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Abstract

In [15] we have proved a 1-1 correspondence between all separable coordinates on Rn

(according to Kalnins and Miller [9]) and systems of linear PDEs for separable poten-
tials V (q). These PDEs, after introducing parameters reflecting the freedom of choice
of Euclidean reference frame, serve as an effective criterion of separability. This means
that any V (q) satisfying these PDEs is separable and that the separation coordinates
can be determined explicitly. We apply this criterion to Calogero systems of particles
interacting with each other along a line.

1 Introduction

Separation of variables is the most significant method for solving Hamilton’s equations
for natural Hamiltonians and for solving the stationary Schrödinger equation. Almost all
book examples, such as the Kepler problem, the hydrogen atom, the Stark problem, the
problem of two centers of gravitation and many others have been solved by separating
equations in some appropriate curvilinear coordinates.

A physical problem, characterised by a natural Hamiltonian H = 1
2p

2 + V (q), (q, p) =
(q1, . . . , qn; p1, . . . , pn), or by a stationary Schrödinger equation

(
∑n

i=1(∂/∂qi)
2+V (q)

)

Ψ(q) =
E Ψ(q), is usually expressed in terms of Cartesian coordinates qi. The method of sepa-
ration of variables consists of finding such curvilinear coordinates x(q) = (x1, . . . , xn)
so that the transformed Hamiltonian H = 1

2p
2 + V (q) = 1

2

∑n
i,j=1 g

ij(x) yiyj + V (q(x)),
where yi denotes momenta conjugate to xi, admits an additively separated solution of
the corresponding Hamilton–Jacobi equation. For the transformed Schrödinger equation
(

∆ + V (q(x))
)

Ψ(x) = E Ψ(x) it is the question of finding a multiplicatively separated
solution Ψ(x) = ψ1(x1) · · ·ψn(xn). Until now, for each particular problem the variables of
separation have been invented through a qualified ansatz based on some transparent or,
maybe hidden, geometrical symmetry of the problem.
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1.1 The problem

When applying the method of separation of variables to physical problems, the most
important problem is to decide if a given potential V (q) is separable, i.e., to decide if there
exists coordinates x(q) such that the problem can be separated, and to determine these
coordinates explicitly in order to solve the problem.

In his lectures on dynamics, Jacobi himself considered this problem not to be algorith-
mically solvable. He writes (see the translation in Arnol’d [1, p. 266]): “The main difficulty
in integrating a given differential equation lies in introducing convenient variables, which
there is no rule for finding. Therefore, we must travel the reverse path and after finding
some notable substitution, look for problems to which it can be successfully applied.”

This statement had a profound influence on the further development of separability
theory, which mainly was concerned with the question of characterizing all separable
Hamiltonians in terms of separation coordinates. Stäckel [14] formulated a necessary
and sufficient condition for separability of natural Hamiltonians. Levi-Civita [10] found a
system of equations to be satisfied by any separable Hamiltonian. Eisenhart [6] derived a
complete description of separable Riemannian metrics gij(x) and solved his conditions for
spaces of constant curvature. Benenti [2] described completely separable webs for all natu-
ral Hamiltonians including those with cyclic coordinates. Kalnins and Miller [9] classified
all orthogonal separable coordinates on Rn and Sn.

Even if these results at first seem to be formulated only for natural Hamiltonian sys-
tems, it is known since Eisenhart [6] that (in Rn or Sn, or more generally, spaces with
diagonal Ricci tensor) the separability of such systems is equivalent to the separability of
the stationary Schrödinger equation.

We present here the main steps of the complete solution to the Jacobi problem, which
has been given in our paper [15]. The solution has the form of an algorithm, and we will
apply it to the Calogero systems of particles interacting with each other in one dimension.

2 Formulation of a criterion of separability

Not all coordinate systems allow for separation of variables. In order to understand the
criterion it is necessary to have some knowledge of separable coordinate systems.

