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Abstract

Calogero’s goldfish N -body problem describes the motion of N point particles subject
to mutual interaction with velocity-dependent forces under the action of a constant
magnetic field transverse to the plane of motion. When all coupling constants are
equal to one, the model has the property that for generic initial data, all motions of
the system are periodic. In this paper we investigate which are the possible periods
of the system for fixed N , and we show that there exist initial data that realize each
of these possible periods. We then discuss the asymptotic behaviour of the maximal
period for large particle number N .

1 Introduction

In his book [1] F. Calogero explains different techniques to construct solvable many-body
problems. We very briefly review some of the techniques involved in the derivation of the
equations of motion of the goldfish many-body problem:

1. The evolution of the zeros of a polynomial the coefficients of which evolve in time
can be seen as a dynamical system of interacting point particles [1, 3]. Even if the
coefficients of the polynomial evolve in a simple (linear) manner, the zeros might
have a complicated evolution law due to the highly nonlinear relations between the
zeros and the coefficients. Yet the dynamical system obtained in this way is solvable
by construction.

2. The evolution of an N th order polynomial over the complex will lead to an N -body
problem in the plane.
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3. The evolution of any system in real time t can be substituted by an evolution in a
complex variable τ , which is a periodic function of t. The evolution in real time t
corresponds to travelling on a closed contour on the complex τ plane. The analytic
structure of the solutions of the system in τ translate into periodicity properties of
the solutions of the equivalent problem in real time t. This trick can be applied to
modify a wide class of equations in such a way that the modified equations feature
many periodic solutions [8].

In the rest of this Section we review some of the more relevant results on the goldfish
many-body problem. Most of these results can be found in [9].

The goldfish N -body problem in the plane is given by the following equations of motion:

r̈i = ωk̂ ∧ ṙi + 2

N
∑

j=1
j 6=i

aij

r2
ij

[ṙi(ṙj · rij) + ṙj(ṙi · rij) − rij(ṙi · ṙj)] , (1.1)

where ri ≡ ri(t) denotes the position in the plane of the ith particle, which for nota-
tional convenience we imagine immersed in ordinary three-dimensional space, so that
ri ≡ (xi, yi, 0); k̂ is the unit three-vector orthogonal to that plane, k̂ ≡ (0, 0, 1), so that
k̂ ∧ rn ≡ (−yn, xn, 0), and

r2
ij = (ri − rj) · (ri − rj)

is the distance squared between two particles. The model features pairwise velocity de-
pendent forces that decrease when the particles are far apart. For simplicity we assume
that the coupling constants aij are all real and that ω > 0 is a positive constant to which
the fundamental period

T =
2π

ω
(1.2)

can be associated.
This N -body problem in the plane is invariant under translations, rotations and changes

of scale. Moreover, when the two-body velocity-dependent forces are absent, the model
has a simple physical interpretation: it describes the motion of N point charges under the
action of a constant magnetic field orthogonal to the plane (a cyclotron). It is obvious
that every particle performs a uniform circular motion in this case. Maybe less obvious
is the fact that, when the interactions are present, there exist a region R in phase space
having the same dimension as the full phase space such that every trajectory originating
in R is periodic. Later we see that when aij = 1, every orbit is periodic for generic initial
conditions (excluding a set of null measure in phase space).

It is convenient to write the Newtonian equations (1.1) as a system of complex ordinary
differential equations (ODEs) via the natural identification

rn ≡ (xn, yn, 0) ⇔ zn ≡ xn + iyn ,

whereby the real Newtonian equations of motion in the plane (1.1) become the following
equations describing the motion of N points zi ≡ zi(t) in the complex z-plane:

z̈i = iωżi + 2
N
∑

j=1
j 6=i

aij
żiżj

zi − zj
. (1.3)
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We recall that, if the coupling constants aij depend symmetrically on their two indices,
the system (1.3) is Hamiltonian (see [1], [2]) and can be derived in the standard manner
from the Hamiltonian

H(z,p) =

N
∑

n=1





iω

c
zn + ec pn

N
∏

m=1,m6=n

(zn − zm)−anm



 , (1.4)

where z denotes the N -vector z ≡ (z1, z2, ..., zN ), and c is an arbitrary (nonvanishing)
constant, which does not appear in the equations of motion. Moreover, it is easy to see
that the center of mass,

Z(t) = N−1
N
∑

i=1

zn(t) , (1.5)

moves periodically with period T on a circular trajectory in the complex z-plane:

