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Abstract

We introduce an extension of the factorization-decomposition technique that allows us
to manufacture new solvable nonlinear matrix evolution equations. Several examples
of such equations are reported.

1 Introduction

Solvable and/or integrable nonlinear matrix equations are of course interesting ”in se”.
However they are also important in the context of solvable and/or integrable nonlinear
dynamical systems. Indeed recently some techniques were introduced to associate solvable
( integrable) many body problems with solvable (integrable) matrix equations; namely one
can obtain solvable dynamical equations for N particles on a line [1], or, via convenient
parametrizations of matrices in terms of vectors (see [2],[3]), solvable (integrable) rotation-
invariant Newtonian equations of motion for particles in an arbitrary n-dimensional space
(see [2],[4],[5] ).

In this paper we show how to construct new solvable nonlinear matrix evolution equa-
tions through a new extension of the decomposition-factorization techniques (see f.i. [6]).
We illustrate this new technique only in the simplest case (LU decomposition-factorization
and 2 ⊗ 2 block matrices). It is plain that this technique could be extended to different
and more complex cases. A subsequent paper will be devoted to a deeper investigation
(more equations, explicit solutions). In the following Section we set the notation and we
give the explicit LU decomposition-factorization of 2 ⊗ 2 block matrices. In Section 3 we
illustrate the technique to construct solvable nonlinear matrix equations. In Section 4 we
give examples of such equations, namely systems of first order solvable nonlinear matrix
equations and also second order solvable nonlinear matrix evolution equations (obtained
through suitable reductions).
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2 A parameterization of block matrices

Let us consider here and in the following 2 ⊗ 2 block matrices, namely:

M =

(

M1 M2

M3 M4

)

, (1)

where all the entries Mk , (k = 1, 2, 3, 4), are square matrices of arbitrary order.
Now consider the matrix-subspaces Ũ and L̃ of (respectively) upper (lower) type, say
U ∈ Ũ if

U =

(

U1 U2

0 U4

)

, (2a)

W ∈ W̃ if

W =

(

W1 0
W3 W4

)

. (2b)

Let us assume that all the involved matrices depend on a parameter t (time). Moreover
we assume that two of the six matrices Uk,Wk are preassigned (constant known matrices
or time dependent matrices whose evolution is known). In the following we shall assume
that W1 and W4 are preassigned ( of course different choices could give different results).

Given an arbitrary 2 ⊗ 2 block matrix M, there is a unique way to decompose it as a
sum of a pair of matrices (of upper and lower type), and as well a unique way to decompose
it as a product (with a given order) of a pair of such matrices. Indeed

M = A + B , (3a)

where A ∈ Ũ :

A =

(

A1 A2

0 A4

)

, (3b)

and B ∈ W̃ :

B =

(

B1 0
B3 B4

)

, (3c)

with known (preassigned ) B1, B4, clearly entails

M1 = A1 + B1, M2 = A2, M3 = B3, M4 = A4 + B4 , (4a)

which are trivially inverted to read

A1 = M1 − B1, A2 = M2, A3 = M3, A4 = M4 − B4 . (5a)

And likewise
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M = Y X , (6a)

where X ∈ Ũ :

X =

(

X1 X2

0 X4

)

, (6b)

and Y ∈ W̃ :

Y =

(

Y1 0
Y3 Y4

)

, (6c)

with known (preassigned ) Y1, Y4, clearly entails

M1 = Y1X1 , (7a)

M2 = Y1X2 , (7b)

M3 = Y3X1 , (7c)

M4 = Y3X2 + Y4X4 ; (7d)

which can be easily inverted:

X1 = Y −1

1
M1 , (8a)

X2 = Y −1

1
M2 , (8b)

Y3 = M3M
−1
1

Y1 , (8c)

X4 = Y −1
4

(

M4 − M3M
−1
1

M2

)

. (8d)

There are two obvious generalizations of the here introduced technique :

• one could consider block matrices of higher order,

• one could consider other factorization (f.i. QR instead of LU ).

