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Abstract

Time-discretized versions of F. Calogero’s rational and hyperbolic “goldfish” systems
are presented, and their exact solutions are given.

1 Introduction

The central role played in the modern mathematical physics by the multi-particle systems
of the Calogero-Moser type is widely accepted. They include the original Calogero-Moser
(CM) models [1, 6], and a widely ramified tree of their generalizations. The original CM
models (rational, hyperbolic, or elliptic) are governed by Newtonian equations of motion

ẍk = −
∑

j 6=k

V ′(xk − xj), (1.1)

with the potential V of the respective type:

V(x) = −γ2/x2 , or V(x) = −γ2/sinh2(x) , or V(x) = −γ2℘(x) . (1.2)

The parameter γ is usually supposed to be pure imaginary in order to assure the repulsive
nature of pairwise interactions at small distances. One can consider rational, resp. hyper-
bolic model as a particular case of the elliptic one when both or one of the periods of the
elliptic functions are sent to infinity.

A relativistic generalization of the Calogero-Moser models constitute the Ruijsenaars-
Schneider (RS) models [7]. They are governed by Newtonian equations of motion,

ẍk =
∑

j 6=k

ẋkẋjW(xk − xj), (1.3)
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where

W(x) =
2γ2

x(γ2 − x2)
, or W(x) =

2 sinh2(γ) coth(x)

sinh2(γ) − sinh2(x)
, or W(x) =

℘′(x)

℘(γ) − ℘(x)
.

(1.4)

To list some of generalizations of the CM type models, going in various directions, we
mention: (i) CM and RS models with external potentials; (ii) spin CM and RS models
with additional internal degrees of freedom; (iii) CM and RS models associated to root
systems; (iv) quantum-mechanical CM and RS models; and so on. Various generalizations
can be combined almost freely among themselves. This gives a huge tree of integrable
models.

In the present paper we are dealing with a curious limiting case of the RS models,
which however was discovered by Calogero [2] in 1978, well before the full RS systems
were found by Ruijsenaars and Schneider. These systems correspond to the limit γ → ∞,
which makes sense in the rational and hyperbolic cases only. In this limit the first and the
second functions in (1.4) turn into

W(x) =
2

x
, resp. W(x) = 2 coth(x) , (1.5)

so that Newtonian equations (1.3) become

ẍk =
∑

j 6=k

2ẋkẋj

xk − xj

, resp. ẍk =
∑

j 6=k

2ẋkẋj coth(xk − xj) . (1.6)

Their discoverer attributes to them the status of a “goldfish”, the “neatest many–body
problem amenable to exact treatments”, see [3, 4]. Indeed, the corresponding equations
(1.3) are, in a sense, degenerate, and can be solved in a very neat and explicit form:
ξ = xk(t), k = 1, 2, . . . , N , are the N roots of the equation

N∑

j=1

ẋj(0)

ξ − xj(0)
=

1

t
, resp.

N∑

j=1

ẋj(0) coth(ξ − xj(0)) = v coth(vt) , (1.7)

where v =
∑N

k=1
ẋk is an integral of motion.

Our main goal in this paper is to present the time discretization of these “goldfish”
models, which share the outstanding properties with their continuous time counterparts.
These discrete time Newtonian equations of motion read:

x̃k − xk

xk − x
˜k

=
∏

j 6=k

xk − x
˜j

xk − x̃j

, resp.
sinh(x̃k − xk)

sinh(xk − x
˜k)

=
∏

j 6=k

sinh(xk − x
˜j)

sinh(xk − x̃j)
. (1.8)

These are second order difference equations for the functions x : hZ → R
N , where we write

xk for xk(t), x̃k for xk(t + h), and x
˜k for xk(t − h), respectively. One immediately sees

that these equations approximate eqs. (1.6) in the limit h → 0, if one assumes that the
functions x are interpolated by some smooth functions x : R → R

N at the points t ∈ hZ,
so that

x̃k = xk + hẋk + h2

2
ẍk + o(h2), x

˜k = xk − hẋk + h2

2
ẍk + o(h2).
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Indeed, the left-hand and the right-hand sides of eqs. (1.8) approximate