2.1 Separable coordinate systems

The classical algebraic condition for an orthogonal coordinate system to be separable is
that the metric is in Stäckel form [14]. An equivalent condition is that the metric satisfies
a certain system of PDEs given by Levi-Civita [10]. Eisenhart [6] solved these PDEs under
the assumption of constant curvature, and found that the metric of a separable coordinate
system only can take on a few very special distinct forms. Eisenhart also determined all
corresponding coordinate systems in R3; there are eleven of them, and they are well-known
today (see for instance [12]).

Kalnins and Miller [9] subsequently generalized Eisenhart’s analysis to Rn and Sn of
arbitrary dimensions. From their results follows that all orthogonal separable coordinate
systems in Rn can be viewed as degenerations of the elliptic coordinate system introduced
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by Jacobi. This coordinate system is defined by the rational equation

1 +

n
∑

i=1

q2i
z − λi

=

n
∏

j=1

(z − xj)

/ n
∏

k=1

(z − λk),

where λ1 < · · · < λn are n fixed parameters determining the eccentricity of the coordinate
surfaces. This equation allows for determining functions qi = qi(x;λ) by examining the
residues at z = λi.

Elliptic coordinates can be subjected to an improper degeneration by letting λn tend
to +∞. This results in the subclass of parabolic coordinates: the parabolic coordinate
system with parameters λ1 < · · · < λn−1 is defined through the equation

n−1
∑

i=1

q2i
z − λi

+ 2qn − z = −
n

∏

j=1

(z − xj)

/ n−1
∏

k=1

(z − λk).

Elliptic and parabolic coordinates can also be degenerated by letting some parameters
coincide; this introduces a spherical symmetry in the subspace corresponding to the co-
inciding parameters. In these subspaces Rm, a special kind of polar coordinates (r, ω)
known as conical coordinates have to be introduced to preserve separability. These are
defined by q = rω and ω2

1 + · · · + ω2
m = 1 (so that r2 = q21 + · · · + q2m) and by choosing

elliptic coordinates on the unit sphere. In general, the elliptic coordinate system on Sm−1

(embedded in Rm) with parameters λ′1 < · · · < λ′m (which should not be confused with
the coinciding lambdas from the definition of degenerated elliptic/parabolic coordinates)
is defined through the equation

m
∑

i=1

ω2
i

z − λ′i
=

m−1
∏

j=1

(z − xj)

/ m
∏

k=1

(z − λ′k).

The radii r will then replace the Cartesian coordinates corresponding to the subspaces Rm

in the definition of elliptic or parabolic coordinates on Rn. Together with the coordinates
on the spheres, this yields a coordinate system on Rn.

The elliptic coordinates on the sphere can also be degenerated by letting parameters
coincide, and on the corresponding subspheres, new elliptic coordinates have to be intro-
duced. This process can then be continued in a recursive manner to generate all degenerate
elliptic and parabolic coordinate systems.

To get all separable orthogonal coordinate systems, degenerate or non-degenerate ellip-
tic or parabolic coordinate systems can be glued together orthogonally. By this is meant
that Rn is considered an orthogonal sum of subspaces, on which the above-mentioned
coordinate systems are introduced. For instance, the Cartesian coordinate system is the
ultimate variant of this construction, since it can be viewed as a sum of n one-dimensional
elliptic coordinate systems. All coordinate systems constructed this way are given with
respect to a canonical Euclidean reference frame {q}. It is however also possible to sub-
ject Rn to a Euclidean transformation q → Aq+ b, which is the composition of a rotation
[multiplication by a SO(n) matrix A] and a translation (addition of a vector b).

As follows from Kalnins and Miller [9], it is sufficient to consider orthogonal separability
since any non-orthogonal separable potential (in Rn or Sn, or more generally, Riemannian
spaces of constant curvature) always admits orthogonal separation.
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2.2 PDEs that characterize separable potentials

Already Levi-Civita derived a system of
(

n
2

)

PDEs that a separable potential given in
separation coordinates has to satisfy. However, a physical potential V (q) is usually given
in Cartesian coordinates and appropriate separation coordinates have to be found.

