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Abstract

A theory of bidirectional solitons on water is developed by using the classical Boussi-
nesq equation. Moreover, analytical multi-solitons of Camassa-Holm equation are
presented.

1 Unidrectional soliton

In 1965 Zabusky and Kruskal introduced the concept of a soliton for the Korteweg -
de Vries(KdV) equation [1]. Two years latter, by using the inverse scattering method
on the Schrodinger equation, Gardner et al.(GGKM) solved the KdV equation for exact
N-solitons [2], which can be used to model the interation of unidirectional solitary waves
on water. Their discovery establishes the mathematical foundation of the unidirectional
water wave interaction. The KdV equation is the leading-order approximation of the
Euler equation from a perturbation scheme under the assumption that the wave height is
relatively small and the wavelength is relatively long compared with the water depth. It
also assumes that the wave propagation is in one direction, which is not a good assumption
to model the reflection of water wave on a vertical wall. For reflection of water wave,
we need a model that allows the bidirectional wave interactions, including head-on and
overtaking collections. In soliton theory it is known that the Boussinesq one equation is
often used in the literature to model a bidirectional soliton [3], but the result of the head
on collision is not physically meaningful for water waves. The fact that the Boussinesq
one equation cannot be used to physically describe the head-on collision of solitons has
been pointed out in the fluid mechanics literature. A more detail discussion is given in
ref[4].

2 Bidirectional soliton

The 2 + 1 dimensional nonlinear dispersive wave equation






ut + uux + vuy + ζx = 0
vt + uvx + vvy + ζy = 0

ζt + [(1 + ζ)u]x + [(1 + ζ)v]y +
uxxx+uxyy+vxxy+vyyy

3
= 0

(1)
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where (u, v) is the horizonal projection of the surface velocity of a water, ς is wave elevation
which is regarded as Wu - Zhang(WZ) equation by Ref.[5]. The WZ equation is derived
in Ref.[6] from the Euler equation with perturbation schems under the assumption that
the amplitude of wave elevation is small and the wave is long compared with the water
depth(scaled to be 1). The WZ equation can be used to model the three dimensional
behavior of solitary waves on a uniform layer of water, such as oblique interaction, oblique
reflection from a vertical wall and turning in a curved channel. In Ref.[5], it point out
that the WZ equation can not pass the Painleve test, but in Ref.[7] it points out that the
reduction of this equation to 1 + 1 dimensional case in any direction, it is reduced to the
classical Boussinesq equation

{

ζt + [(1 + ζ)u]x = −1

3
uxxx,

ut + uux + ζx = 0,
(2)

In Ref.[4,8-10], we consider the bidirectional soliton of this equation. With scaling trans-
formation

√
3

2
x→ x,

√
3

2
t→ t, (3)

equation (2) becomes

{

ζt + [(1 + ζ)u]x + 1

4
uxxx = 0,

ut + uux + ζx = 0.
(4)

The Lax pair of the system (4) is

{

φxx = (λ2 + λu+ 1

4
u2 − ζ − 1)φ,

φt = 1

4
uxφ+ (λ− 1

2
u)φx.

(5)

By using the transformation

u = −v, ζ = −1 + w − 1

2
vx, (6)

we can convert the system (4) to Broer-Kaup(BK) system

{

vt = 1

2
(v2 + 2w − vx)x,

wt = (vw + 1

2
wx)x.

(7)

Introducing the following transformation

q = e
∫

udx, r = −
(

1 + ζ − 1

2
ux

)

e−
∫

udx (8)

or

u =
qx
q
, ζ = −1 − qr +

1

2
ux, (9)

we have an equivalent system for q and r,
{

qt + 1

2
qxx − q2r − q = 0,

rt − 1

2
rxx + qr2 + r = 0,

(10)
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which is a member of the AKNS system.
The Lax pair of the system (10) reads

Ψx = MΨ, Ψ = (ψ1, ψ2)
T , M =

(

−λ q
r λ

)

,

Ψt = NΨ, N =

(

−λ2 + 1

2
qr + 1

2
λq − 1

2
qx

λr + 1

2
rx λ2 − 1

2
qr − 1

2

)

.
(11)

The Darboux transformation on the AKNS system, available in a textbook [11], is given
as follows: Let

