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Abstract

Berger and Stassen reviewed skein relations for link invariants coming from the simple
Lie algebras g. They related the invariants with decomposition of the tensor square of
the g-module V of minimal dimension into irreducible components. (If V 6≃ V ∗, one
should also consider the decompositions of V ⊗ V ∗ and V ∗ ⊗ V ∗.) Here we consider
decompositions into irreducible components for g-modules V of minimal dimension
over some simple and close to simple Lie superalgebras g. For the classical series (gl, sl,
osp), as well as for the Poisson and Hamiltonian algebras — “quasi-classical” analogs
of gl and sl — the answer is rather complicated due to the lack of complete reduciblity.
Contrariwise, the case of exceptional Lie superalgebras g = ag2 and ab3 turned out
to be similar to that of Lie algebras: The g-module g ⊗ g (here the representation of
minimal dimension is the adjoint one) is completely reducible and, remarkably, the
spectra of highest weights for ag2 are almost identical (in certain coordinates) to that
for ab3! We also consider g = osp

α
(4|2) for α 6= 0, 1.

Introduction

We began this work from curiosity: To see if we can advance further than in [FKV]. And
then we read Vassiliev in [V]: “Recently P. Vogel proved that our [Vassiliev’s] invari-
ants arising from Lie superalgebras are strictly stronger than the invariants arising from
quantum groups.” So we hope the experts in knots/links will be interested in our results.

In what follows the ground field is C, algebras and modules are of finite dimension; a
Lie superalgebra is said to be “classical” if it is either simple or the result of the following
iterated procedures applied to a simple Lie superalgebra g: Taking either a deformation,
or a central extension, or a (containing g) subalgebra of the algebra of derivations of g.

For preliminaries on skein relations, see [BS] and [FKV] as well as [CP]; [Se] is a
latest review of irreducible finite dimensional representations of simple (and close to them
“classical”) Lie superalgebras g(A) with Cartan matrix A; for presentations of these g(A),
see [GL3]; for a review of representation of the Lie superalgebras without Cartan matrix,
see [GLS]; for a review of indecomposable representations of simple (and close to them
“classical”) Lie superalgebras, see [L2] and also [G1], [G2].
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§1 Setting of the problem

Not being experts in the field, we know only of two (perhaps, there are more) ways to
construct link invariants from (quantum) Lie algebras.

One, described in sec. 15.2 of [CP], requires an enhanced Yang–Baxter operator; such
operators are not completely described even for Lie algebras and at the time we wrote this
were known (as far as we could see) for the Lie algebras of classical series and their identity
representations only. Observe that these operators may be considered as quantizations of
solutions to the classical YB equation, and therefore a solution to the quantum YBE.
There are, however, other solutions of QYBE, even in the cases where CYBE has no
solutions, cf. [O], [LS].

To describe such invariants for the nontrivial solutions of QYBE (e.g., the ones that
have no classical analogs, see [O], [LS]), and for Lie algebras of matrices of complex size and
their analogs [GL1] are tempting problems; we hope to consider these problems elsewhere.
As far as we know, Nazarov [N] was the only one who advanced a bit along this scenic but
unpaved road in search of link invariants.

Another approach is given in [BS]. We follow it; actually, we only consider the related
linear algebra. To be able to follow the lines of [BS], we confine ourselves to

Lie superalgebras possessing a nondegenerate even invariant bilinear form B. (∗)

We further assume our Lie superalgebras to be “classical”, although no restriction excludes
semisimple or even more general Lie superalgebras.

For any (“classical”) Lie superalgebra g satisfying (∗), we need to select a set of its
representations S = S(g) containing the trivial g-module 1 and such that the family of
g-invariant linear maps

{pX⊗Y
Z : X ⊗ Y −→ Z | X ⊗ Y ∈ S \ {1}; X,Y,Z ∈ S}

have the following properties:

(i) pX⊗Y
Z 6= 0 whenever dim Homg(X ⊗ Y,Z) 6= 0 and pad⊗ad

1
= aB for a complex

number a and the form B from (∗);

(ii) pX⊗X∗

1
(x ⊗ y) = ±(−1)p(y)p(x)pX∗⊗X

1
(y ⊗ x) for any x ∈ X and y ∈ X∗;

(iii) for any X,Y,Z ∈ S \ {1}, we have

pY ⊗Z∗

X∗ =
(

idX∗ ⊗ pZ⊗Z∗

1

)

◦
(

idX∗ ⊗ pX⊗Y
Z ⊗ idZ∗

)

◦
(

i1X∗⊗X ⊗ idY ⊗ idZ∗

)

,

where iXY ⊗Z = 0 if pY ⊗Z
X = 0 and if pY ⊗Z

X 6= 0, then the nontrivial g-invariant linear map
iXY ⊗Z is uniquely recovered from the relation

pY ⊗Z
X ◦ iXY ⊗Z = idX .