The first attempts to characterize separable potentials V (q) were made by Rauch-
Wojciechowski [17], Marshall and Rauch-Wojciechowski [11] and by Benenti [3], who in-
dependently and by different means proved the following. (In the former references a
larger dependent set of PDEs was given but, as is shown in [15, Proposition A.1], they are
equivalent to the PDEs given below.)

Theorem 1 (Elliptic separability). A potential V is separable in elliptic coordinates
with parameters λi if and only if it satisfies the system of

(n
2

)

PDEs

(λi − λj)∂ijV − Jij(2 + R)V = 0, i 6= j, (2.1)

where Jij = qi∂j − qj∂i and R =
∑n

i=1 qi∂i.

The partial derivatives are ∂i = ∂/∂qi and ∂ij = ∂2/∂qi∂qj, so that the PDEs (2.1)
are formulated purely through Cartesian coordinates. Since the PDEs also involve the
parameters of the elliptic coordinates, they can be used to test if a potential V (q) is
separable in an elliptic coordinate system. Namely, if it is possible to find values of the
parameters λi so that the potential satisfies (2.1), then the potential separates in elliptic
coordinates with these parameters.

Equations (2.1) are given in a fixed canonical Euclidean reference frame {q}, and as
such they do not take into account the freedom of choice of a Euclidean reference frame.
This freedom has to be introduced by substituting q̃ = AT (q − b), A ∈ SO(n), b ∈ Rn,
for q, where the orthogonal matrix A obeys the non-linear constraint ATA = Id. If we
rename q into q̃ in equations (2.1) and plug in q̃ = AT (q − b) then

(λk − λl)
∑

r,s

ArkAsl∂rsV −
∑

r,s

(ArlAsk −ArkAsl)(qs − bs)∂r

[

2 +
∑

t

(qt − bt)∂t

]

V = 0.

By multiplying with AT
kiA

T
lj and summing over k and l we get

∑

r

(Sri∂rj − Srj∂ri)V − [(qi − bi)∂j − (qj − bj)∂i]

[

2 +
∑

t

(qt − bt)∂t

]

V = 0 (2.2)

where S = (Sij) = Adiag(λ1, . . . , λn)AT is a symmetric matrix with all matrix elements
free. By performing differentiations in (2.2) and by renaming coefficients as β = −αb,
γ = α(bbT − S) we get equations (2.3) below. Surprisingly, in the transformed equations
(2.3), the constraint ATA = Id disappears and all parameters are again free. This makes
practical application of these equations as a criterion of separability exceptionally simple.

Lemma 2 ([15, Lemma 4.1]). A necessary and sufficient condition for a potential V
to be separable in an elliptic coordinate system with respect to some Euclidean reference
frame, is that it satisfies

∑

k

(

(αqiqk + βiqk + βkqi + γik)∂kjV − (αqjqk + βjqk + βkqj + γjk)∂kiV
)

+

3
(

(αqi + βi)∂jV − (αqj + βj)∂iV
)

= 0, (2.3)



Effective Criterion of Separability for Calogero Type Systems 539

for some parameters α, βi, γij = γji, which fulfil the condition

α 6= 0 and ββT − αγ has simple eigenvalues, (2.4)

where β = (βi) ∈ Rn and γ = (γij) is a real symmetric n× n matrix.

For a trivial set of parameters

α = 0, β = 0, γ = t (Id), t ∈ R,

Equations (2.3) are satisfied by an arbitrary V . On the other hand, (2.4) is precisely the
condition needed to guarantee that V satisfies (2.1) after a Euclidean transformation of
V .

We call Equations (2.3) Bertrand–Darboux (BD) equations since they play the same
role for detecting separability of V (q) as the two-dimensional BD equation [11, 16].

2.3 A criterion for elliptic separability in a general frame

A direct consequence of the proof of Lemma 2 is the following corollary, which explains
how to construct the separation coordinates.