φ′ = Tφ, T = λnI +
n
∑

j=1

Tjλ
n−j , Tj =

(

a2j−1 a2j

b2j−1 b2j

)

, (12)

where I is a 2 × 2 identity matrix, φ is a solution of equations (11), then φ′ is a solution
of equation

φ′x = M ′φ′, φ′t = N ′φ′, (13)

where M ′ and N ′ are the same as M and N in equations (11), but with q, r, qx and rx
replaced by q′, r′, q′x and r′x. We assume λi 6= λj for i 6= j, i = 1, 2, · · ·, 2n, and denote

φ1,j = φ1(x, λj), φ2,j = φ2(x, λj). (14)

We define a 2n× 2n matrix H to be the following

H =











λn−1

1
φ1,1 λn−1

1
φ2,1 λn−2

1
φ1,1 λn−2

1
φ2,1 · · · φ1,1 φ2,1

λn−1

2
φ1,2 λn−1

2
φ2,2 λn−2

2
φ1,2 λn−2

2
φ2,2 · · · φ1,2 φ2,2

...
...

...
... · · · ...

...

λn−1
2n φ1,2n λn−1

2n φ2,2n λn−2
2n φ1,2n λn−2

2n φ2,2n · · · φ1,2n φ2,2n











. (15)

Solving the equations

H











a1

a2

...
a2n











=











−λn
1φ1,1

−λn
2φ1,2
...

−λn
2nφ1,2n











≡ A, H











b1
b2
...
b2n











=











−λn
1φ2,1

−λn
2φ2,2
...

−λn
2nφ2,2n











≡ B (16)

gives us ai and bi, i = 1, 2, 3, · · ·, 2n. Then

q′ = q + 2a2, r′ = r − 2b1, (17)

where

a2 =
detH2

detH
, b1 =

detH1

detH
, (18)

and H2 is a 2n× 2n matrix of H with the second column replaced by A, H1 is a 2n× 2n
matrix of H with the first column replaced by B.

Now we discuss the mechanics of soliton interaction by using the Darboux transfor-
mation. For a layer of quiescent water without any waves, wave elevation is ζ = 0 and
velocity is u = 0, and corresponding q = 1 and r = −1. Therefore we take (q, r) = (1,−1)
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as our initial seed to implement Darboux transformation. With this initial seed, we have
the following two sets of basic solutions for the spectral problem (11):

φ1,j = cosh ξj , φ2,j = cj sinh ξj + λj cosh ξj , j is an odd number, (19)

φ1,j = sinh ξj , φ2,j = cj cosh ξj + λj sinh ξj , j is an even number, (20)

where ξj = cj(x+λjt) and cj =
√

λ2
j − 1. The eigenvalue λj is the wave speed of a soliton.

The soliton is right-going if λj < −1, left-going if λj > 1.
For a single right-going soliton solution, we can take the following eigenvalues and

eigenfunctions:

λ∗1 = −1, φ1,1 = 1, φ2,1 = −1, ξ =

√
3

2
c(x− λt), c =

√

λ2 − 1,

λ∗2 = −λ < −1, φ1,2 = sinh ξ, φ2,2 = c cosh ξ − λ sinh ξ,

where x and t have been converted to the original coordinates before the scaling transfor-
mation (3). We obtain a single-soliton solution of equation (2)

uB(x− λt;λ) =
2(λ2 − 1)

λ+ cosh
√

3(λ2 − 1)(x− λt)
, (21)

ζB(x− λt;λ) =
2(λ2 − 1)

(

1 + λ cosh
√

3(λ2 − 1)(x− λt)
)

(

λ+ cosh
√

3(λ2 − 1)(x− λt)
)2

. (22)

The wave speed λ and the wave amplitude a satisfy

λ = 1 +
1

2
a. (23)

Integrating the wave elevation (22) over the whole space domain gives us the mass under
the soliton

mB(λ) =

∫ ∞

−∞
ζB(s;λ)ds =

4√
3

√

λ2 − 1 =
4√
3

√

(1 + a/4)a. (24)

Differentiating (22) twice and evaluating at the origin gives us

ζ ′′B(0;λ) = −6(2 − λ)(λ− 1)2. (25)

Therefore the soliton has a single peak when λ < 2 and double peaks when λ > 2. The
soliton appears to have some remarkable features. It is single-peaked when the wave
amplitude is not larger than 2, and double-peaked when the wave amplitude is larger than
2. As is well-known that the Boussinesq model is only valid for the water waves with
small amplitude, i.e., the wave amplitude smaller than water depth (scaled to be 1 here).
Therefore the new feature of double-peaked soliton is not physically meaningful for the
water wave.