3 Derivation of solvable nonlinear matrix evolution equa-

tions

Let us consider a time dependent 2 ⊗ 2 block matrix L(t)

L =

(

L1 L2

L3 L4

)

. (9)

Let us also consider L̃ = f(L), a scalar, but otherwise arbitrary, function of the matrix
L. With no loss of generality we can assume
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L̃ =

∞
∑

n=−∞

cnLn , (10)

where the coefficients cn are scalars, possibly known functions of time.
Now decompose L̃ as a sum of a pair of matrices (of upper and lower type):

L̃ =

(

L̃1 L̃2

L̃3 L̃4

)

= A + B =

(

A1 A2

0 A4

)

+

(

B1 0
B3 B4

)

, (11)

where the matrices B1, B4 are known (preassigned, constant or possibly dependent on
time).

Let us also introduce the matrices X(t), Y (t) via the evolution equations

Ẋ = AX, Ẏ = Y B , (12a)

with the initial conditions

X(0) = I, Y (0) = I . (12b)

Remark 1. The above initial conditions are chosen just for sake of simplicity: arbitrary
initial conditions yield the same results.

Obviously X ∈ Ũ , Y ∈ W̃ .

Let us show the above equations in detail:

Ẋ1 = A1X1 , (13)

Ẋ2 = A1X2 + A2X4 , (14)

Ẋ4 = A4X4 , (15)

Ẏ3 = Y3B1 + Y4B3 ; (16)

and

Ẏ1 = Y1B1 , (17a)

Ẏ4 = Y4B4 . (17b)

Given that B1, B4 are known matrices , then also Y1, Y4 are known (time dependent)
matrices.

Now consider the matrix P (t) :

P = Y X . (18)

Note that

P (t = 0) = P0 = I . (19)
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Obviously

Ṗ = Ẏ X + Y Ẋ = Y BX + Y AX = Y L̃X = Y

(

∞
∑

n=−∞

cnLn

)

X . (20)

Taking into account that

Y LnX = Y X
(

X−1LY −1
)

Y X
(

X−1LY −1
)

Y X....
(

X−1LY −1
)

Y X (21)

=
(

P
(

X−1LY −1
))n

P , (22)

we have

Ṗ =

(

∞
∑

n=−∞

cn

(

P
(

X−1LY −1
))n

)

P . (23)

Setting

L̄ =
(

X−1LY −1
)

, (24)

we have

.

L̄ = X−1
(

−AL + L̇ − LB
)

Y −1 . (25)

Thus, if

L̇ = AL + LB , (26)

then
.

L̄ = 0, L̄ = L(t = 0) = L0 . (27)

Note that

L(t) = X(t)L0Y (t) . (28)

Eq. (23) now reads

Ṗ =

(

∞
∑

n=−∞

cn (PL0)
n

)

P . (29)

Setting

P̃ = PL0 , (30)

we have

.

P̃ =
∞
∑

n=−∞

cnP̃n+1 , (31a)
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with

P̃0 = L0 . (31b)

The first order matrix equation (31a) (with the initial condition (31b)), involves just
one matrix, thus, in principle, is solvable.

Then the nonlinear matrix equation (26), is also solvable.

Sketch of the procedure

Aim: solve

L̇ = AL + LB , (32a)

with

L =

(

L1 L2

L3 L4

)

, (32b)

A + B =

(

A1 A2

0 A4

)

+

(

B1 0
B3 B4

)

= L̃ =

(

L̃1 L̃2

L̃3 L̃4

)

, (32c)

where

L̃ =

∞
∑

n=−∞

cnLn , (32d)

and the matrices B1, B4 (possibly depending on time) are known matrices.

Steps:

• given the initial data L0 , solve (31a,31b), finding P (t);

• decompose P (t) according to (18) (unique decomposition!), finding X(t), Y (t);

• according to (28), find the solution L(t) of (32).