Corollary 3 ([15, Corollary 4.2]). Suppose that the potential V (q) satisfies the hypoth-
esis of Lemma 2. Then it is separable in the elliptic coordinate system {xi} defined by
1 +

∑n
i=1 (q′i)

2/(z − λi) =
∏n

j=1(z − xj)
/
∏n

k=1(z − λk). The Cartesian coordinates q′i are

related to qi through q = Aq′+ b where b = −α−1β. The parameters λk are the eigenvalues
of the symmetric matrix S = bbT − α−1γ sorted in increasing order λ1 < · · · < λn. The
orthogonal matrix A is given by the relation S = Adiag(λ1, . . . , λn)AT .

This corollary shows how the BD equations can be used as a criterion of separability
to test if potentials given in Cartesian coordinates are separable in elliptic coordinates. A
simple algorithm that shows how to proceed can be formulated as follows:

1) Insert V (q) into the BD equations, which has to be satisfied identically with respect
to qi, i = 1, . . . , n. This gives a system of linear homogeneous algebraic equations for the
unknown parameters α, βi, γij . If α = 0, then V (q) is not separable in elliptic coordinates.

2) If α 6= 0, set b = −α−1β, S = bbT −α−1γ, and diagonalize S = Adiag(λ1, . . . , λn)AT .
If some eigenvalues λi coincide, then V (q) is not separable in elliptic coordinates. Other-
wise V (q) is separable in elliptic coordinates with parameters λi. The change of coordinates
is given in the corollary.

Note that this algorithm not only gives definite answers to the question if a given
potential is separable in elliptic coordinates; it also gives an explicit construction of these
coordinates in the separable case.

2.4 A general criterion of separability

What can be said if condition (2.4) is not fulfilled but the potential V (q) nevertheless satis-
fies the BD equations with non-trivial parameters? Since elliptic coordinates are the most
general separable coordinates, one may expect separability in some of its degenerations.
The following theorem clarifies the situation; it gives a classification of the equations that
are satisfied.
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Theorem 4 ([15, Theorem 4.3]). The BD equations can always be brought into one
of the following three canonical forms by a transformation to the canonical Euclidean
reference frame. If α 6= 0, the canonical form is the elliptic

(λi − λj)∂ijV − Jij(2 + R)V = 0; (2.5a)

if α = 0 and β 6= 0, it is the parabolic

(λi − λj)∂ijV + Jij∂nV + (δin∂j − δjn∂i)(2 + R)V = 0; (2.5b)

if α = 0 and β = 0, it is the Cartesian

(λi − λj)∂ijV = 0; (2.5c)

where Jij = qi∂j − qj∂i and R =
∑n

i=1 qi∂i. In all these systems, indices i, j = 1, . . . , n are
distinct.

The parameters λi occurring in the theorem, as well as the Euclidean transformation
q → Aq + b, can be determined similarly as in Corollary 3. These procedures, which
slightly differ in each case, essentially consist of diagonalizing a symmetric matrix that is
a linear function of γ. An application of the spectral theorem gives the rotation matrix A
and the eigenvalues λi. The translation vector b is linear in β.

There are only n − 1 parameters in the definition of the parabolic coordinate system;
in order to incorporate these into the general picture, the convention λn = 0 is therefore
used. Equations (2.5b) are thus a shorthand for (λi −λj)∂ijV + Jij∂nV = 0 and λi∂inV +
Jin∂nV − ∂i(2 + R)V = 0, where i, j = 1, . . . , n− 1, i 6= j.

The significance of Theorem 4 is the following. Suppose that a potential satisfies the
BD equations (2.3) for certain values of the parameters. Then, by rewriting it in the
canonical Euclidean frame, the transformed potential satisfies one of the three canonical
forms of the BD equations (2.5). Since the general solution of these systems is known [15,
Theorem 5.3], it only remains to explain what this indicates for the particular potential
under study.