1 +
hẍk

ẋk

+ o(h) and 1 + h
∑

j 6=k

ẋjW(xk − xj) + o(h),

respectively. Eqs. (1.8) are Lagrangian, i.e., they admit the variational formulation:
solutions x are critical points of some action functional

∑
t∈hZ

Λ(x(t + h), x(t)). The
corresponding Euler–Lagrange equations have the form

∂

∂xk

(
Λ(x̃, x) + Λ(x, x

˜
)
)

= 0,

and can be put down as

pk = −∂Λ(x̃, x)/∂xk , p̃k = ∂Λ(x̃, x)/∂x̃k . (1.9)

The latter formulas determine a symplectic map (x, p) 7→ (x̃, p̃). See [8] for a general
theory of discrete time Lagrangian mechanics and for the corresponding references.

We will present in Sect. 4, 6 the explicit solutions for these discrete time systems. It
should be mentioned that we do not study the qualitative behaviour of these solutions, in
particular, we do not worry about the collisions and the continuation of solutions beyond
collisions. This might be a topic of a separate publication. For the reader’s convenience,
we reproduce the explicit solutions of the continuous time systems in our notations in Sect.
3, 5. Our derivation is somewhat different from the original one by F. Calogero, which
was based on the study of certain linear differential equations with partial derivatives.

2 Hamiltonian formulation of the goldfish models

The Newtonian equations of motion (1.3), written in the first-order form,

ẋk = bk , ḃk =
∑

j 6=k

bkbjW(xk − xj) , (2.1)

can be easily given a Hamiltonian formulation. Namely, these models are Hamiltonian
with respect to the following Poisson brackets:

{xk, xj} = 0, {bk, xj} = bkδkj , {bk, bj} = −(1 − δkj)bkbjW(xk − xj) , (2.2)

and with the Hamilton function

H(x, b) =
N∑

k=1

bk . (2.3)

The above brackets can be realized by the canonically conjugate variables (xk, pk) with
the Poisson brackets

{xk, xj} = 0, {pk, xj} = δkj , {pk, pj} = 0, (2.4)

by means of the formulas

bk = epk
∏

j 6=k

(xk − xj)
−1, resp. bk = epk

∏

j 6=k

(sinh(xk − xj))
−1. (2.5)
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3 Explicit solution of the rational system

Theorem 1. The solution of the initial value problem for the equation (1.3) with W(x) =
2/x, i.e.

ẍk =
∑

j 6=k

2ẋkẋj

xk − xj

, (3.1)

with the initial data

xk(0), ẋk(0) = bk(0), (3.2)

is given by the following statement: ξ = xk(t), k = 1, 2, . . . ,N , are the N roots of the
equation

N∑

j=1

bj(0)

ξ − xj(0)
=

1

t
. (3.3)

Proof. Define the quantities xk = xk(t) for k = 1, 2, . . . ,N as the N roots of the equation
(3.3). Hence, they are the roots of the following monic polynomial of degree N :

p(ξ; t) =
N∏

k=1

(ξ − xk(t)) =
N∏

k=1

(ξ − xk(0))


1 − t

N∑

j=1

ẋj(0)

ξ − xj(0)


 . (3.4)

Expanding for small t, we see that they satisfy the desired initial conditions (3.2). By
differentiating with respect to t, we find the following identity:

pt(ξ; t) =
N∏

k=1

(ξ − xk(t))
N∑

j=1

−ẋj(t)

ξ − xj(t)
=

N∏

k=1

(ξ − xk(0))
N∑

j=1

−ẋj(0)

ξ − xj(0)
. (3.5)

Thus, the following quantity is an integral of motion (does not depend on t):

P (ξ) =

N∏

k=1

(ξ − xk)

N∑

j=1

ẋj

ξ − xj

. (3.6)

Differentiating (3.5) with respect to t once more, we find:

0 = ptt(ξ; t) = p(ξ; t)


−

N∑

k=1

ẍk

ξ − xk

+
∑

k,j

′ ẋkẋj

(ξ − xk)(ξ − xj)




= p(ξ; t)

N∑

k=1

1

ξ − xk

(
− ẍk +

∑

j 6=k

2ẋkẋj

xk − xj

)
.