4 Examples

• L̃ = L, B4, B1 constant matrices:

L̇1 = (L1)
2 + 2L2L3 + L1B1 − B1L1 , (33)

L̇2 = L1L2 + L2L4 + L2B4 − B1L2 , (34)

L̇3 = 2L4L3 + L3B1 − B4L3 , (35)
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L̇4 = (L4)
2 + L4B4 − B4L4 . (36)

Reductions and second order equations:
Setting

L4 = 0, L3 = C, (37)

B1 = B4 = I , (38)

we get

L̇1 = (L1)
2 + 2L2C , (39)

L̇2 = L1L2 . (40)

This simple system can be cast as second order matrix evolution equation in two ways:

L̈2 = 2L̇2L
−1
2

L̇2 + 2L2CL2 , (41)

L̈1 = L̇1L1 + 2L1L̇1 − (L1)
3

. (42)

Setting

L4 = 0 , (43)

and

S = L2L3 , (44)

we get

Ṡ = L1S − B1S + SB1 , (45)

L̇1 = (L1)
2 + 2S + L1B1 − B1L1 . (46)

Again this first order system can be cast as second order matrix evolution equation in
two ways:

S̈ = 2ṠS−1Ṡ + 2S2 + 2ṠS−1B1S − 2SB1S
−1Ṡ

−2SB1S
−1B1S + (B1)

2
S + S (B1)

2
, (47)

L̈1 = L̇1L1 + 2L1L̇1 − (L1)
3 +

+L1B1L1 + B1 (L1)
2 − 2 (L1)

2 B1 +

+2L̇1B1 − 2B1L̇1 +

− (B1)
2
L1 − L1 (B1)

2 + B1L1B1 . (48)
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• L̃ = L2, B4, B1 constant matrices:

L̇1 = (L1)
3 + 2L2L3L1 + L1L2L3 + 2L2L4L3 + L1B1 − B1L1 , (49)

L̇2 = (L1)
2
L2 + L2L3L2 + L1L2L4 + L2 (L4)

2 + L2B4 − B1L2 , (50)

L̇3 = 2 (L4)
2
L3 + L3L2L3 + L4L3L1 + L3B1 − B4L3 , (51)

L̇4 = (L4)
3 + L3L2L4 + L4B4 − B4L4 . (52)

Reductions and second order equations:

Setting:

L1 = 0, L4 = 0 , (53)

we get

L̇2 = L2L3L2 + L2B4 − B1L2 , (54)

L̇3 = L3L2L3 + L3B1 − B4L3 . (55)

The above first order system can be cast as a second order matrix evolution equation:

L̈2 = 3
(

L̇2 − L2B4 + B1L2

)

(L2)
−1
(

L̇2 − L2B4 + B1L2

)

+2
(

L̇2 − L2B4 + B1L2

)

B4 − 2B1

(

L̇2 − L2B4 + B1L2

)

+

+L2 (B4)
2 − 2B1L2B4 + (B1)

2
L2 . (56)

• L̃ = L−1, B4, B1 constant matrices:

L̇1 =
(

L1 − L2 (L4)
−1

L3

)

−1

L1

− (L1)
−1

L2

(

L4 − L3 (L1)
−1

L2

)

−1

L3 +

−L2 (L4)
−1 L3

(

L1 − L2 (L4)
−1 L3

)

−1

+L1B1 − B1L1, (57)

L̇2 =
(

L1 − L2 (L4)
−1

L3

)

−1

L2

− (L1)
−1

L2

(

L4 − L3 (L1)
−1

L2

)

−1

L4

+L2B4 − B1L2 , (58)
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L̇3 =
(

L4 − L3 (L1)
−1

L2

)

−1

L3 (59)

−L3

(

L1 − L2 (L4)
−1

L3

)

−1

+L3B1 − B4L3 ,

L̇4 =
(

L4 − L3 (L1)
−1

L2

)

−1

L4

+L4B4 − B4L4 . (60)
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