2.4.1 Distinct lambdas

If all λi are distinct, it follows that the potential is separable in elliptic, parabolic or Carte-
sian coordinates. Indeed, the elliptic case has already been discussed, and analogously,
Equations (2.5b) and (2.5c) are satisfied only by potentials separable in parabolic and
Cartesian coordinates respectively. The reason for this is that (2.5b) arise when degener-
ating the elliptic coordinates in Theorem 1 to parabolic coordinates as discussed earlier
by letting λn tend to +∞. Further, it is clear that the general solution of (2.5c) is a
sum of functions of one variable V = V(1)(q1) + · · ·+ V(n)(qn) and this is the most general
potential that is separable in Cartesian coordinates.

2.4.2 Coinciding lambdas

Suppose now that some lambdas coincide. Then the potential may be separable in a
degenerated coordinate system; the type is decided by α and β as in Theorem 4. For
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the sake of brevity, assume that the lambdas are sorted in non-decreasing order and that
there is only one group of coinciding lambdas: λ1 < · · · < λi = · · · = λj < · · · < λn,
where 1 ≤ i < j ≤ n. If there are more than one group of coinciding lambdas, the
corresponding degenerations have to be taken care of by an obvious generalization of the
procedure presented below.

Cartesian case. It is immediate that the potential can be written

V = V(1)(q1) + · · · + V(i−1)(qi−1) + V(i)(qi, . . . , qj) + V(j+1)(qj+1) + · · · + V(n)(qn).

It is separable if V(i)(qi, . . . , qj) is separable regarded as a potential, which can be tested by
using a lower-dimensional system of BD equations. The separation coordinates will be of
orthogonal sum-type: Cartesian coordinates in {q1, . . . , qi−1, qj+1, . . . , qn} and appropriate
separation coordinates on {qi, . . . , qj}.
Elliptic/Parabolic cases. The coinciding lambdas indicate that a spherical symme-
try is present in the potential and that polar coordinates should be introduced in the
corresponding subspace. Set (qi, . . . , qj) = r · (ωi, . . . , ωj), where ωi, . . . , ωj are Cartesian
coordinates on the unit sphere in the subspace {qi, . . . , qj}. It turns out that the potential
can be written as

V = f(q1, . . . , qi−1, r, qj+1, . . . , qn) + r−2 g(ωi, . . . , ωj),

and that the function f , regarded as a potential, is separable in elliptic/parabolic coor-
dinates with parameters λ1, . . . , λi−1, λi, λj+1, . . . , λn. This means that the spherical part
g can be separated off and that V is separable if this part is also separable regarded
as a potential on the unit sphere. However, if j = i + 1, it is always possible to set
(qi, qj) = r · (cosϕ, sinϕ), and g is trivial from the point of view of separability since it
only depends on ϕ.

For disclosing separability of the spherical part, there is a test similar to the previous
one. It uses cyclic Bertrand–Darboux (CBD) equations:

Theorem 5 ([15, Theorem 4.4]). The CBD equations

∑

ℓ

(

(γiℓqj − γjℓqi)∂kℓV + (γjℓqk − γkℓqj)∂iℓV + (γkℓqi − γiℓqk)∂jℓV
)

= 0, (2.6)

where γij = γji, can always be brought into the canonical cyclic form

λ′i∂iJjkV + λ′j∂jJkiV + λ′k∂kJijV = 0 (2.7)

by a transformation to the canonical Euclidean reference frame.

Both systems (2.6) and (2.7) are linearly dependent; a basis is formed by fixing one
index as below. The CBD equations were first published in [3], but they also follow from
the large set of linearly dependent equations given in [11].

Also in this case the transformation q → Aq and the lambdas follow from the diagonal-
ization of γ = Adiag(λ′1, . . . , λ

′
n)AT . Notice that there is no translation vector b here since

the center of Euclidean reference frame is fixed now. The meaning of the CBD equations
can be stated as follows:
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Theorem 6 (Conical separability). A potential V is separable in conical coordinates
with parameters λ′i if and only if it satisfies the system of

(n
2

)

PDEs

J1i(2 + R)V = 0, i = 2, . . . , n, (2.8a)

λ′1∂1JijV + λ′j∂jJ1iV + λ′i∂iJj1V = 0, i 6= j, i, j = 2, . . . , n. (2.8b)

As formulated here, there are two types of equations that characterize potentials sep-
arable in conical coordinates. Equations (2.8a) ensure that the form of the potential is
f(r) + r−2g(ω) in polar coordinates, while Equations (2.8b) ensure that g is separable in
elliptic coordinates on the sphere.