For example, if

dimHomg(X ⊗ Y,Z) is either 1 or 0 for any X,Y,Z ∈ S,

then S qualifies to be selected.



374 P Grozman and D Leites

Berger and Stassen showed that, for all simple finite dimensional Lie algebras, one can
take for S a subset of the set of irreducible submodules of the tensor products V ⊗V (and
also V ⊗ V ∗ and V ∗ ⊗ V ∗ if V does not possess a nondegenerate invariant bilinear form),
where V is the g-module of the least dimension.

The passage to superalgebras was performed, so far, along the usual road: One considers
first the simplest (most trivial) analogs of sl(2) and then goes to higher ranks. However,
the seemingly simplest super analogs of sl(2), namely, sl(1|1) or gl(1|1) are not so simple
in any sense. First, they are solvable. Second, usually, there is no complete reducibility
even for finite dimensional representations of simple Lie superalgebras. Figueroa-O’Farrill,
Kimura and Vaintrob [FKV] showed that, to consider g = gl(1|1), one has to compose
S of indecomposable, rather than of irreducible, representations. The indecomposable
representations of simple Lie superalgebras, even finite dimensional ones, can be quite
complicated or even wild ([L2], [G1], [G2]).

To follow Berger and Stassen, we only have to consider the decomposition of the tensor
square V ⊗V of a g-module V (usually, an irreducible of least dimension); although there
is no reason to expect complete reducibility, this is always a tame problem. For the
majority of series of simple Lie superalgebras, even to decompose this square V ⊗ V into
indecomposables is rather complicated and to analyze all the cases à la FKV is impossible
without computer’s aid.

We show therefore, that undertaking the straightforward superization one will in-
evitably get stuck with troubles much more serious than already considerable ones en-
countered by FKV. So our initial intention was to consider Lie (super)algebras which are
in many aspects similar to simple finite dimensional Lie algebras, more precisely, to gl(n),
but which, so far, escaped the limelight. Namely, it is highly tempting to consider gl(λ),
the Lie algebra of complex (λ ∈ C) size matrices and its generalizations ([GL1]). But gl(λ)
is of infinite dimension, so we leave it for a while and consider various “relatives” of the
Poisson Lie superalgebra po(0|2n), whose deformation is the conventional gl(2n−1|2n−1).

The algebraic part of the problem solved by Berger and Stassen is to consider a rep-
resentation V of g, decompose V ⊗ V , V ∗ ⊗ V ∗, and V ⊗ V ∗ into irreducible (in our
setting: indecomposable) pieces and select among these pieces a subset S satisfying the
above conditions (i)–(iii), if such a subset exists.

Here we perform the first step in solving this task and consider unconventional su-
per analogs of gl: finite dimensional Poisson Lie superalgebras po(0|2n) and their simple
subquotients h′(0|2n), the Lie superalgebras of Hamiltonian vector fields. The picture
becomes truly bizarre as n grows!

Contrariwise, when, inspired by Berger and Stassen who considered the exceptional Lie
algebras, we turned to the exceptional Lie superalgebras we got a nice and tidy answer
resembling that for Lie algebras.

§2 Main result

For simple finite dimensional Lie algebras, Berger and Stassen constructed a selected sets of
representations from the tensor square of the minimal representation (i.e., the irreducible
representations of least dimension), see [BS].

As shown in [FKV], for gl(1|1), in order to construct a selected set, one has to add to
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the minimal representation certain indecomposable representations.

We conjecture that similar but more involved will be the case of gl(m|n), sl(m|n) and
even more complicated for psl(n|n). We did not test which of the indecomposable represen-
tations should we take for V ; we only considered the minimal irreducible representations.

Hereafter the irreducible representations of g with a specified (say, by selecting a Cartan
matrix, cf. [GL3]) decomposition of its roots into positive and negative ones is given
in terms of the coordinates of the highest weight with respect to the basis of Cartan
subalgebra corresponding to the Cartan matrix of g, or its 0th part with respect to the
specified Z-grading in case of the absence of Cartan matrix. The highest weight vector
of the representation R(ϕ) with highest weight ϕ is supposed to be even, otherwise the
representation is denoted Π(R(ϕ)).