Z(t) = Z(0) + Ż(0)
e(iωt) − 1

iω
. (1.6)

If we perform the following change of independent variable

τ =
eiωt − 1

iω
, ζi(τ) = zi(t), (1.7)

the equations (1.3) can be rewritten as

ζ ′′i = 2
N
∑

j=1
j 6=i

aij

ζ ′iζ
′
j

ζi − ζj
. (1.8)

Note that as the real variable t (the physical time) varies from 0 to T , the (complex)
variable τ goes from τ = 0 back to τ = 0 by travelling counter-clockwise on a circular
contour C on the upper half complex τ -plane with its center at i/ω and radius 1/ω. The
relations among the initial data for (1.3) and (1.8) are

zi(0) = ζi(0) , żi(0) = ζ ′i(0) . (1.9)

The advantage of making the change of variables (1.7) is that the analyticity properties
of the solutions of (1.8) as functions of the complex variable τ are directly translated into
periodicity properties of the solutions of the physical system (1.1), as expressed by the
following theorem:

Theorem 1. If a solution
(

ζ1(τ), . . . , ζN (τ)
)

of the system (1.8) is a holomorphic or mero-
morphic function of τ both inside and on the circular contour C, then the corresponding

solution
(

r1(t), . . . , rN (t)
)

of the system (1.1) is nonsingular and completely periodic in

real time t, with period T . Moreover, if the only singularities of ζi(τ) inside the disk en-

closed by C are a finite number of algebraic branch points, then the corresponding solution

of (1.1) is again completely periodic with period an integer multiple of T .
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A special case of the equations of motion (1.1) corresponds to all coupling constants
being equal to one (aij = 1). In this case the model is integrable, indeed exactly solvable
as we see in the following Section.

The main purpose of this approach is that the powerful machinery of complex analysis
can be used to derive results about the periodicity of the solutions of many-body problems
of which (1.1) is just a simple example. For other results of this type see also [5, 8, 11],
among others. The understanding of the transition to chaos within this framework is also
the object of current research [10].

2 Possible periods of the goldfish many-body problem

As it is carefully described by F. Calogero in his book [1], one technique to construct
solvable many-body problems is to look at the evolution of the zeros of a polynomial
whose coefficients evolve in a known manner. A very simple (linear) evolution rule for the
coefficients generally produces a complicated (nonlinear) evolution for the zeros by virtue
of the highly nonlinear relation between the zeros and the coefficients of a polynomial.
More precisely consider the following monic polynomial of degree N with τ -dependent
coefficients

P (ζ, τ) = ζN +

N
∑

j=1

cj(τ) ζN−j =

N
∏

i=1

[ζ − ζi(τ)]. (2.1)

For instance, if P (ζ, τ) is made to satisfy Pττ = 0, the zeros and coefficients evolve
according to

c′′i = 0 , (2.2)

ζ ′′i = 2

N
∑

j=1
j 6=i

ζ ′iζ
′
j

ζi − ζj
. (2.3)

We can thus see that the evolution in τ of the coefficients is trivial, while the evolution of
the zeros is governed precisely by the equations (1.8) with all coupling constants aij equal
to one. It is worth to note that the equations (2.3) have also been analyzed independently
by Prosen in the context of quantum chaos and random gaussian polynomials [23] and
are a particular case of a larger class of integrable systems derived by Ruisjenaars and
Schneider [24].

In the context of this work, the equations (2.3) can be interpreted as the Newtonian
equations of motion of a system of interacting particles moving in the plane as explained
in the previous Section. More complicated (yet solvable) many-body problems in the
plane can be obtained by imposing other partial differential equations (PDEs) on the
polynomial P (ζ, τ). The largest family of PDEs leading to a system of second order linear
coupled ODEs for the evolution of the coefficients has been explored in [1], while nonlinear
evolution of the coefficients has also been treated in [13].

We analyze the periodicity of the solutions of (1.1) when aij = 1. We first observe that
in this case the explicit solution {z1(t), . . . , zN (t)} of (1.3) corresponding to the initial
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data {zi(0), żi(0)} can be obtained by solving the following polynomial equation in z

N
∑

i=1

żi(0)

z − zi(0)
=

iω

eiωt − 1
. (2.4)

Yet the best way to understand the periodicity is to realize that zi(t) = ζi(τ) are the zeros
of a polynomial whose coefficients cj(τ) are periodic functions of t (since they are linear
functions of τ , and τ is a periodic function of t). After one period, the coefficients of the
polynomial go back to their previous values, the set of zeros is periodic with period T , but
the zeros might have exchanged their position. More specifically,