This shows that xk satisfy the differential equations (3.1), which finishes the proof. �

Corollary 1. Coefficients of the polynomial

P (ξ) =
N∑

k=1

bk

∏

j 6=k

(ξ − xj) =
N−1∑

n=0

(−1)nInξN−1−n (3.7)
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where bk = ẋk, are integrals of motion of the system (3.1). In particular,

I0 = H =

N∑

k=1

bk , I1 =

N∑

k=1

bk

∑

j 6=k

xj , I2 =

N∑

k=1

bk

∑

i6=j 6=k 6=i

xixj .

Corollary 2. A companion statement to that of Theorem 1 holds: ξ = xk(0), for k =
1, 2, . . . , N , are the N roots of the equation

N∑

j=1

ẋj(t)

ξ − xj(t)
= −

1

t
. (3.8)

Proof. We can rewrite (3.4) as

p(ξ; t) = p(ξ; 0) − tP (ξ) ⇒ p(ξ; 0) = p(ξ; t) + tP (ξ) .

Using independence of P (ξ) on t, we put this as

p(ξ; 0) =
N∏

i=1

(ξ − xi(0)) =
N∏

i=1

(ξ − xi(t))


1 + t

N∑

j=1

ẋj(t)

ξ − xj(t)


 . (3.9)

This proves the Corollary. �

Corollary 3. We have:

bj(0) = ẋj(0) = −
1

t
·

∏N
i=1

(xj(0) − xi(t))∏
i6=j(xj(0) − xi(0))

, (3.10)

bj(t) = ẋj(t) =
1

t
·

∏N
i=1

(xj(t) − xi(0))∏
i6=j(xj(t) − xi(t))

. (3.11)

Proof. This follows from the statements concerning (3.3), (3.8), by Lemma 1. �

4 Discretization of the rational system

Now we are in a position to discuss the discrete time analogs of the above results. The
corresponding formulas mimic (3.10), (3.11).

Theorem 2. Consider the symplectic map (x, p) 7→ (x̃, p̃) given by the following La-
grangian equations:

epk = −h−1

N∏

i=1

(xk − x̃i) , (4.1)

ep̃k = h−1

N∏

i=1

(x̃k − xi) , (4.2)

with the Lagrange function

Λ(x̃, x) =
N∑

k,j=1

ϕ(x̃k − xj) , where ϕ(ξ) =

∫ ξ

0

log(η)dη , (4.3)
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and with the corresponding Newtonian equations of motion

x̃k − xk

xk − x
˜k

=
∏

i6=k

(xk − x
˜i)

(xk − x̃i)
. (4.4)

In terms of the variables (x, b) equations (4.1), (4.2) read as

bk = −h−1

∏N
i=1

(xk − x̃i)∏
i6=k(xk − xi)

, (4.5)

b̃k = h−1

∏N
i=1

(x̃k − xi)∏
i6=k(x̃k − x̃i)

. (4.6)

The solutions xk = xk(nh), k = 1, 2, . . . ,N , of this discrete time system are the N roots
of the equation

N∑

j=1

bj(0)

ξ − xj(0)
=

1

nh
. (4.7)

Proof is based on the following lemma on the Lagrange interpolation (whose proof is put
in Sect. 7):

Lemma 1. Let ξ1, . . . , ξM , η1, . . . , ηM be 2M pairwise distinct numbers. The system of M
linear equations

M∑

j=1

yj

ηk − ξj

= −α , k = 1, . . . ,M, (4.8)

has a unique solution:

yj = α

∏M
i=1

(ξj − ηi)∏
i6=j(ξj − ξi)

, j = 1, . . . ,M. (4.9)

According to Lemma 1, defining equations (4.5), (4.6) can be re-formulated in the following
fashion: the quantities x̃k are the N roots of the equation 1 − h

∑N
j=1

bj/(ξ − xj) = 0,

while the quantities xk are the N roots of the equation 1 + h
∑N

j=1
b̃j/(ξ − x̃j) = 0. The

first claim may be re-formulated as the polynomial identity

p̃(ξ) =

N∏

k=1

(ξ − x̃k) =

N∏

k=1

(ξ − xk)