It should be noted that the system of elliptic canonical equations (2.1) with all coincid-
ing parameters λ1 = · · · = λn, due to linear dependence of the operators Jij is equivalent
to (2.8a). This implies that if a potential satisfies the BD equations with α 6= 0 and all
lambdas coincide, then it is separable in conical coordinates if it also satisfies the CBD
equations with distinct (primed) lambdas. This is in agreement with the general procedure
outlined above.

3 Examples

Since any separable coordinate system is a possibly degenerated elliptic or parabolic co-
ordinate system, or is made up of an orthogonal sum of such systems, the considerations
in the previous section explain why the BD equations are a natural starting point in the
investigation of separability of any given potential.

3.1 Three-dimensional Coulomb anisotropic harmonic oscillator

The Coulomb anisotropic harmonic oscillator potential [7] can be written

V (q) = (q21 + q22 + q23)
−1/2 + q21 + q22 + 4q23 + 2σ q3,

where σ is a constant. The potential satisfies the BD equations with

α = 0, β = (0, 0, w)T , γ = t (Id), w, t ∈ R,

which corresponds to rotational parabolic coordinates defined by

qT =
(

r(x1, x2) · cos x3, r(x1, x2) · sinx3, q3(x1, x2)
)

− 1
2t(0, 0, 1).

Here (x1, x2) are parabolic coordinates in {r, q3} with parameter λ1 = t, and x3 is a
coordinate on the unit sphere in {q1, q2}. The parabolic coordinates are given by r2/(z −
t) + 2q3 − z = −(z − x1)(z − x2)/(z − t), which yields r = [−(t − x1)(t − x2)]

1/2 and
q3 = 1

2(x1 + x2) − 1
2t.

Since the potential only involves q1 and q2 in the combination q21 + q22 = r2, it is
independent of x3, which therefore is a cyclic coordinate. In the coordinates (x1, x2, x3),
the potential takes the form

V =
f(x1) − f(x2) + 2

x1 − x2
, f(x) = x3 + (σ − 3t)x2 + (3t2 − 2σt)x,

which admits separation of variables. The parameter t remains free and can be chosen
arbitrarily.
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3.2 Four-dimensional Calogero inverse-square potential

The Calogero system consists of n particles interacting with each other along a line under
the action of an inverse square potential depending on the distance qi−qj between particles.
This potential for n = 3 was considered already by Jacobi [8]. It attracted again attention
of Calogero in 1969 [5] who rediscovered its separability and also studied the quantum
version of this problem when an external, homogeneous, harmonic potential 1

2ω
2(q21 +

· · ·+ q2n) is added. Since then this system attracted enormous attention as a key example
for illustrating the use of isospectral methods in classical mechanics. It has many known
generalisations related to Lie algebras, to periodic boundary conditions and it admits
adding of diverse external potentials (like the harmonic one) while preserving integrability
of the system [13].

In three dimensions, the Calogero inverse-square potential is separable in five different
coordinate systems [5, 4, 15]. The four-dimensional variant

V (q) = (q1 − q2)
−2 + (q1 − q3)

−2 + (q1 − q4)
−2 + (q2 − q3)

−2 + (q2 − q4)
−2 + (q3 − q4)

−2

satisfies the BD equations with

α = v, β = w ·N, γ = t (Id) + s (NNT − Id), v, w, t, s ∈ R,

where N = (1, 1, 1, 1)T . Since v and w can be chosen independently, all three cases of
Theorem 4 occur.

