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Abstract

The eigenvectors of the Hamiltonian HN of N -site quantum spin chains with elliptic
exchange are connected with the double Bloch meromorphic solutions of the quantum
continuous elliptic Calogero-Moser problem. This fact allows one to find the eigenvec-
tors via the solutions to the system of highly transcendental equations of Bethe-ansatz
type which is presented in explicit form.

1 Introduction

Since the fundamental paper by Hans Bethe [1] who found the solution of quite nontrivial
1D many-body problem-diagonalization of the Hamiltonian of a quantum spin chain with
nearest-neighbor exchange interaction, the next step in finding nontrivial integrable many-
body systems on a line has been done by F. Calogero in pioneering papers [2] on many-
particle systems with inverse square two-particle potential and [3] on the most general
case of a two-particle potential given by the Weierstrass elliptic ℘ function. The quantum
spin 1/2 analog of the above systems is given by the Hamiltonian

H(s) =
J

4

∑

1≤j 6=k≤N

h(j − k)(~σj~σk − 1), (1)

where

h(j) =
(ω

π
sin

π

ω

)2
[

℘N (j) +
2

ω
ζN

(ω

2

)

]

, (2)

where ℘N (x) and ζN (x) are the Weierstrass functions defined on the torus TN = C/ZN +
Zω, ω = iα and α ∈ R+ is a free parameter.

The symmetry of two limiting cases of this one-parameter model, i.e. the Bethe lattice

with nearest-neighbor interaction [1] (α → 0) and long-range
(

N
π sin πj

N

)−2
exchange [5]

(α → ∞), is now well understood and regular procedures for finding eigenvectors are
described in the literature [6, 7, 8, 9]. At present a number of impressive results are
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known for both these models. In particular they include the additivity of the spectrum
under proper choice of ”rapidity” variables [1, 7], the description of underlying symmetry
[6, 7], construction of thermodynamics in the limit N → ∞ [9,10]. However, all that still
cannot be applied to the general elliptic case.

Some years ago I showed that there is a remarkable connection between the eigenvectors
of the Hamiltonian of the above model with M down spins and double Bloch meromorphic
solutions to the quantum continuous elliptic Calogero-Moser problem at the special value
of the coupling constant, i.e. the eigenfunctions of the differential operator

H = −
1

2

M
∑

j=1

∂2

∂x2
j

+
M
∑

j 6=k

℘N (xj − xk). (3)

This allows one in principle to find an ansatz for the eigenvectors and even try to describe
them completely if the solutions to (3) are known. This has been done in the simplest
nontrivial case M = 3 in [11], where I used the result for three-particle elliptic Calogero-
Moser problem [12].

At that time the explicit form of the eigenfunctions of (3) at M > 3 was not known.
The situation changed after the appearance of paper [13] in which these eigenfunctions
have been obtained in the process of constructing solutions to the elliptic Knizhnik-
Zamolodchikov-Bernard equations. It has been the main motivation for this paper in
which I describe the complete set of the Bethe-ansatz-type equations for the eigenvectors
of (1) at arbitrary M ≤ N/2.

The paper is organized as follows. In section 2, the explicit connection between the so-
lutions of continuum and lattice problems is outlined. Section 3 is devoted to the analysis
of the continuum solution which allows one to find the relations between its Bloch factors
and to write down the Bethe-ansatz-type equations explicitly. Section 4 contains some
concluding remarks.

2 The analogy between continuum and lattice problems

The Hamiltonian (1) commutes with the operator of total spin ~S = 1
2

∑N
j=1 ~σj. The

eigenproblem for it is decomposed into the problems in the subspaces formed by the
common eigenvectors of S3 and ~S2 such that S = S3 = N/2 −M , 0 ≤M ≤ [N/2],

H(s)|ψ(M) >= EM |ψ(M) > . (4)

The eigenvectors |ψ(M) > are written in the usual form

|ψ(M) >=
N
∑

n1..nM

ψM (n1..nM )
M
∏

β=1

s−nβ
|0 >, (5)

where |0 >= | ↑↑ ... ↑> is the ferromagnetic ground state with all spins up and the
summation is taken over all combinations of integers {n} ≤ N such that