(
1 − h

N∑

j=1

bj

ξ − xj

)
, (4.10)

while the second one – as the polynomial identity

p(ξ) =

N∏

k=1

(ξ − xk) =

N∏

k=1

(ξ − x̃k)

(
1 + h

N∑

j=1

b̃j

ξ − x̃j

)
. (4.11)

As a consequence of these two identities, we have:

p̃(ξ) − p(ξ) =
N∏

k=1

(ξ − xk)
N∑

j=1

−hbj

ξ − xj

=
N∏

k=1

(ξ − x̃k)
N∑

j=1

−hb̃j

ξ − x̃j

. (4.12)
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Therefore, as in the continuous time case, we conclude that the polynomial

P (ξ) =

N∏

k=1

(ξ − xk)

N∑

j=1

bj

ξ − xj

(4.13)

is an integral of motion, i.e. does not depend on the (discrete) time. From the relation
p(ξ; t + h) − p(ξ; t) = −hP (ξ) we immediately derive:

p(ξ;nh) = p(ξ; 0) − nhP (ξ) =

N∏

k=1

(ξ − xk(0))

(
1 − nh

N∑

j=1

bj(0)

ξ − xj(0)

)
, (4.14)

which proves the Theorem. �

Corollary 4. Solutions xk = xk(nh) of the discrete time system of Theorem 2 are in-
terpolated by the solutions xk = xk(t) of the continuous time system of Theorem 1 at
t = nh.

5 Explicit solution of the hyperbolic system

Theorem 3. The solution of the initial value problem for the equation (1.3) with W(x) =
2 coth(x), i.e.

ẍk =
∑

j 6=k

2ẋkẋj coth(xk − xj) , (5.1)

with the initial data

xk(0), ẋk(0) = bk(0), (5.2)

is given by the following formula: ξ = xk(t), k = 1, 2, . . . ,N , are the N roots of the
equation

N∑

j=1

bj(0) coth(ξ − xj(0)) = v coth(vt) , (5.3)

where

v =
N∑

k=1

bk =
N∑

k=1

ẋk (5.4)

is an integral of motion.

Proof is based on the following lemma on the hyperbolic Lagrange interpolation, whose
proof is given in Sect. 7:

Lemma 2. Let ξ1, . . . , ξM , η1, . . . , ηM be 2M pair-wise distinct numbers. The system of
M linear equations

M∑

j=1

yj coth(ηk − ξj) = −α , k = 1, . . . ,M, (5.5)
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has a unique solution:

yj =
α

cosh(∆)
·

∏M
i=1

sinh(ξj − ηi)∏
i6=j sinh(ξj − ξi)

, j = 1, . . . ,M, (5.6)

with

M∑

j=1

yj = α tanh(∆) , (5.7)

where

∆ =
M∑

j=1

(ξj − ηj) . (5.8)

Return to the proof of Theorem 3. For the given initial data xk(0), bk(0), with

N∑

j=1

bk(0) = v,

define the quantities xk = xk(t), k = 1, 2, . . . ,N , as the N roots of the equation (5.3). It
is easy to see that these quantities have the initial values (5.2). Since, by Lemma 2, these
quantities satisfy the identity

N∑

j=1

bk(0) = v coth(vt) tanh
( N∑

j=1

(xj(t) − xj(0))
)
,

we conclude that

N∑

j=1

xj(t) −

N∑

j=1

xj(0) = vt . (5.9)

Equation (5.3) may be alternatively written as

N∑

j=1

bj(0)e
2xj(0)

e2ξ − e2xj(0)
=

v

e2tv − 1
, (5.10)

upon subtracting
∑N

j=1
bj(0)/2 = v/2 from both parts. According to formula (5.10), the

quantities e2xk are the roots of the following monic polynomial in e2ξ of degree N :

p(ξ; t) =

N∏

k=1

(
e2ξ − e2xk(t)

)

=

N∏

k=1

(
e2ξ − e2xk(0)

)

1 −

e2tv − 1

v

N∑

j=1

bj(0)e
2xj(0)

e2ξ − e2xj(0)


. (5.11)
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Introduce the following polynomial, which is, up to the constant factor −2, the t–derivative
of p(ξ; t):

