Rq,+), with r ∈ [1,∞] such that

1
r

=
1
p
− 1

2
and we have

‖Φq,g(f)(a, .)‖q,r ≤ Bq,pBq,2Bq,r′‖f‖q,p‖g‖q,2, (4.8)

where Bq,p = ( 1

(q(1−q))
1
2 (q;q)∞

)1−
p
2 and r′ verifies

1
r

+
1
r′

= 1.

ii) If g is in S∗q(Rq), then for all f in S∗q(Rq), the mapping b 7→ Φq,g(f)(a, b) is in
S∗q(Rq).

Proof. The proof is easily deduced from the relation

Φq,g(f)(a, b) = f ∗q Ha(g)(b)

and the properties of the q-convolution product. �

Theorem 6. Let g ∈ L2
q(Rq,+) be a q-wavelet.

i) Plancheral formula for Φq,g

For f ∈ L2
q(Rq,+), we have

1
Cg

∫ ∞

0

∫ ∞

0
| Φq,g(f)(a, b) |2 dqadqb

a2
= ‖f‖2

q,2. (4.9)

ii) Parseval formula for Φq,g

For f1, f2 ∈ L2
q(Rq,+), we have∫ ∞

0
f1(x)f2(x)dqx =

1
Cg

∫ ∞

0

∫ ∞

0
Φq,g(f1)(a, b)Φq,g(f2)(a, b)

dqadqb

a2
. (4.10)

Proof. The use of Fubini’s theorem, Theorem 4, Proposition 2 and the relation (3.24)
gives∫ ∞

0

∫ ∞

0
| Φq,g(f)(a, b) |2 dqdq

a2
=

∫ ∞

0

(∫ ∞

0
| f ∗q Haog |2 (b)dqb

)
dqa

a2

=
∫ ∞

0

(∫ ∞

0
| Fq(f)(x) |2| Fq(Haog). |2 (x)dqx

)
dqa

a2

=
∫ ∞

0
| Fq(f)(x) |2

(∫ ∞

0
| Fq(g)(ax) |2 dqa

a

)
dqx

= Cg

∫ ∞

0
| Fq(f)(x) |2 dqx = Cg‖f‖2

q,2.

The relation (4.9) is then proved. �
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ii) The result follows from (4.9).
Remark 4.

If g ∈  L2
q(Rq,+) is a q-wavelet, then for all f ∈  L2

q(Rq,+), we have

Φq,g(f) ∈  L2
q(Rq,+ × R̃q,+;

dqadqb

a2
) and

‖Φq,g(f)‖2

 L2
q

(
Rq,+×R̃q,+;

dqadqb

a2

) = Cg‖f‖2
q,2.

Theorem 7. Let g be a q-wavelet in  L2
q(Rq,+), then for f ∈  L2

q(Rq,+), we have

f(x) =
cq

Cg

∫ ∞

0

∫ ∞

0
Φq,g(f)(a, b)ga,b(x)

dqadqb

a2
, x ∈ Rq,+. (4.11)

Proof. According to the relation (4.10) of the previous theorem and the definition of Φq,g,
we have for all h ∈  L2

q(Rq,+),∫ ∞

0
f(t)h(t)dqt =

cq

Cg

∫ ∞

0

∫ ∞

0
Φq,g(f)(a, b)

(∫ ∞

0
h(t)ga,b(t)dqt

)
dqadqb

a2

=
∫ ∞

0

(
cq

Cg

∫ ∞

0

∫ ∞

0
Φq,g(f)(a, b)ga,b(t)

dqadqb

a2

)
h(t)dqt.

Now, let x ∈ Rq,+ and h = δx. We have h ∈  L2
q(Rq,+) and the previous equality is

equivalent to

f(x) =
cq

Cg

∫ ∞

0

∫ ∞

0
Φq,g(f)(a, b)ga,b(x)

dqadqb

a2
.

�

5 Coherent states

Theorem 6 shows that the continuous q-wavelet transform Φq,g is an isometry from the
Hilbert space  L2

q(Rq,+) into the Hilbert space  L2
q(Rq,+ × R̃q,+; dqadqb

a2Cg
) (the space of square

integrable functions on Rq,+ × R̃q,+ with respect to the measure dqadqb
a2Cg

). For the charac-

terization of the image of Φq,g, we think of the vectors ga,b, (a, b) ∈ Rq,+ × R̃q,+, as a set
of coherent states in the Hilbert space  L2

q(Rq,+) (see [15]).

Definition 3. A set of coherent states in a Hilbert space H is a subset {gl}l∈L of H such
that

i) L is a locally compact topological space and the mapping l 7→ gl is continuous from
L into H.

ii) There is a positive Borel measure dl on L such that, for f ∈ H,

‖ f ‖2=
∫
L
| (f, gl) |2 dl,

where (., .) and ‖ . ‖ are respectively the scalar product and the norm of H.
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Let now H =  L2
q(Rq,+), L = Rq,+ × R̃q,+ equipped with the induced topology of R2.

Choose a nonzero function g ∈  L2
q(Rq,+) and put gl = ga,b given by the relation (4.3) with

l = (a, b) ∈ L. Then we have a set of coherent states. Indeed, i) of Definition 3 is satisfied,

because of Proposition 6, and ii) of Definition 3 is also satisfied, for the measure
dqadqb

a2Cg

(see Theorem 6). By adaptation of the approach introduced by T. H. Koornwinder in [15],
we obtain the following result:

Theorem 8. Let F be in  L2
q(Rq,+ × R̃q,+; dqadqb

a2Cg
). Then F belongs to ImΦq,g if and only

if

F (a, b) =
1
Cg

∫ ∞

0

∫ ∞

0
F (a′, b′)

(∫ ∞

0
ga′,b′(x)ga,b(x)dqx

)
dqa

′dqb
′

(a′)2
. (5.1)
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