Elliptic case. The parameters are λ1 = λ2 = λ3 = (s− t)/v and λ4 = (4r2−3sv− tv)/v.
These can further coincide, giving rise to two different subcases: lambdas of multiplicity 4
and lambdas of multiplicity 3 and 1. In the latter case, the rotation matrix A can be taken
as

A =









−1/
√

6 −1/
√

2 −1/
√

12 −1/2

−1/
√

6 1/
√

2 −1/
√

12 −1/2

0 0 3/
√

12 −1/2

2/
√

6 0 −1/
√

12 −1/2









.

Multiplicity 4. The radius in R4 can be separated off and the remaining part decides
about further separability. This is tested by the four-dimensional CBD equations, giving

γ = t (Id) + s (NNT − Id), t, s ∈ R.

This matrix has the same eigenvalues λ′i as the parameters lambda above: λ′i = λi,
i = 1, 2, 3, 4. Suppose here that t and s are chosen so as to give multiplicity 3 and 1,
in order to avoid trivial parameters corresponding to non-separability. On the eigenspace
of dimension three, V is again tested using the three-dimensional CBD equations. This
yields γ = t (Id), which means that V is not separable since it has a non-separable part.
Nevertheless, the criterion shows that V is partially separable in the coordinates defined
by

q = r(x1) · A
(

ω1(x2) ω̃1(x3, x4), ω1(x2) ω̃2(x3, x4), ω1(x2) ω̃3(x3, x4), ω2(x2)
)T
.
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Here x1 is a coordinate on the positive half-axis corresponding to the radius, x2 is a
coordinate on the unit sphere {ω1, ω2} and (x3, x4) are some coordinates on the unit
sphere {ω̃1, ω̃2, ω̃3}. A possible choice is r = x1 and ω1(x2) = cosx2 and ω2(x2) = sinx2.
In these coordinates, the potential attains the form V = r−2 ω−2

1 h(ω̃1, ω̃2, ω̃3), where h is
non-separable. It can thus be concluded that the potential is indeed partially separable
since

f(r) + r−2[g(ω1, ω2) + ω−2
1 h(ω̃1, ω̃2, ω̃3)]

is the most general potential that is separable in these coordinates provided that h is
separable regarded as a potential on the two-dimensional unit sphere {ω̃1, ω̃2, ω̃3}. In V ,
it is possible to separate off x1 and x2.

Multiplicity 3 and 1. As in the previous case, the three-dimensional CBD equations
are applied to the three-dimensional eigenspace. It yields partially separable coordinates

q = A
(

r1(x1, x2)ω1,1(x3, x4), r1(x1, x2)ω1,2(x3, x4), r1(x1, x2)ω1,3(x3, x4), r2(x1, x2)
)T
,

where (x1, x2) are elliptic coordinates in {r1, r2} and (x3, x4) are some coordinates on the
unit sphere {ω1,1, ω1,2, ω1,3}.
Parabolic case. This gives results similar to the second elliptic case above, except that
(x1, x2) now are parabolic coordinates.

Cartesian case. Here the three-dimensional BD equations are applied to the three-
dimensional eigenspace. This gives

α = s, β = 0, γ = t (Id), t, s ∈ R,

which indicates that polar coordinates should be introduced on this subspace. In order
to decide appropriate coordinates on the unit sphere, the three-dimensional CBD are
employed as above. The result is the same, giving partially separable coordinates

q = A
(

r(x1)ω1,1(x2, x3), r(x1)ω1,2(x2, x3), r(x1)ω1,3(x2, x3), q
′
4

)T
.

Summary of the analysis. The four-dimensional Calogero potential studied here is not
fully separable in any coordinate system, but partially separable in four different types of
coordinate systems. In all cases two variables can be separated off, leaving a non-separable
function on S2. For the three-dimensional Calogero potential, the corresponding function
lives on S1 and is thus trivially separable, resulting in full separation. The two variables
that can be separated off reflect the invariance of the Calogero Hamiltonian with respect
to translations generated by

∑

pi and dilatations generated by
∑

qipi. It is expected that
for the n-dimensional Calogero potential, again two variables can be separated off, leaving
a non-separable part on Sn−2.