We now construct a multisoliton solution with 2m left-going and 2l right-going solitons,
the power of the eigenvalue in the Darboux transformation is taken to be n = m+ l. First
we rank the solitons by their amplitudes (or speeds). For the 2m left-going solitons,
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we assume λ2m > λ2m−1 > · · · > λ1 > 1. For the 2l right-going solitons, we assume
λ∗

2l < λ∗
2l−1

< · · · < λ∗1 < −1. With the eigenfunctions defined in (19, 20) for both λj and
λ∗j , we can obtain the soliton solution as follows:

u =
q′x
q′
, ζ = −1 − q′r′ +

1

2
ux, (26)

where

q′ = 1 + 2a2, r′ = −1 − 2b1, (27)

a2 and b1 are defined by (18). This is the solution for the interaction of an even number
of solitons in both directions. To obtain an odd number of solitons, we can simply set the
first eigenvalue to be 1 for a left-going soliton and −1 for a right-going soliton. In other
words, an odd number of soliton solution can be treated as an even number of solitons in
which one of the solitons has zero amplitude.

For a solution with two-soliton overtaking collision, we take m = 0 and l = 1 with the
following eigenvalues and eigenfunctions:

λ∗1 = −λ1 < −1, φ1,1 = cosh ξ1, φ2,1 = c1 sinh ξ1 − λ1 cosh ξ1,

λ∗2 = −λ2 < −λ1, φ1,2 = sinh ξ2, φ2,2 = c2 cosh ξ2 − λ2 sinh ξ2,

where λ1 and λ2 are two positive numbers. The solution to system (2), given by (26), can
be written in a closed form as

u =
2(λ2 − λ1)[c

2
2 − c21 tanh2 ξ1 tanh2 ξ2 − (λ2

2 − λ2
1) tanh2 ξ2]

(c2 − c1 tanh ξ1 tanh ξ2)2 − (λ2 − λ1)2 tanh2 ξ2
, (28)

ζ = −1 +
c2 − c1 tanh ξ1 tanh ξ2 + (λ2 − λ1) tanh ξ2
c2 − c1 tanh ξ1 tanh ξ2 − (λ2 − λ1) tanh ξ2

×
[

1 − 2
(λ2 − λ1)(c1 tanh ξ1 − λ1)(c2 − λ2 tanh ξ2)

c2 − c1 tanh ξ1 tanh ξ2 − (λ2 − λ1) tanh ξ2

]

+
1√
3
ux, (29)

ξi =

√
3

2
ci(x− λit), ci =

√

λ2
i − 1, i = 1, 2, λ2 > λ1 > 1,

where x and t have been converted to the original coordinates before the scaling trans-
formation (3), λ1 and λ2 are the speeds of the two solitons, with λ2 larger than λ1. The
soliton with the speed λ2 is taking over the soliton with the speed λ1. The process of
overtaking interaction can be easily seen with the asymptotic limit of the solution (28,
29): as t→ −∞,

ζ(x, t) → ζB(x− λ1t− ∆1;λ1) + ζB(x− λ2t+ ∆2;λ2),

u(x, t) → uB(x− λ1t− ∆1;λ1) + uB(x− λ2t+ ∆2;λ2),

and as t→ +∞,

ζ(x, t) → ζB(x− λ1t+ ∆1;λ1) + ζB(x− λ2t− ∆2;λ2),

u(x, t) → uB(x− λ1t+ ∆1;λ1) + uB(x− λ2t− ∆2;λ2),
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where ζB(s;λ) and uB(s;λ) are the wave elevation and surface velocity of the single-soliton
solution given by (22, 21), and the total phase shift of the two solitons are given by the
following

2∆1 =
2

√

3(λ2
1
− 1)

arccosh
λ1λ2 − 1

λ2 − λ1

, 2∆2 =
2

√

3(λ2
2
− 1)

arccosh
λ1λ2 − 1

λ2 − λ1

. (30)