∏M
µ<ν(nµ−nν) 6=

0. The substitution of (5) into (4) results in the lattice Schrödinger equation for completely
symmetric wave function ψM

N
∑

s 6=n1,..nM

M
∑

β=1

℘N (nβ − s)ψM (n1, ..nβ−1, s, nβ+1, ..nM )



The Eigenvectors of a Heisenberg Hamiltonian 397

+





M
∑

β 6=γ

℘N (nβ − nγ) − EM



ψM (n1, ..nM ) = 0. (6)

The eigenvalues {EM} are given by

EM = J
(ω

π
sin

π

ω

)2
{

EM +
2

ω

[

2M(2M − 1) −N

4
ζN

(ω

2

)

−Mζ1

(ω

2

)

]}

, (7)

where ζ1(x) is the Weierstrass zeta function defined on the torus T1 = C/Z + Zω.

The solutions to (6) can be found with the use of the following ansatz for ψM :

ψM (n1, ..nM ) =
∑

P∈πM

ϕ
(p)
M (nP1, ..nPM ), (8)

ϕ
(p)
M (n1, ..nM ) = exp

(

−i

M
∑

ν=1

p̃νnν

)

χ
(p)
M (n1, ..nM ), (9)

where

p̃ν = pν − 2πN−1lν , lν ∈ Z, (10)

πM is the group of all permutations {P} of the numbers from 1 to M and χ
(p)
M is some

special solution to the continuum quantum many-particle problem



−
1

2

M
∑

β=1

∂2

∂x2
β

+

M
∑

β 6=λ

℘N (xβ − xλ) − EM (p)



χ
(p)
M (x1, ..xM ) = 0. (11)

It is specified up to a normalization factor by the particle pseudomomenta (p1, ..pM ). The
standard argumentation of the Floquet-Bloch theory shows that due to the periodicity of

the potential term in (49) χ
(p)
M obeys the quasiperiodicity conditions

χ
(p)
M (x1, ..xβ +N, ..xM ) = exp(ipβN)χ

(p)
M (x1, ..xM ), (12)

χ
(p)
M (x1, ..xβ + ω, ..xM ) = exp(2πiqβ(p) + ipβω)χ

(p)
M (x1, ..xM ), 0 ≤ ℜe(qβ) < 1, (13)

1 ≤ β ≤M.

The eigenvalue EM (p) is also some symmetric function of (p1, ..pM ). As we see below, the
set {qβ(p)} is completely determined by {p}.

Since ℘N (x) has a double pole at x = 0 and the coupling constant in (11) is chosen as

1, χ
(p)
M can be presented in the form

χ
(p)
M =

F (p)(x1, ..xM )

G(x1, ..xM )
, G(x1, ..xM ) =

M
∏

α<β

σN (xα − xβ), (14)

where σN (x) is the Weierstrass sigma function on the torus TN . By definition, the only
simple zero of σN (x) on TN is located at x = 0. Thus [G(x1, ..xM )]−1 absorbs all the
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singularities of χ
(p)
M on the hypersurfaces xα = xβ. The numerator F (p) in (14) should be

analytic on (TN )M . It obeys the equation

M
∑

α=1

∂2F (p)

∂x2
α

+



2EM (p) −
M

2

M
∑

α6=β

(℘N (xα − xβ) − ζ2
N (xα − xβ))



F (p)

=
∑

α6=β

ζN (xα − xβ)

(

∂F (p)

∂xα
−
∂F (p)

∂xβ

)

. (15)

The regularity of the left-hand side of (15) as xµ → xν implies that

(

∂

∂xµ
−

∂

∂xν

)

F p(x1, ..xM )|xµ=xν = 0 (16)

for any pair (µ, ν).