{z1(t + T ), z2(t + T ), . . . , zN (t + T )} = {zπ(1)(t), zπ(2)(t), . . . , zπ(N)(t)}, (2.5)

where π ∈ SN is an element of the symmetric group of N elements. Every permutation
π ∈ SN can be decomposed as a product of disjoint cycles, each cycle containing the
particles that are exchanging their positions. The period of the solution corresponds to
the order of the permutation, i.e. the least integer q such that πq = id. For fixed N the
period of the solution of (1.8) is therefore given by

{

lcm (λ1, . . . , λs) : λ1 + · · · + λs = N
}

(2.6)

for some partition λ ≡ {λ1, . . . , λs} of N . The maximum of this quantity,

G(N) = max
λ⊢N

{lcm (λ)} , (2.7)

over all partitions of N is sometimes called the Landau function [15] in the literature. As
an example all partitions of N = 7 can be found in Table 1 below, where it is clear that
G(7) = 12. For a certain particle number N , we denote by T(N) the set of all possible

Table 1. Orders of a permutation of 7 elements

Partition lcm Partition lcm

{7} 7 {1, 1, 1, 4} 4
{1, 6} 6 {1, 1, 2, 3} 6
{2, 5} 10 {1, 2, 2, 2} 2
{3, 4} 12 {1, 1, 1, 1, 3} 3
{1, 1, 5} 5 {1, 1, 1, 2, 2} 2
{1, 2, 4} 4 {1, 1, 1, 1, 1, 2} 2
{1, 3, 3} 3 {1, 1, 1, 1, 1, 1, 1} 1
{2, 2, 3} 6

periods 1, which clearly includes all numbers from 1 to N . The first few values of T(N)
have been collected in Table 2. These are all the possible periods for a fixed N , but which
of these periods is actually exhibited by the system depends on the choice of initial data
{zi(0), żi(0)} and in general it is not easy to predict a priori. We turn then to the following

1Of course we are assuming here that ω = 2π so that the fundamental period T is unity.
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Table 2. Possible periods for the first few N

N T(N) N T(N)

1 1 7 1-7, 10, 12
2 1-2 8 1-8, 10, 12, 15
3 1-3 9 1-9, 10, 12, 14, 15, 20
4 1-4 10 1-10, 12, 14, 15, 20, 21, 30
5 1-5, 6 11 1-11, 12, 14, 15, 18, 20, 21, 24, 28, 30
6 1-6 12 1-12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 42, 60

Question: Do initial data {zi(0), żi(0)} exist such that the solution {z1(t), . . . , zN (t)} of
the system (1.3) with aij = 1 has every possible period in T(N) ?

In the rest of the Section we argue that this is indeed the case. To this purpose we first
show that (2.3) admits a period N solution. Indeed, by inserting the following ansatz into
(2.3)

ζj (τ) = A + Bj (τ − τb)
Γ , j = 1, . . . ,N, (2.8)

it can be seen [1,7] that the system admits the similarity solution (2.8) provided that

Γ = 1/N, Bj = B e2πi j

N , j = 1, . . . ,N. (2.9)

This special similarity solution corresponds to placing all particles on the vertices of a
regular N -gon and the only singularity occurs at τ = τb where all particles collide simul-
taneously. If the branch point τb sits outside the circle C in the complex τ -plane with
centre at i/ω and radius 1/ω then the period of this solution is one (see Fig.1a) as entailed
by Theorem 1. On the contrary, if the initial conditions are such that τb sits inside C,
then the solution has period N (see Fig.1b) as it will visit the N -sheeted Riemann surface
associated to the N th root. In this motion the jth particle takes the position of the (j+1)th

particle after every fundamental period. Note from (2.8), (2.9) and (1.9) that, given initial
data {zi(0), z

′
i(0)}, the branch point occurs at

τb = − zi(0)

Nz′i(0)
(2.10)

so that it is always possible to choose initial data such that τb falls inside the circle C and
the corresponding solution has period N .