Since the mass has been obtained previously in (24) as

mi =
4√
3

√

λ2
i − 1, i = 1, 2, (31)

the conservation of momentum can be easily verified by

2m1∆1 = 2m2∆2 =
8

3
arccosh

λ1λ2 − 1

λ2 − λ1

. (32)

For a solution with two-soliton head-on collision, we take m = 0 and l = 1 with the
following eigenvalues and eigenfunctions:

λ∗1 = −λ1 < −1, φ1,1 = cosh ξ1, φ2,1 = c1 sinh ξ1 − λ1 cosh ξ1,

λ∗2 = λ2 > 1, φ1,2 = cosh ξ2, φ2,2 = c2 sinh ξ2 + λ2 cosh ξ2.

The solution of system (2) given by (26) can be written in a closed form as follows

u =
2(λ1 + λ2)(λ

2
2 − λ2

1 − c22 tanh2 ξ2 + c21 tanh2 ξ1)

(c2 tanh ξ2 − c1 tanh ξ1)2 − (λ1 + λ2)2
, (33)

ζ = −1 +
c2 tanh ξ2 − c1 tanh ξ1 − λ1 − λ2

c2 tanh ξ2 − c1 tanh ξ1 + λ1 + λ2

×
[

1 + 2
(λ1 + λ2)(c1 tanh ξ1 − λ1)(c2 tanh ξ2 + λ2)

c2 tanh ξ2 − c1 tanh ξ1 + λ1 + λ2

]

+
1√
3
ux, (34)

ξ1 =

√
3

2
c1(x− λ1t), ξ2 =

√
3

2
c2(x+ λ2t), ci =

√

λ2
i − 1, λi > 1, i = 1, 2,

where x and t are the original coordinates before the scaling transformation. The soliton
with speed λ1 is moving from the left to the right. The soliton with speed λ2 is moving
from the right to the left. At t = 0, the two solitons merge into a single peak. One may
verify that ζx(0, 0) = 0, i.e., the solution is symmetric about the origin. Therefore the
maximum amplitude appears at the origin, i.e.,

ζmax = ζ(0, 0) = a1 + a2 +
1

2
a1a2. (35)

For the head-on collision of two solitons with the same amplitude, a1 = a2 = a, the wave
elevation at t = 0 can be simplified and given by

ζ(x, 0) =

(

2a+
1

2
a2

)

sech2

[

1

4

√

3a(4 + a)x

]

, (36)

and the velocity at t = 0 is zero for all x.
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After the head-on collision, each soliton experiences a backward phase shift. The
asymptotic analysis of the solution (33, 34) leads to the following limits: as t→ −∞,

ζ(x, t) → ζB(x− λ1t− ∆1;λ1) + ζB(x+ λ2t+ ∆2;λ2), (37)

u(x, t) → uB(x− λ1t− ∆1;λ1) − uB(x+ λ2t+ ∆2;λ2), (38)

and as t→ +∞,

ζ(x, t) → ζB(x− λ1t+ ∆1;λ1) + ζB(x+ λ2t− ∆2;λ2), (39)

u(x, t) → uB(x− λ1t+ ∆1;λ1) − uB(x+ λ2t− ∆2;λ2), (40)

where ζB(s;λ) and uB(s;λ) are the wave elevation and surface velocity of the single-soliton
solution given by (22, 21), and the total phase shift of the two solitons are given by

2∆1 =
2

√

3(λ2
1
− 1)

arccosh
λ1λ2 + 1

λ1 + λ2

, 2∆2 =
2

√

3(λ2
2
− 1)

arccosh
λ1λ2 + 1

λ1 + λ2

.

The conservation of momentum can be easily verified by

2m1∆1 = 2m2∆2 =
8

3
arccosh

λ1λ2 + 1

λ1 + λ2

. (41)

For the asymptotic behavior of the N -soliton solution for large t, the phase shift of
each soliton after the interaction can be derived from our solution. We have following
proposition:

Proposition. For the N right-going overtaking soliton solution given by (26), the asymp-
totic behavior of the solution is

lim
t→−∞

ζ(x, t) =

N
∑

j=1

ζB(x− λjt+ ∆j), lim
t→∞

ζ(x, t) =

N
∑

j=1

ζB(x− λjt− ∆j), (42)

where the phase shift of the jth soliton is given by

∆j =

N
∑

i = 1,

i 6= j

sign(λj − λi)
1

√

3(λ2
j − 1)

arccosh

∣

∣

∣

∣

λjλi − 1

λj − λi

∣

∣

∣

∣

. (43)

The phase shift for N head-on colliding soliton solution has a similar result. It has
been proved in ref.[12].