For simple Lie superalgebras (and their relatives), the minimal irreducible representa-
tions are as follows (as one can deduce from [K] and [Se]):

—for matrix Lie superalgebras gl(m|n) and its subalgebras sl and osp, this is the
identity (m|n)-dimensional module;

—for the exceptional Lie superalgebras ag2, ab3, and ospα(4|2) at the generic value
of parameter α, as well as for psl(n|n) and sh(0|2n), the minimal module is the adjoint
module;

—for po(0|2n), this is the subquotient representation in h′(0|2n);

—for g = osp2(4|2) and osp3(4|2) considered in realization with Cartan matrices





0 1 −3
−1 0 −2
−3 2 0



 and





0 1 0
−1 2 −3
0 −1 2



 ,

respectively, these are representations V = R(0, 0, 2) and W = R(2, 3, 0), respectively,
where the coordinates of the highest weight are given with respect to the Chevalley gen-
erators Hi = [X+

i ,X−
i ] corresponding to the above Cartan matrices.

It was natural to expect that decompositions into the direct sum of indecomposable
g-modules will be of simpler structure for gl and osp series. The reality is quite the
opposite:

gl(1|1). Even this case is pretty complicated, see [FKV].

psl(2|2) ≃ h′(0|4). It turns out that the symmetric square is completely reducible, the
highest (H) and the lowest (L) weights and the dimensions (D) are as follows (the weight
is given with respect to the natural Cartan generators of the sl(2)-summands of psl(2|2)0̄
and the grading operator):

(H) (2, 1,−1) (2, 1, 1) (0, 0, 0)
(L) (−2,−1,−1) (−2,−1,−1) (0, 0, 0)
(D) 24|24 24|24 1|0

The exterior square is indecomposable, the highest and the lowest weights and the
dimensions of the irreducible components of the Jordan-Hölder series are in the following
table, they are composed from irreducible pieces over the Lie algebra psl(2|2)0̄. Here the
first module, (6|8), is a submodule; the next five modules are glued to it, each separately;



376 P Grozman and D Leites

the last module (6|8) is glued to the sum of all the modules listed above it:

dim lowest highest

(6|8) (−1,−1, 0) (1, 1, 0)

(1|0) (−2, 0, 0) (−2, 0, 0)

(1|0) (0, 0, 0) (0, 0, 0)

(1|0) (2, 0, 0) (2, 0, 0)

(18|16) (0,−2, 0) (2, 2, 0)

(18|16) (−2,−2, 0) (0, 2, 0)

(6|8) (−1,−1, 0) (1, 1, 0)

After such horrors, here are small miracles we observed: As is easy to verify,

ag2 = osp3(4|2) ⊕ Π(W ); ab3 = osp2(4|2) ⊕ sl(2) ⊕ V ⊕ V ∗,

where V ∼= V ∗ and W ∼= W ∗ for the minimal osp2(4|2)-module V = R(0, 0, 2) and minimal
osp3(4|2)-module W = R(2, 3, 0); Π is the shift of parity functor. As always, we assume
that the highest weight vector of the module M is even, unless specified, as above.

osp2(4|2) The decompositions of the tensor square of the minimal representation of
osp2(4|2) (the symmetric and exterior squares are united in parentheses with a subscript
S or Λ, respectively) are completely reducible and as follows:

V ⊗ V ∼= (R(0, 0,−4) ⊕ R(−2,−1, 3))S ⊕ (R(−1,−2,−4) ⊕ R(0, 0, 0))Λ

The dimensions are:

dim R(0, 0,−4) = 18|6; dim R(−2,−1, 3) = 9|8;

dim R(−1,−2,−4) = 24|24; dim R(0, 0, 0) = 1|0.

osp3(4|2) The decompositions of the tensor square of the minimal representation of
osp3(4|2) (the symmetric and exterior squares are united in parentheses with a subscript
S or Λ, respectively) are completely reducible and as follows:

Π(W ) ⊗ Π(W ) ∼= (R(2, 5, 0) ⊕ R(5, 6, 1) ⊕ R(0, 0, 0))S ⊕ (R(4, 6, 0) ⊕ R(0, 4, 0))Λ

The dimensions are:

dim R(2, 5, 0) = 24|24; dim R(5, 6, 1) = 26|24; dim R(0, 0, 0) = 1|0;

dim R(4, 6, 0) = 40|40; dim R(0, 4, 0) = 9|8.

ag2 and ab3 We consider ag2 and ab3 in realization with Cartan matrices





0 1 0
−1 2 −3
0 −1 2



 and









0 1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2








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respectively; the even parts of these algebras are sl(2) ⊕ g2 and sl(2) ⊕ o(7), respectively.
The decompositions of the tensor square of the minimal representation of ag2 and ab3 (in
both cases the minimal representation is the adjoint one; the symmetric and the exterior
squares are united in parentheses with a subscript S or Λ, respectively) are as follows.