Now the problem is to show that only the properties (12-14,16) of χ
(p)
M allow one to

validate the ansatz (8-9) for the eigenfunctions of the lattice Schrödinger equation (6).
Substitution of (8) to (6) yields

∑

P∈πM







M
∑

β=1

Sβ(nP1, ..nPM ) +





M
∑

β 6=γ

℘N (nPβ − nPγ) − EM



ϕ
(p)
M (nP1, ..nPM )







= 0, (17)

where

Sβ(nP1, ..nPM ) =

N
∑

s 6=nP1,..nPM

℘N (nPβ − s)Q̂
(s)
β ϕ

(p)
M (nP1, ..nPM ) (18)

and the operator Q̂
(s)
β in (18) replaces the βth argument of the function of M variables to

s.
The sum (18) can be calculated in the following way. Introduce the function of one

complex variable x,

W
(β)
P (x) =

N
∑

s=1

℘N (nPβ − s− x)Q̂
(s+x)
β ϕ

(p)
M (nP1, ..nPM ). (19)

As a consequence of (12-13) it obeys the relations

W
(β)
P (x+ 1) = W

(β)
P (x), W

(β)
P (x+ ω) = exp(q̃β(p))W

(β)
P (x), (20)

where

q̃β(p) = qβ(p) +
2πilβ
N

ω.

The only singularity of W
(β)
P on the torus T1 = C/Z + Zω is located at the point x = 0.

It arises from the terms in (19) with s = nP1, ..nPM . Hence the Laurent decomposition of
(19) near x = 0 has the form

W
(β)
P (x) = w−2x

−2 + w−1x
−1 + w0 +O(x). (21)
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Using (19) one can find the explicit expressions for w−i in the form

w−2 = ϕ
(p)
M (nP1, ..nPM ) (22a)

w−1 =
∂

∂nPβ
ϕ

(p)
M (nP1, ..nPM )

+(−1)PG−1(n1, ..nM )
∑

λ6=β

Tβλ(nP1, ..nPM )Q̂
(nPλ)
β exp

(

−i

M
∑

ν=1

p̃νnPν

)

F (p)(nP1, ..nPM )

(22b)

w0 = Sβ(nP1, ..nPM ) +
1

2

∂2

∂n2
Pβ

ϕ
(p)
M (nP1, ..nPM ) + (−1)PG−1(n1, ..nM )

×
∑

λ6=β

Tβλ(nP1, ..nPM )
[

Uβλ(nP1, ..nPM )Q̂
(nPλ)
β + ℘N (nPβ − nPλ)∂Q̂

(nPλ)
β

]

(22c)

× exp

(

−i

M
∑

ν=1

p̃νnPν

)

F (p)(nP1, ..nPM ),

where

Tβλ(nP1, ..nPM ) = σN (nPλ − nPβ)

M
∏

ρ6=β,λ

σN (nPρ − nPβ)

σN (nPρ − nPλ)
,

Uβλ(nP1, ..nPM ) = ℘′
N (nPλ − nPβ) − ℘N (nPβ − nPλ)

∑

ρ6=β,λ

ζN (nPρ − nPλ),

(−1)P is the parity of the permutation P and the action of the operator ∂Q̂
(nPλ)
β on the

function Y of M variables is defined as

∂Q
(nPλ)
β Y (z1, ..zM ) =

∂

∂zβ
Y (z1, ..zM )|zβ=nPλ

. (23)

Note now that the expression for the function W
(β)
P (x) obeying the relations (20) and (21)

can be written analytically without any further freedom,

W
(β)
P (x) = exp(aβx)

σ1(rβ + x)

σ1(rβ − x)
{w−2(℘1(x) − ℘1(rβ)) + (w−2(aβ + 2ζ1(rβ)) − w−1)

×[ζ1(x− rβ) − ζ1(x) + ζ1(rβ) − ζ1(2rβ)]}. (24)

The Weierstrass functions ℘1, ζ1 and σ1 in (24) are defined on the torus T1 and the pa-
rameters aβ, rβ are chosen as to satisfy the conditions (20),

aβ = (πi)−1q̃β(p)ζ1(1/2) rβ = −(4πi)−1q̃β(p).

By expanding (24) in powers of x one can find w0 in terms of w−2, w−1, qβ and obtain the
explicit expression for Sβ(nP1, ..nPM ) with the use of (22a-c). After long but straightfor-
ward calculations the equation (17) can be recast in the form

∑

P∈πM



−
1

2

M
∑

β=1

(

∂

∂nPβ
− fβ(p)

)2

+

M
∑

β 6=γ

℘N (nPβ − nPγ) − EM +

M
∑

β=1

εβ(p)



ϕ(p)(nP1, ..nPM )