3 The Camassa - Holm(CH) equation

The Camassa-Holm (CH) equation

ut + 2ωux − uxxt + 3uux = 2uxuxx + uuxxx, (44)

which can also be written as

qt + uqx + 2qux = 0, q = m+ ω = u− uxx + ω, (45)
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was derived in [13, 20] to model unidirectional nonlinear dispersive waves on a uniform
layer of water with depth proportional to 4ω2. The equation was first found in Ref. [21]
by using the method of recursion operators. It was also found in Ref. [22] to model
nonlinear waves in cylindrical hyperelastic rods, and in Ref. [23] to model the motion of a
non-newtonian fluid of second grade in the limit when the viscosity tends to zero. The role
of the equation within the classical model for water waves was explored and justified in
Ref. [24]; similar result was obtained earlier in Ref. [25]. Recently more general equations
is obtained in [26].

For the case ω = 0, the soliton solution of the CH equation is peaked and its two-peakon
solution was presented in [13]. It should be pointed out that the n-peakon interaction was
obtained in the paper [14], while the explicit peakon-antipekon interaction is given in [15],
and the stability of the peakons is proved in [16].

However this case corresponds to the waves in water with zero quiescent depth. The
amplitude-depth ratio of the peakon is infinite. This violates the assumption that the
ratio has to be small in deriving the model. The case ω > 0, ω = 1

2
in particular, is more

relevant to the application in water waves. The case ω 6= 0 also represents the equation
for the geodesics on the Bott-Virasoro group[27]. It should be pointed out that the case
ω = 0 represents the equation for geodesics on the diffeomorphism group of the line or,
in the periodic case, the diffeomorphism group of the circle, cf. [17, 18]. In reference [19]
it is proved that the solitary waves of the Camassa-Holm equation(for ω 6= 0)are stable
solitons. It is known that the CH equation has a Lax pair. It should be mentioned that
the scattering problem is discussed in [28] and in the paper [29], while the periodic case is
in [30, 31]. On the other hand, Parker [32] used the Bilinear form to get solitary waves of
CH equation.

Regarding the multi-soliton solution of the CH equation for the case ω > 0, considerable
progress has been made in Ref. [33, 34], but a nice and clean solution is still not available
yet. The clean solution is given in the following proposition 1 [35].

The CH equation is known to have a Lax pair[28] as follows

ψxx =
1

4
ψ + λ(m+ ω)ψ, −∞ < x <∞ (46)

ψt =

(

1

2λ
− u

)

ψx +
1

2
uxψ, (47)

where the assumption
∫ ∞

−∞
(1 + |x|)|m(x)|dx <∞, m+ ω > 0,

has been made so that the system has only a finite number of eigenvalues, λ. The Liouville
transformation

φ(y) = (m(x) + ω)1/4ψ(x) = q1/4ψ, (48)

dy

dx
=

√
q, q(y) = m+ ω, (49)

converts spectral problem (46) into

−d
2φ

dy2
+Qφ = µφ, µ = − 1

4ω
− λ, (50)
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where

Q(y) =
1

4q(y)
+
qyy(y)

4q(y)
−

3q2y(y)

16q2(y)
− 1

4ω
. (51)

Given Q(y), in order to find a solution for u, one needs to

(i) solve equation (51) for q satisfying the condition lim|y|→∞ q = ω;

(ii) integrate (49) to build up the relation between x and y with the known q;

(iii) solve q = u− uxx + ω for u with the known q;

(iv) introduce a variable t in the solution of u and make it satisfy the CH equation (44),
i.e., (45).

The solutions to steps (i), (ii) and (iv), first obtained in [34], are cited here for the
convenience of reader.