P (ξ; t) =
N∏

k=1

(
e2ξ − e2xk(t)

) N∑

j=1

ẋj(t)e
2xj(t)

e2ξ − e2xj(t)
. (5.12)

¿From (5.11) there follows the identity:

P (ξ; t) = e2vtP (ξ; 0) . (5.13)

Therefore, Pt(ξ; t) − 2vP (ξ; t) = 0. Writing this in length, we find:

0 =

N∑

k=1

(ẍk + 2ẋ2

k − 2vẋk)e2xk

e2ξ − e2xk
−

∑

k,j

′ 2ẋkẋje
2xk+2xj

(
e2ξ − e2xk

)(
e2ξ − e2xj

)

=

N∑

k=1

e2xk

e2ξ − e2xk


ẍk + 2ẋ2

k − 2vẋk −
∑

j 6=k

4ẋkẋje
2xj

e2xk − e2xj


 .

Taking into account that

2vẋk − 2ẋ2

k = 2
∑

j 6=k

ẋkẋj ,

we derive for all k:

ẍk = 2
∑

j 6=k

ẋkẋj +
∑

j 6=k

4ẋkẋje
2xj

e2xk − e2xj
= 2

∑

j 6=k

ẋkẋj coth(xk − xj) ,

and the proof is complete. �

Corollary 5. Coefficients of the exponential polynomial

N∑

k=1

bk

∏

j 6=k

(
1 − e−2xj +2ξ

)
=

N−1∑

n=0

(−1)nIne2nξ (5.14)

where bk = ẋk, are integrals of motion of the system (3.1). In particular,

I0 = H =

N∑

k=1

bk , I1 =

N∑

k=1

bk

∑

j 6=k

e−2xj , I2 =

N∑

k=1

bk

∑

i6=j 6=k 6=i

e−2xi−2xj .

Proof. Taking (5.9) into account, we see that the quantity

( N∏

k=1

e−2xk(t)
)
P (ξ; t)

is an integral of motion (does not depend on t). �
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Corollary 6. A companion statement to that of Theorem 3 holds: ξ = xk(0), for k =
1, 2, . . . , N , are the N roots of the equation

N∑

j=1

ẋj(t) coth(ξ − xj(t)) = −v coth(vt) . (5.15)

Proof. With the help of (5.13) we can rewrite (5.11) as

p(ξ; t) = p(ξ; 0) −
e2vt − 1

v
P (ξ; 0) ⇒ p(ξ; 0) = p(ξ; t) +

1 − e−2vt

v
P (ξ; t) .

In other words,

p(ξ; 0) = p(ξ; t)


1 +

1 − e−2vt

v

N∑

j=1

ẋj(t)e
2xj(t)

e2ξ − e2xj(t)


 . (5.16)

Now the equation

N∑

j=1

ẋj(t)e
2xj(t)

e2ξ − e2xj(t)
= −

v

1 − e−2vt
(5.17)

is equivalent to (5.15). �

Corollary 7. We have:

bj(0) = ẋj(0) = −
v

sinh(vt)
·

∏N
i=1

sinh(xj(0) − xi(t))∏
i6=j sinh(xj(0) − xi(0))

, (5.18)

bj(t) = ẋj(t) =
v

sinh(vt)
·

∏N
i=1

sinh(xj(t) − xi(0))∏
i6=j sinh(xj(t) − xi(t))

. (5.19)

Proof. This follows from Theorem 3 and Corollary 6 by Lemma 2. �

6 Discretization of the hyperbolic system

We introduce now the integrable discrete time analog of the system (5.1). The formulas
are tailored after (5.18), (5.19).