3.3 Three-dimensional generalized Calogero inverse-square potential

A detailed account for an analysis of the Calogero inverse-square potential using the cri-
terion is given in [15, § 7.2]. Here we outline the main features of a similar analysis of the
generalized potential

V (q) = c1(m1q1 −m2q2)
−2 + c2(m2q2 −m3q3)

−2 + c3(m3q3 −m1q1)
−2 (3.1)
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with arbitrary mi > 0 and coupling constants ci 6= 0. This potential follows from the
Calogero system of three particles with different masses µ1, µ2, µ3 and with different
coupling constants γ1, γ2, γ3 defined by

H = 1
2

(

p2
1

µ1
+
p2
2

µ2
+
p2
3

µ3

)

+
γ1

(q1 − q2)2
+

γ2

(q2 − q3)2
+

γ3

(q3 − q1)2
.

By defining new momenta as pk/
√
µk and new positions as

√
µk qk we obtain potential

(3.1). It satisfies the BD equations with

α = v, β = w ·M, γ = t (Id) + s ·MMT , v, w, t, s ∈ R,

where M = (m−1
1 ,m−1

2 ,m−1
3 )T . The most striking result of this analysis is its indepen-

dence of the coupling constants, which means that they do not have any impact on the
separability issue.

We note that the parameters become the same as in the original case considered in [15]
by simply setting all masses equal to unity: M = (1, 1, 1)T . If one goes through all different
cases corresponding to different choices of v, w, t, s (as in [15] and as in § 3.2 above),
one will find that the generalized potential is separable in exactly the same coordinate
systems as the original potential; the only difference being in the choice of Euclidean
reference frame. Thus, the extra “freedom” in the choice of parameters obtained in the
generalisation makes no essential difference.

The criterion selects the rotation matrix

A∗ =





−m1 −m1 m−1
1

m2 0 m−1
2

0 m3 m−1
3









N1 0 0
0 N2 0
0 0 N3





(N1, N2, N3 are normalisation factors) for the family of changes of Euclidean reference
frame q = A∗q

′ + uM parametrized by u ∈ R. In any such frame, the potential becomes
independent of q′3. Together with the fact that the potential is homogeneous of degree −2,
this is responsible for separability in five different rotationally symmetric coordinate sys-
tems, which are all detected by the criterion:

Oblate and prolate spheroidal coordinates as well as rotational parabolic coordinates
can all be written

q′ =
(

r1(x1, x2)ω1,1(x3), r1(x1, x2)ω1,2(x3), r2(x1, x2)
)T

with the most general separable potential V = f(r1, r2) + r−2
1 g(x3).

Spherical coordinates can be written

q′ =
(

r ω1(x2) ω̃1(x3), r ω1(x2) ω̃2(x3), r ω2(x2)
)T

with the most general separable potential V = f(r) + r−2
(

g(x2) + ω1(x2)
−2h(x3)

)

.
Cylindrical coordinates can be written

q′ =
(

rω1(x2), rω2(x2), q
′
3

)T

with the most general separable potential V = f(r) + r−2 g(x2) + h(q′3).
It is easily seen that the generalized Calogero potential studied here takes all of the

above forms with vanishing functions f and h. This also explains why the separability is
independent of the coupling constants.
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4 Conclusions

We have explained here the main points of our criterion of separability for natural Hamil-
tonian systems. Due to the 1-1 relationship between all separable coordinate systems on
Rn and Sn (as classified by Kalnins and Miller [9]) and second order PDEs satisfied by
separable V (q) (the BD equations), any given potential can be tested for separability. For
separable potentials V (q), the separation coordinates can be determined explicitly and the
corresponding Hamilton–Jacobi equation can be solved by an additive ansatz. The exam-
ples of the three-dimensional Coulomb anisotropic harmonic oscillator and of the three-
and four-dimensional Calogero inverse-square potentials demonstrate practical use of the
BD equations as an effective criterion of separability.
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