By using the Darboux transformation[11], the Q(y) of the n-soliton for equation (51)
can be generated from that for Q(y) = 0 in the form given by

Q(y) = −2
∂2

∂y2
lnW (Ψ1,Ψ2, · · · ,Ψn), (52)

where the Wronskian determinant W of n functions Ψ1, Ψ2, · · ·, Ψn is defined by

W (Ψ1,Ψ2, · · · ,Ψn) = detA, Aij =
di−1Ψj

dyi−1
, i, j = 1, 2, · · · , n. (53)

and the functions Ψi (k1 < k2 < · · · < kn) are defined by

Ψi(y) =

{

cosh kiy, i is an odd number
sinh kiy, i is an even number

. (54)

The solution of q satisfying equation (51) with the boundary condition lim|y|→∞ q = ω
is given in Ref. [34] as

√
q =

f1f2

W (f1, f2)
=

√
ωf1f2

∏n
i=1

(

1

4ω − k2
i

) , (55)

where f1 and f2 are given by

f1(y) =
W (Ψ1, · · · ,Ψn, e

1

2
√

ω
y
)

W (Ψ1, · · · ,Ψn)
, f2(y) =

W (Ψ1, · · · ,Ψn, e
− 1

2
√

ω
y
)

W (Ψ1, · · · ,Ψn)
. (56)

With the known q, the relation between x and y can be obtained by solving equation
(49). The solution is given in Ref. [34] as

x = ln
Ef1

f2

= ln

∣

∣

∣

∣

f1

f2

∣

∣

∣

∣

, (57)

where E, being an integration constant, is taken to be either 1 or −1 to ensure meaning-
fulness of the logarithmic function.
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It has shown in Ref. [34] that the time variable t can be introduced by following
transformation

y → y − ci
√
ωt, with ci =

2ω

1 − 4k2
i ω

(58)

in equation (54).

Lemma 1. If y and u are treated as a functions of (x, t), then the solution of the CH
equation can be written as

u = −∂y
∂t

/

∂y

∂x
. (59)

Proof. Equation (49) can be written as

∂y

∂x
=

√
u− uxx + ω, (60)

therefore

∂

∂x

(

∂y

∂t

)

=
∂

∂t

(

∂y

∂x

)

=
ut − uxxt

2
√
u− uxx + ω

=
−3uux − 2ωux + 2uxuxx + uuxxx

2
√
u− uxx + ω

, (61)

where the CH equation was used in the last equality. We also have another equality

∂

∂x

(

u
∂y

∂x

)

=
∂

∂x

(

u
√
u− uxx + ω

)

= ux

√
u− uxx + ω + u

ux − uxxx

2
√
u− uxx + ω

=
3uux + 2ωux − 2uxuxx − uuxxx

2
√
u− uxx + ω

. (62)

Comparing equations (61) and (62) yields

∂

∂x

(

∂y

∂t

)

= − ∂

∂x

(

u
∂y

∂x

)

. (63)

Integrating with respect to x gives

∂y

∂t
= −u∂y

∂x
, or u = −∂y

∂t

/

∂y

∂x
, (64)

where the integration constant is taken to be zero by applying the result to a particular
solution, e.g., single soliton solution. Q.E.D.

Proposition 1. The multiple-soliton solution, u(x, t), of the CH equation is given in a
parametric form by

u(y, t) =
∂

∂t

(

ln
f1

f2

)

, (65)

x(y, t) = ln

∣

∣

∣

∣

f1

f2

∣

∣

∣

∣

, (66)
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where f1(y, t) and f2(y, t) are given by (56) with following Ψi functions (k1 < k2 < · · · <
kn)

Ψi(y, t) =

{

cosh ki(y − ci
√
ω t), i is an odd number

sinh ki(y − ci
√
ω t), i is an even number

, ki =
1

2
√
ω

√

1 − 2ω

ci
.(67)

Proof. The relation between x, y and t is written implicitly as an equation

F (x, y, t) = x− ln

∣

∣

∣

∣

f1(y, t)

f2(y, t)

∣

∣

∣

∣

= 0, (68)

and

dF = Fxdx+ Fydy + Ftdt = 0, (69)

therefore

∂y

∂t
= −Ft

Fy
,

∂y

∂x
= −Fx

Fy
= − 1

Fy
. (70)

With Lemma 1, we have

u = −∂y
∂t

/

∂y

∂x
= −Ft =

∂

∂t

(

ln
f1

f2

)

. (71)

Q.E.D.