The next step comes by noting that, when two groups of particles are very far apart,
their motions can be analyzed independently of each other. Without loss of generality, we
assume that the first i = 1, . . . ,M particles belong to the first group while the rest belong
to the second group. The equations of motions are

ζ ′′i = 2
M
∑

j=1
j 6=i

ζ ′iζ
′
j

ζi − ζj
+ 2

N
∑

j=M+1
j 6=i

ζ ′iζ
′
j

ζi − ζj
, i = 1, . . . ,M , (2.11)

ζ ′′i = 2
N
∑

j=M+1
j 6=i

ζ ′iζ
′
j

ζi − ζj
+ 2

M
∑

j=1
j 6=i

ζ ′iζ
′
j

ζi − ζj
, i = M + 1, . . . ,N . (2.12)
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Figure 1. A few different periodic motions for N = 7

If generic initial conditions are chosen (i.e. such that no collisions occur at finite time),
the velocities are bounded for all time from 0 to G(N)T , say max |ζ ′i(τ)| < K. Now we
choose the initial position of the particles such that the two groups are a distance D apart
:

ζi(0) = wi, i = 1, . . . ,M, (2.13)

ζi(0) = D + wi, i = M + 1, . . . ,N, (2.14)

with |D| ≫ |wi|. It is clear that in the limit of D going to infinity the second terms
in (2.11) and (2.12) become negligible with respect to the first terms, and the system
effectively decouples. The period of the system for these initial conditions is clearly the
least common multiple of the periods of the two subgroups. If we keep in mind that
a system of N particles has a period N solution, the above argument can be applied
iteratively to show that initial conditions exist such that every single period in T(N) is
realized.

3 Asymptotic behavior of the maximal period for large N

It was shown in the previous section that the maximal period of the periodic solutions of
(1.1) is given by the Landau function G(N) defined in (2.7). In this Section we will discuss
some properties of G(N) and we analyze its asymptotic behavior for large N . The first
few values of G(N) together with the corresponding prime factors are shown in Table 3
(Grantham [14] has computed G(N) up to N = 500 000). From the first few values it is
already possible to observe the unruly behavior of G(N).
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Table 3. First few values of G(N)

N G(N) Prime factors of G(N) N G(N) Prime factors of G(N) N G(N) Prime factors of G(N)
1 1 1 11 30 2 · 3 · 5 21 420 22 · 3 · 5 · 7
2 2 2 12 60 22 · 3 · 5 22 420 22 · 3 · 5 · 7
3 3 3 13 60 22 · 3 · 5 23 840 23 · 3 · 5 · 7
4 4 22 14 84 22 · 3 · 7 24 840 23 · 3 · 5 · 7
5 6 2 · 3 15 105 3 · 5 · 7 25 1260 22 · 32 · 5 · 7
6 6 2 · 3 16 140 22 · 5 · 7 26 1260 22 · 32 · 5 · 7
7 12 22 · 3 17 210 2 · 3 · 5 · 7 27 1540 22 · 5 · 7 · 11
8 15 3 · 5 18 210 2 · 3 · 5 · 7 28 2310 2 · 3 · 5 · 7 · 11
9 20 22 · 5 19 420 22 · 3 · 5 · 7 29 2520 23 · 32 · 5 · 7
10 30 2 · 3 · 5 20 420 22 · 3 · 5 · 7 30 4620 22 · 3 · 5 · 7 · 11

No explicit expression of G(N) as a function of N is known, yet results on the asymptotic
behaviour of G(N) for large N are known as far back as the early 1900s. This asymptotic
behaviour (see Fig. 2) is given by

log G(N) = (N log N)1/2 +
N1/2 log log N

2 (log N)1/2
+ O

(
√

N

log N

)

. (3.1)

The first term of this formula was proved by Landau in his Handbuch [15], while the
subsequent terms of the asymptotic behaviour were proved later by Shah [25]. Since
then there has been a number of papers devoted to the study of this function (see, for
instance, [16–20]). A particularly interesting result obtained by Erdös and Turán states
that very few permutations of N elements have orders as large as G(N), most of them (in
a sense made precise in [12]) having orders whose logarithm grows like (log N)2/2 .

0 50 100 150 200 250 300
0

10

20

30

40

Figure 2. The functions log G(N) and
√

N log N for N up to 301

In the rest of the Section we present a somewhat different proof of Landau’s result,
namely that

log G(N) ∼
√

N log N for large N. (3.2)
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To this purpose, we firstly introduce two functions defined on the set of primes. Let P (N)
be the prime number such that the sum of all primes less than P (N) is not greater than
N , but the sum of all primes up to and including P (N) is greater than N . Next we define
F (N) to be the product of primes strictly less than P (N). For example, for N = 36, we
have 2 + 3 + 5 + 7 + 11 = 28 and 2 + 3 + 5 + 7 + 11 + 13 = 41 so that P (36) = 13 and
F (36) = 2 · 3 · 5 · 7 · 11 = 2310.