Theorem 4. For an arbitrary function φ(h) = 1 + O(h), consider the symplectic map
(x, p) 7→ (x̃, p̃) given by the following Lagrangian equations:

epk = −
φ(h)

h

N∏

i=1

sinh(xk − x̃i) , (6.1)

ep̃k =
φ(h)

h

N∏

i=1

sinh(x̃k − xi) , (6.2)
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with the Lagrange function

Λ(x̃, x) =
N∑

k,j=1

ϕ(x̃k − xj) , where ϕ(ξ) =

∫ ξ

0

log sinh(η)dη , (6.3)

and the Newtonian equations of motion

sinh(x̃k − xk)

sinh(xk − x
˜k)

=
∏

i6=k

sinh(xk − x
˜i)

sinh(xk − x̃i)
. (6.4)

In terms of the variables (xk, bk) the map (6.1), (6.2) is written as

bk = −
φ(h)

h

∏N
i=1

sinh(xk − x̃i)∏
i6=k sinh(xk − xi)

, (6.5)

b̃k =
φ(h)

h

∏N
i=1

sinh(x̃k − xi)∏
i6=k sinh(x̃k − x̃i)

. (6.6)

Then we have:

N∑

j=1

(x̃j − xj) = ∆ = hv(1 + O(h)) , (6.7)

where ∆ = ∆(v, h) is defined by the equation

sinh(∆) =
hv

φ(h)
, (6.8)

and v =
∑N

k=1
bk =

∑N
k=1

b̃k is an integral of motion. The solutions xk = xk(nh),
k = 1, 2, . . . , N , of this discrete time system are the N roots of the equation

N∑

j=1

bj(0) coth(ξ − xj(0)) = v coth(n∆) . (6.9)

Proof. The formulas (6.7), (6.8) follow directly from Lemma 2. This Lemma also allows
us to re-formulate the defining equations (6.5), (6.6) as follows: ξ = x̃k are the N roots
of the equation

∑N
j=1

bjcoth(ξ − xj) = v coth(∆), while ξ = xk are the N roots of the

equation
∑N

j=1
b̃j coth(ξ − x̃j) = −v coth(∆). The first claim may be re-formulated as the

polynomial identity

p̃(ξ) =
N∏

k=1

(
e2ξ − e2x̃k

)
=

N∏

k=1

(
e2ξ − e2xk

)

1 −

e2∆ − 1

v

N∑

j=1

bje
2xj

e2ξ − e2xj


 , (6.10)

while the second one – as the polynomial identity

p(ξ) =

N∏

k=1

(
e2ξ −e2xk

)
=

N∏

k=1

(
e2ξ −e2x̃k

)

1 +

1 − e−2∆

v

N∑

j=1

b̃je
2x̃j

e2ξ − e2x̃j


 . (6.11)
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Using notation (5.12), we rewrite these two identities as

p̃(ξ) − p(ξ) = −
e2∆ − 1

v
P (ξ) = −

1 − e−2∆

v
P̃ (ξ). (6.12)

So, we conclude

P̃ (ξ) = e2∆P (ξ) ⇒ P (ξ;nh) = e2n∆P (ξ; 0) . (6.13)

Putting this into (6.12), we derive:

p(ξ;nh) = p(ξ; 0) −
e2∆ − 1

v

n−1∑

m=0

P (ξ;mh) = p(ξ; 0) −
e2n∆ − 1

v
P (ξ; 0)

= p(ξ; 0)


1 −

e2n∆ − 1

v

N∑

j=1

bj(0)e
2xj(0)

e2ξ − e2xj(0)


 . (6.14)

which proves the Theorem. �

Corollary 8. If φ(h) = hv/ sinh(hv) (thus depending on initial conditions), so that
∆(v, h) = hv, then the discrete time solutions are interpolated by the solutions of the
continuous time equation (5.1).

7 Proof of Lemmas 1,2

Proof of Lemma 1. Consider the rational function

ϕ(ξ) = α +

M∑

j=1

yj

ξ − ξj

.

It has M poles ξj and M zeros ηj , therefore, taking into account its value on the infinity,
we find:

ϕ(ξ) = α

∏M
i=1

(ξ − ηi)∏M
i=1

(ξ − ξi)
.