Example 1, Single soliton. For a solution with one soliton, Ψ1 = cosh ξ1, where ξ1 =

k1(y − c1
√
ωt), with k1 = 1

2
√

ω

√

1 − 2ω
c1

. The two functions f1 and f2, obtained from

equation (56) are

f1 = exp

[

1

2
√
ω
y

](

1

2
√
ω
− k1 tanh ξ1

)

,

f2 = exp

[

− 1

2
√
ω
y

](

− 1

2
√
ω
− k1 tanh ξ1

)

.

Applying Proposition 1 gives a single-soliton solution of the CH equation in a parametric
form

u(y, t) =
∂

∂t

(

ln
f1

f2

)

=
∂

∂t

(

ln

1

2
√

ω
− k1 tanh ξ1

− 1

2
√

ω
− k1 tanh ξ1

)

=
c1 − 2ω

1 + (2ω/c1) sinh2 ξ1
,

x(y, t) = ln

∣

∣

∣

∣

f1

f2

∣

∣

∣

∣

=
y√
ω

+ ln

1

2
√

ω
− k1 tanh ξ1

1

2
√

ω
+ k1 tanh ξ1

,

which has been obtained in [33, 34, 36, 37, 38].
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Example 2, Two solitons. For a solution with two solitons, Ψ1 = cosh ξ1 and Ψ2 = sinh ξ2,

where ξi = ki(y − ci
√
ωt), with ki = 1

2
√

ω

√

1 − 2ω
ci

, i = 1, 2, c1 < c2. The two functions f1

and f2, obtained from equation (56) are

f1 =

exp
[

1

2
√

ω
y
]

∣

∣

∣

∣

∣

∣

cosh ξ1 sinh ξ2 1
k1 sinh ξ1 k2 cosh ξ2

1

2
√

ω

k2
1 cosh ξ1 k2

2 sinh ξ2
1

4ω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cosh ξ1 sinh ξ2
k1 sinh ξ1 k2 cosh ξ2

∣

∣

∣

∣

= exp

[

1

2
√
ω
y

]

∆1

∆
,

f2 =

exp
[

− 1

2
√

ω
y
]

∣

∣

∣

∣

∣

∣

cosh ξ1 sinh ξ2 1
k1 sinh ξ1 k2 cosh ξ2 − 1

2
√

ω

k2
1 cosh ξ1 k2

2 sinh ξ2
1

4ω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cosh ξ1 sinh ξ2
k1 sinh ξ1 k2 cosh ξ2

∣

∣

∣

∣

= exp

[

− 1

2
√
ω
y

]

∆2

∆
,

where

∆1 = a− b, ∆2 = a+ b, ∆ = 4ω(k2 − k1 tanh ξ1 tanh ξ2),

a = k2(1 − 4k2
1ω) − k1(1 − 4k2

2ω) tanh ξ1 tanh ξ2, b = 2(k2
2 − k2

1)
√
ω tanh ξ2.

One may verify that both ∆1 and ∆2 are positive under the condition that 1

2
√

ω
> k2 >

k1 > 0. Applying Proposition 1 gives a two-soliton solution of the CH equation in a
parametric form

u(y, t) =
∂

∂t

(

ln
f1

f2

)

=
∂

∂t

(

ln
∆1

∆2

)

=
∆1t

∆1

− ∆2t

∆2

=
at − bt
a− b

− at + bt
a+ b

=
D

A
,

x(y, t) = ln

∣

∣

∣

∣

f1

f2

∣

∣

∣

∣

=
y√
ω

+ ln
∆1

∆2

,

where

D = 2atb− 2abt = D1 +D2 tanh ξ1 tanh ξ2 +D3 tanh2 ξ1 tanh2 ξ2 +D4 tanh2 ξ2,

D1 =
8k2

2(k
2
2 − k2

1)ω
2(1 − 4k2

1ω)

(1 − 4k2
2
ω)

, D2 = 0,

D3 = −8k2
1(k

2
2 − k2

1)ω
2(1 − 4k2

2ω)

(1 − 4k2
1
ω)

, D4 = −8(k2
2 − k2

1)
2ω2(1 − 16k2

1k
2
2ω

2)

(1 − 4k2
1
ω)(1 − 4k2

2
ω)

;

A = a2 − b2 = A1 +A2 tanh ξ1 tanh ξ2 +A3 tanh2 ξ1 tanh2 ξ2 +A4 tanh2 ξ2,

A1 = k2
2(1 − 4k2

1ω)2, A2 = −2k1k2(1 − 4k2
1ω)(1 − 4k2

2ω),

A3 = k2
1(1 − 4k2

2ω)2, A4 = −4(k2
2 − k2

1)
2ω.