400 V I Inozemtsev

=
1

2
G−1(n1, ..nM )

∑

P∈πM

(−1)P
∑

β 6=λ

[Zβλ(nP1, ..nPM ) + Zλβ(nP1, ..nPM )] , (25)

where
fβ(p) = (πi)−1q̃β(p)ζ1(1/2) − ζ1((2πi)

−1q̃β(p)), (26)

εβ(p) =
1

2
℘1((2πi)

−1q̃β(p)) (27)

and Zβλ(nP1, ..nPM ) is defined by the relation

Zβλ(nP1, ..nPM ) = Tβλ(nP1, ..nPM )
[

Uβλ(nP1, ..nPM )Q̂
(nPλ)
β + ℘N (nPλ − nPβ)

×(∂Q̂
(nPλ)
β − fβ(p)Q̂

(nPλ)
β )

]

exp

(

−i

M
∑

ν=1

p̃νnPν

)

F (p)(nP1, ..nPM ). (28)

With the use of the definition (8) of ϕ(p), one observes that each term of the left-hand
side of (25) has the same structure as the left-hand side of the many-particle Schrödinger
equation (11) and vanishes if EM and fβ(p) are chosen as

fβ(p) = −ip̃β, β = 1, ..M, (29)

EM = EM (p) +

M
∑

β=1

εβ(p). (30)

It remains to prove that that the right-hand side of (28) also vanishes. This can be done
by the use of the observation that the sum over permutations in (28) can be simply recast
in the form

∑

P∈πM

(−1)P
∑

β 6=λ

[Zβλ(nP1, ..nPM ) − Zλβ(nPR1, ..nPRM )],

where R is the transposition (β ↔ λ) which leaves other numbers from 1 to M unchanged.
The term in square brackets is simplified drastically with the use of the identities

Tλβ(nPR1, ..nPRM ) = Tβλ(nP1, ..nPM ), Uλβ(nPR1, ..nPRM ) = Uβλ(nP1, ..nPM )

Q̂
(nPβ)
λ F (nPR1, ..nPRM ) = Q̂

(nPλ)
β F (nP1, ..nPM ).

Taking into account the relations (28-29), one finds

Zβλ(nP1, ..nPM ) − Zλβ(nPR1, ..nPRM ) = Tβλ(nP1, ..nPM )℘N (nPλ − nPβ)

× exp



−i



(p̃β + p̃λ)nPλ +

M
∑

ρ6=β,λ

p̃ρnPρ









(

∂

∂nPβ
−

∂

∂nPλ

)

F (p)(nP1, ..nPM )|nPβ=nPλ
.

(31)
Now it is clearly seen that the last factor in (31) vanishes due to the condition (16) which
follows from the regularity of the left-hand side of the Schrödinger equation (15).

The relations (29) and (30) for the spectrum are still not complete since the dependence
of {q} on {p} is not known on this stage. This completion can be done only by further
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analysis of the properties of χ
(p)
M solving Equation 11.

3 The relation between Bloch factors and equations of the BA type

The explicit dependence of {q} and EM on {p} can be found by using the results given

in [13] where the explicit form of χ
(p)
M (x) has been indicated in the process of solving the

Knizhnik-Zamolodchikov-Bernard equations. In suitable notation we have

χ
(p)
M (x) ∼ exp(i

M
∑

β=1

pβxβ)
∑

s∈πm

l(s)

m
∏

j=1

σ̃∑j
k=1(xc(s(k))−xc(s(k))+1)

(ts(j) − ts(j+1)), (32)

where m = M(M − 1)/2, c is non-decreasing function c : {1, ..,m} → {1, ..,M − 1} such
that |c−1{j}| = M − j, l(s) is an integer which is defined for the permutation s by the
relation xc(s(1))+1∂/∂xc(s(1))...xc(s(m))+1∂/∂xc(s(m))x

M
1 = l(s)(x1...xM ), {t} is a set of m

complex parameters obeying m relations [13]

∑

l:|c(l)−c(j)|=1

ρ(tj − tl) − 2
∑

l:l 6=j,c(l)=c(j)

ρ(tj − tl) +Mδcj ,1ρ(tj) = i(pc(j) − pc(j)+1), (33)

ρ(t) = ζN (t) −
2

N
ζN (N/2)t

and

σ̃w(t) = exp((2/N)ζN (N/2)wt)
σN (w − t)