Since G(N) is clearly a non-decreasing function of N , it follows that

F (N) ≤ G(N) . (3.3)

In order to obtain an upper bound for G(N) we need two technical lemmas [18],

Lemma 1 (Shah). Let q1 < ... < qs be all the primes dividing G(N). Then

s
∑

j=1

log qj < 2 + log F (N) + log P (N) .

Lemma 2. Let q be a prime and e an integer greater than 1. If qe divides G(N), then

qe ≤ 2P (N) and q ≤
√

2P (N) .

Now let

G(N) =

s
∏

j=1

q
ej

j

be the prime factorization of G(N), which can be decomposed as

log G(N) =
∑

j s.t. ej=1

log qj +
∑

j s.t. ej>1

ej log qj , (3.4)

the first subsum corresponding to the prime factors that appear only once and the second
corresponding to the factors for which ej > 1. By Lemma 1 the first subsum in (3.4) is at
most 2 + log F (N) + log P (N); while by Lemma 2 it follows that each term in the second
subsum in (3.4) is lesser than log 2P (N) and there are at most

√

2P (N) of them. With
(3.3), this entails

log F (N) ≤ log G(N) ≤ 2 + log F (N) + log P (N) +
√

2P (N) [log 2P (N)] . (3.5)

To obtain the asymptotic behaviour of G(N) it suffices now to understand the behaviour
of F (N) and P (N) for large N .

Incidentally one might expect that, for those N that are the sum of the first s con-
secutive primes, the value of G(N) is just the product of these primes, namely that
G(N) = F (N) for N =

∑s
j=1 pj. However, contrary to our intuition, this statement

happens to be false: the first such N for which G(N) 6= F (N) occurs at N = 100

F (100) =

9
∏

j=1

pj = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 = 223 092 870 ,

G(100) = G(97) = 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19 = 232 792 560 .

(3.6)



360 D Gomez-Ullate and M Sommacal

To proceed we introduce the functions

S(x) =
∑

p≤x

p and θ(x) =
∑

p≤x

log p , (3.7)

where the sums are taken over all consecutive primes p less or equal to the positive real
variable x. The asymptotic behavior for large x of these two functions

S(x) ∼ x2

2 log x
and θ(x) ∼ x (3.8)

is actually an equivalent form of the Prime Number Theorem (see, for instance, [22]).
Now, since log F (N) = θ(P (N) − 1) and P (N) ∼ P (N) − 1 for large N , the second of
(3.8) implies that log F (N) ∼ P (N), and thus it suffices to show that P (N) ∼

√
N log N

for large N . By the definition of P (N) and S(x), (see (3.7)), we have that

S(P (N) − 1) ≤ N < S(P (N)) .

Clearly the first of (3.8) implies that for large x we have S(x − 1) ∼ S(x) and

P (N)2

2 log P (N)
∼ N . (3.9)

We proceed by reductio ad absurdum: suppose that P (N) is not asymptotic to
√

N log N .
Then there is a positive number ǫ such that for infinitely many values of N one of the
following two inequalities holds:

P (N) ≤ (1 − ǫ)
√

N log N or P (N) ≥ (1 + ǫ)
√

N log N . (3.10)

Since x2/(2 log x) is an increasing function for x >
√

e, the first of (3.10) entails

P (N)2

2N log P (N)
≤ (1 − ǫ)2(log N)

log N + log log N + 2 log (1 − ǫ)
. (3.11)

As N approaches infinity, the right hand side of (3.11) approaches (1− ǫ)2, while by (3.9))
the left hand side approaches unity. It follows that the first inequality of (3.10) cannot
hold for infinitely many N . The same argument applies to the second inequality in (3.10),
we conclude that P (N) ∼

√
N log N and therefore log F (N) ∼

√
N log N . By (3.5) this

implies in turn the desired result (3.2). �

4 Final Remarks

The results on the asymptotic behaviour of the highest period derived in the previous
Section are not only applicable to the goldfish many-body problem (2.3), but also to many
of the dynamical systems considered in [1], where the particle positions are the zeros of
a polynomial the coefficients of which evolve periodically in time. We have shown (by
a rather physical argument) that for the goldfish there are initial conditions such that
every possible period is realized. To be able to predict for each initial condition what
is the corresponding period is not an easy problem. In order to tackle this problem a
global analysis of the topology of the Riemann surface associated to the solutions of the
complex systems of ODEs is needed. The various periods in T(N) correspond to all the
topologically different closed contours on this Riemann surface. This approach is the
subject of current research.
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