With some algebra, one may easily verify that the solution agrees with the one provided
in [34].

We use u1(x, t; c) and u2(x, t; c1, c2) to denote single-soliton and two-soliton solutions.
Asymptotic analysis shows that the two-soliton solution becomes the summation of two
single-soliton solutions, i.e.,

lim
t→−∞

u2(x, t; c1, c2) = u1(x+ ∆x2, t; c2) + u1(x− ∆x1, t; c1),

lim
t→+∞

u2(x, t; c1, c2) = u1(x− ∆x2, t; c2) + u1(x+ ∆x1, t; c1),
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where the phase-shifts of the two solitons are

∆x2 =
1

2k2

√
ω

ln
k2 + k1

k2 − k1

− ln
1 + 2k1

√
ω

1 − 2k1

√
ω
,

∆x1 =
1

2k1

√
ω

ln
k2 + k1

k2 − k1

− ln
1 + 2k2

√
ω

1 − 2k2

√
ω
.

The results agree with those provided in [33].

Example 3, Three solitons. For a solution with three solitons, Ψ1 = cosh ξ1, Ψ2 = sinh ξ2

and Ψ3 = cosh ξ3, where ξi = ki(y − ci
√
ωt), with ki = 1

2
√

ω

√

1 − 2ω
ci

, i = 1, 2, 3, c1 < c2 <

c3. The two functions f1 and f2, obtained from equation (56) are

f1 = exp

[

1

2
√
ω
y

]

∆1

∆
, f2 = exp

[

− 1

2
√
ω
y

]

∆2

∆
,

where

∆1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

cosh ξ1 sinh ξ2 cosh ξ3 1
k1 sinh ξ1 k2 cosh ξ2 k3 sinh ξ3

1

2
√

ω

k2
1 cosh ξ1 k2

2 sinh ξ2 k2
3 cosh ξ3

1

4ω
k3
1 sinh ξ1 k3

2 cosh ξ2 k3
3 sinh ξ3

1

8
√

ω3

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

∆2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

cosh ξ1 sinh ξ2 cosh ξ3 1
k1 sinh ξ1 k2 cosh ξ2 k3 sinh ξ3 − 1

2
√

ω

k2
1 cosh ξ1 k2

2 sinh ξ2 k2
3 cosh ξ3

1

4ω
k3
1 sinh ξ1 k3

2 cosh ξ2 k3
3 sinh ξ3 − 1

8
√

ω3

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

∆ =

∣

∣

∣

∣

∣

∣

cosh ξ1 sinh ξ2 cosh ξ3
k1 sinh ξ1 k2 cosh ξ2 k3 sinh ξ3
k2
1 cosh ξ1 k2

2 sinh ξ2 k2
3 cosh ξ3

∣

∣

∣

∣

∣

∣

.

Applying Proposition 1 gives a three-soliton solution of the CH equation in a parametric
form

u(y, t) =
∂

∂t

(

ln
f1

f2

)

=
∂

∂t

(

ln
∆1

∆2

)

=
∆1t

∆1

− ∆2t

∆2

,

x(y, t) = ln

∣

∣

∣

∣

f1

f2

∣

∣

∣

∣

=
y√
ω

+ ln

∣

∣

∣

∣

∆1

∆2

∣

∣

∣

∣

.

Their analytical expressions are long, therefore not presented here for brevity. The ana-
lytical solution for multiple solitons can be presented in a similar formula with the same
procedure.

The function Ψ in the Darboux transformation in the examples presented so far are
chosen carefully for the applications in modelling water waves. Other solutions may be
generated by choosing other function Ψ. The interesting features of those solutions are
under investigation and will be reported in a subsequent study. A comparative study on
the soliton solutions of different integrable water wave equations, including unidirectional
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models of the KdV, the CH and higher order KdV and bidirectional model of Boussinesq
equations [34], is another topic for further research.
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