σN (w)σN (t)
,

σN being the Weierstrass sigma function on TN . The elementary building blocks of the
χ function obey the useful quasiperiodicity relations

σ̃w+N(t) = σ̃w(t), σ̃w+ω(t) = e2πit/N σ̃w(t). (34)

One can see that in this construction the color function c(j) is of crucial role. It is useful
to write it explicitly. Namely, define for every k=1,..M − 1 the segment Sk

(k − 1)(2M − k)

2
+ 1 ≤ j ≤

k(2M − k − 1)

2
. (35)

Then some calculation shows that

c(j) = k if j ∈ Sk. (36)

The main advantage of the explicit form of the χ function is that it allows one to find
the second set of relations between the Bloch factors {p}and{q}. It is easy to see from
(33) that the {p}s in the definitions (12) and (32) are the same. The problem consists in
calculation of {q}. To do this it is not necessary to analyze each term in the sum over
permutations in (32) since all of them must have the same Bloch factors. It is convinient
to choose the term which corresponds to the permutation

s0 : s0(j) = m+ 1 − j, j = 1, ..,m.
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After some algebra one finds that this permutation gives a nontrivial contribution to the
sum (32) with l(s0) = M !(M − 1)!...2!. Moreover with the use of explicit form of the color
function (35-36) one finds

c(s0(l)) = M − q if q(q − 1)/2 + 1 ≤ l ≤ q(q + 1)/2.

Now the problem of calculation of the second Bloch factors reduces, due to second relation
(33), to some long and tedious, but in fact simple calculations of the product of factors
which various σ̃ functions acquire under changing arguments of the χ function to the
quasiperiod ω. The final result is surprisingly simple,

qβ(p) = N−1





∑

l:c(l)=β

tl −
∑

l:c(l)=β−1

tl



 , 1 < β < M − 1, (37)

with the first and second term being omitted for β = M and β = 1.
The equations (37), together with (29) and (33), form a closed set for finding Bloch

factors {p} and {q} at given integers {lβ} ∈ Z/MZ and determining the eigenvalues of
the spin Hamiltonian (1,2) completely. The corresponding eigenvalue of the continuum
M -particle operator (11) is given by [13]

EM (p) =
2M(M − 1)

N
ζN

(

N

2

)

+

M
∑

β=1

p2
β/2

−
1

2





m
∑

k<l

(2δc(k),c(l)F (tk − tl) − δ|c(k)−c(l)|,1F (tk − tl)) −M
∑

c(k)=1

F (tk)



 , (38)

where
F (t) = −℘N (t) + (ζN (t) − 2/NζN (N/2))2 + 4/NζN (N/2).

This allows one to find, via (7) and (30), the explicit form of the eigenvalues of spin Hamil-
tonian (1,2). It is worth noting that for their real calculation one finally has to solve the
Bethe-type equations (29), (33) and (37).

4 Discussion

I have demonstrated that the procedure of the exact diagonalization of the lattice Hamil-
tonian with the non-nearest-neighbor elliptic exchange can be reduced in each sector of the
Hilbert space with given magnetization to the construction of the special double quasiperi-
odic eigenfunctions of the many-particle Calogero-Moser problem on a continuous line.
The equations of the Bethe-ansatz form, which are obtained for the problem under con-
sideration for a first time, appear very naturally as a set of restrictions (29),(33), (37) to
the particle pseudomomenta. The proof of this correspodence between lattice and con-
tinuum integrable models is based only on analytic properties of the eigenfunctions. One
can expect that the set of spin lattice states constructed by this way is complete. This is
supported by explicit analytic proof in the two-magnon case.

The analysis of the explicit forms of the equations (33) available for M = 2, 3 shows
that the spectrum of the lattice Hamiltonian with the exchange (1) is not additive being
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given in terms of pseudomomenta {p} or phases which parametrize the sets {p, q} [11]. For
arbitrary M this can be seen directly from (38). The problem of finding the appropriate
set of parameters which gives the separation of the spectrum remains open. It would be
also of interest to consider various limits (N → ∞, α→ 0,∞) so as to recover the results
of the papers [1, 7] and prove the validity of the approximate methods of the asymptotic
Bethe ansatz.
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