Let X±
i and Hi be the Chevalley generators corresponding to the above Cartan matrix;

for the basis of Cartan sublagebra of sl(2) we take

H0 =

{

1
2H1 − H2 −

3
2H3 for ag2

2H1 + H2 + 3H3 + 4H4 for ab3.

Then the tensor squares of the minimal modules over these algebras are completely

reducible and as follows:

ag2 : ad ⊗ ad ∼= (R(8, 0, 0) ⊕ R(7, 0, 1) ⊕ R(0, 0, 0))S ⊕ (R(8, 1, 0) ⊕ R(4, 0, 0))Λ

The dimensions are (observe that R(4, 0, 0) = ad):

dim R(8, 0, 0) = 96|96; dimR(7, 0, 1) = 147|142; dimR(0, 0, 0) = 1|0;

dim R(8, 1, 0) = 224|224; dimR(4, 0, 0) = 17|14.

ab3 : ad⊗ad ∼= (R(6, 0, 0, 0) ⊕ R(5, 0, 1, 0) ⊕ R(0, 0, 0, 0))S⊕(R(6, 1, 0, 0) ⊕ R(3, 0, 0, 0))Λ

The dimensions are (observe that R(3, 0, 0, 0) = ad):

dimR(6, 0, 0, 0) = 152|144; dim R(5, 0, 1, 0) = 147|142; dim R(0, 0, 0, 0) = 1|0;

dimR(6, 1, 0, 0) = 224|224; dim R(3, 0, 0, 0) = 26|14.

Here we encounter a remarkable coincidence obscured by our choice of coordinates for the
weights. If, instead of the Chevalley generators Hi for g, we take the Chevalley generators
hi of the even part g0̄, the weights become

(R(4, 0, 0) ⊕ R(2, 0, 1) ⊕ R(0, 0, 0))S ⊕ (R(3, 1, 0) ⊕ R(2, 0, 0))Λ for ag2

and

(R(4, 0, 0, 0) ⊕ R(2, 0, 1, 0) ⊕ R(0, 0, 0, 0))S ⊕ (R(3, 1, 0, 0) ⊕ R(2, 0, 0, 0))Λ for ab3.

In other words, the coordinates of the weights for ab3 are the same as for ag2, bar the
last coordinate 0. (This is a miracle.)

ospα(4|2) for the generic value of parameter α. We consider ospα(4|2) in the incarna-
tion with Cartan matrix





2 −1 0
1 0 −α
0 −1 2





To make the coordinates of the highest weight look more symmetric, we consider them
with respect to the first and third copies of sl(2), corresponding to the 2’s on the diagonal
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of the Cartan matrix, as expected, i.e., with respect to H1 and H3, whereas instead of H2

we take

−H2 = −2[X+
2 ,X−

2 ] + [X+
1 ,X−

1 ] + [X+
3 ,X−

3 ].

The symmetric square of ad is completely reducible, namely, apart from the Casimir
element, R(0, 0, 0), it contains 3 identical, up to permutation of the weights, modules of
dimension 24|24 each. Their weights (in the above coordinates) are as follows:

(A) (4, 0, 0) (3, 1, 1) (2, 2, 0) (2, 0, 2) (1, 1, 1) (0, 0, 0)
(B) (0, 4, 0) (1, 3, 1) (2, 2, 0) (0, 2, 2) (1, 1, 1) (0, 0, 0)
(C) (0, 0, 4) (1, 1, 3, ) (2, 0, 2) (0, 2, 2) (1, 1, 1) (0, 0, 0)

The exterior square is indecomposable of dimension 72|72. Its content as g0 module:

(3, 1, 1), (1, 3, 1), (1, 1, 3, ), (2, 2, 2), (2, 2, 0), (2, 0, 2), (0, 2, 2), (1, 1, 1)
(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 1)

The second line is an irreducible submodule (isomorphic to ad); the quotient module
is indecomposable; its dimension is equal to 54|56. The quotient of the exterior square
modulo the maximal submodule is an irreducible module (isomorphic to ad) of dimension
(72|72)/(63|64) = 9|8.

The above results are examples of what can be performed with the aide of Mathemati-

ca-based package SuperLie. For the documentation, see [SLie]; for other results (to be)
obtained with its aide, see [GL4].
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