Now formula (4.8) follows from limξ→ξj
(ξ − ξj)ϕ(ξ). �

Proof of Lemma 2. Introduce the function

ϕ(ξ) = α +
M∑

j=1

yj coth(ξ − ξj) . (7.1)

Clearly, we have:

ϕ(ξ) = β +
M∑

j=1

2yje
2ξj

e2ξ − e2ξj
, (7.2)
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where

β = α +

M∑

j=1

yj . (7.3)

So, ϕ(ξ) is a rational function of e2ξ ; it has M poles at e2ξ = e2ξj , and M zeros at

e2ξ = e2ηj . Taking into account its behaviour at ξ → ∞, we find:

ϕ(ξ) = β

∏M
i=1

(
e2ξ − e2ηi

)

∏M
i=1

(
e2ξ − e2ξi

) = β e−∆
∏M

i=1
sinh(ξ − ηi)∏M

i=1
sinh(ξ − ξi)

. (7.4)

Combining (7.2), (7.4), we see that

2yje
2ξj = lim

ξ→ξj

ϕ(ξ)
(
e2ξ − e2ξj

)
= β

∏M
i=1

(
e2ξj − e2ηi

)

∏
i6=j

(
e2ξj − e2ξi

) (7.5)

or

yj = β e−∆ ·

∏M
i=1

sinh(ξj − ηi)∏
i6=j sinh(ξj − ξi)

. (7.6)

It remains to determine the value of β. To this aim, compare the formulas (7.2), (7.4) at
ξ → −∞:

β − 2
M∑

j=1

yj = β e−2∆ ⇒
M∑

j=1

yj =
β

2
(1 − e−2∆) . (7.7)

Comparing this with (7.3), we see that

α =
β

2
(1 + e−2∆) ⇔ β =

2α

1 + e−2∆
. (7.8)

This expression, being plugged into (7.6), yields (5.6). �

8 Conclusions

It should be mentioned that the rational and the hyperbolic “goldfish” systems also admit
an elliptic generalization [5]. In this paper, Calogero and Francoise demonstrated how to
solve explicitly the initial value problem for the differential equation

ẍk = 2
∑

j 6=k

ẋkẋjζ(xk − xj), (8.1)

for the case when the integral of motion
∑N

k=1
bk =

∑N
k=1

ẋk vanishes. The construction
is as follows: set

1 − τ

N∑

k=1

bk(0)ζ(ξ − xk(0)) = e−ϕ(τ)
∏N

k=1
σ(ξ − xk(τ))

∏N
k=1

σ(ξ − xk(0))
, (8.2)
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so that xk(τ) are the zeros of the left–hand side, while exp(−ϕ(τ)) is the normalizing
factor, which is completely determined by the initial data. Then it can be shown that the
functions xk(τ) satisfy the following differential equations:

x′′
k − 2ϕ′x′

k = 2
∑

j 6=k

x′
kx

′
jζ(xk − xj), (8.3)

while the function ϕ(τ) (which can be considered determined, once the initial data are
known) satisfies the differential equation

ϕ′′ − (ϕ′)2 =
1

2

N∑

k,j=1

x′
kx

′
jγ(xk − xj),

where the function γ(ξ) = ζ ′(ξ) + ζ2(ξ), regular at the origin, is introduced. Performing
the change of variables τ 7→ t, dt/dτ = exp(−2ϕ), we see that (8.1) is satisfied. It turns out
that this construction admits, to a large extent, a time discretization. Namely, introduce
the function ϕ(τ) as before. Consider the symplectic map (x, b) 7→ (x̃, b̃) defined by the
following Lagrangian equations of motion:

bk = −
exp(ϕ − ϕ̃)

h
·

∏N
i=1

σ(xk − x̃i)∏
i6=k σ(xk − xi)

,

b̃k =
exp(ϕ̃ − ϕ)

h
·

∏N
i=1

σ(x̃k − xi)∏
i6=k σ(x̃k − x̃i)

,

with the corresponding Newtonian equations of motion

σ(x̃k − xk)

σ(xk − x
˜k)

= exp(ϕ̃ − ϕ
˜

) ·
∏

i6=k

σ(xk − x
˜i)

σ(xk − x̃i)
. (8.4)

(Here the tilde and the undertilde denote the ±h shift in the discrete time τ .) Then the
functions xk(τ) for τ = nh are given by (8.2), i.e. they are the zeros of the left–hand side of
(8.2). The difference equation (8.4) is, obviously, a discretization of (8.3). Unfortunately,
in the discrete time context there lacks the concept of the change of independent variable,
which does not allow us to find a discretization for (8.1).
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