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Abstract

We describe the derivation of a formalism in the context of the governing equations for
two-dimensional water waves propagating over a flat bed in a flow with non-vanishing
vorticity. This consists in providing a Hamiltonian structure in terms of two variables
which are scalar functions.

1 Introduction

In the case of irrotational flow (i.e. zero vorticity), the formulation of the water wave
dynamics as a Hamiltonian system is due to Zakharov [32], Milder [27], Miles [28] et.
al. (see the review [13]). For this Hamiltonian structure, the velocity potential for the
irrotational flow and the surface elevation are the canonically conjugate variables. For
free surface water flows with vorticity, Maddocks and Pego [26] expressed the governing
equations as a canonical Hamiltonian system, the two variables being vector functions
(see also related considerations provided in [1, 20]). Due to the lack of existence of a
velocity potential in the case when vorticity is present in the flow, a representation of
the governing equations for water waves with a free surface in Hamiltonian form in terms
of scalar variables seems confined to the irrotational case. In this paper, combining the
elegant viewpoint due to Maddocks and Pego [26] with some ideas advocated by Seliger
and Whitham [30] in the context of water flows without a free boundary, we will express
the governing equations for water waves propagating over a flat bed in a flow with non-
vanishing vorticity as a Hamiltonian system, the two variables being scalar functions. In
Section 2 we describe the derivation of the Hamiltonian system. Section 3 is devoted to
an illustration of the proposed Hamiltonian formulation in the context of shear flow of
constant vorticity over a flat bed and with a flat free surface. We would like to point out
that our aim is to put forward a point of view offering a simplified set of coordinates that
have a certain elegance - we are not reporting on analytical results, leaving for example the
choice of the appropriate function spaces unspecified. The novelty with respect the other
approaches in [1, 4, 26, 20] consists either in the fact that the variables are scalar and not
vector functions or in that earlier considerations were made for irrotational and/or steady
flows [3, 5, 6, 13, 15, 16, 17, 27, 28, 32).
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2 Description

Let us first recall the governing equations for the propagation of two-dimensional water
waves over a flat bed (see [19]). The two-dimensional character means that the motion
is identical in any direction parallel to the crest line so that a full picture is provided by
analyzing a cross section of the flow that is perpendicular to the wave crests. Choosing
spatial coordinates (z,y) so that the horizontal z-axis is in the direction of wave prop-
agation and the y-axis points vertically upwards, with ¢ being time, the fluid domain is
bounded below by a flat rigid bottom y = —d and above by a free surface y = (¢, z). The
only external force whose influence on the water we take into consideration is gravity. If
(u(t,z,y), v(t,z,y)) is the velocity field, the equation of motion is Euler’s equation

U + Uy + VUy = — Py, (2.1a)
vy 4+ uvy +vvy = —P, — g, (2.1b)
where P(t,z,y) denotes the pressure and g is the gravitational constant of acceleration.
Euler’s equation is indicative of the inviscid setting, which is appropriate for gravity water

waves [21]. Another realistic assumption for gravity water waves is constant density [21],
which implies the equation of mass conservation

Uy + vy = 0. (2.2)
The boundary conditions for the water wave problem are the dynamic boundary condition
P=0 on y=n(tx) (2.3)

which decouples the motion of the overlying air from that of the water, as well as the
kinematic boundary conditions

v=mn+un, on y=ntz) (2.4)
and
v=0 on y=-—d (2.5)

Relation (2.5) expresses the fact that the rigid bottom is impermeable so that the flow is
tangent to the horizontal bed y = —d, while (2.4) ensures that the same particles always
form the free surface [19]. The vorticity of the water flow is given by

W= Uy — Uy. (2.6)

The equations (2.1)-(2.6) are the governing equations for a two-dimensional free surface
water flow with vorticity w. We would like to point out that while most studies of water
waves are devoted to irrotational flows (that is, w = 0), waves with vorticity (rotational
waves) are commonly seen in nature, for example, in sea regions with shear currents (e.g.
the assumption of constant non-zero vorticity is appropriate for tidal flows [14]). Moreover,
field evidence indicates that the assumption of irrotational flow is inappropriate even for
waves advancing into still water - a situation where zero vorticity is usually deemed suitable
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- since vorticity is generated at the free surface and it propagates slowly downwards in the
fluid [23, 24].

While for the study of the existence of solutions to the water wave problem the formu-
lation (2.1)-(2.6) in Eulerian coordinates (that is, from the viewpoint of a fixed oberver
noticing the flow characteristics at time ¢ and spatial location (z,y)) is sometimes advan-
tageous!, in certain circumstances? it is useful to adopt the Lagrangian viewpoint (that is,
the flow pattern is obtained by describing the path of each individual water particle). The
main advantage of the Lagrangian viewpoint is that it transforms the free boundary value
problem (2.1)-(2.6) into a problem in a fixed domain in the space of Lagrangian indexes.
Indeed, let

Q={(a,b) eR?: a R, be[-d,0} (2.7)

be the label domain for the water particles (z(t,a,b), y(t,a,b)). We would like to point
out that the label (a,b) does not represent the initial state of a particle, it just marks that
specific particle. If we denote by f the material time derivative of the function f, given
by f = fi +ufs +vfy, then

T =u, Y=, (2.8)
and we can recast the Euler equation (2.1) as
W=-P, b=-P,—g. (2.9)

In the Lagrangian setting we do not encounter the kinematic boundary conditions (2.4)-
(2.5) since b = 0 represents the free surface and b = —d the flat bed. The dynamic
boundary condition (2.3) becomes

P(t,a,0) =0 (2.10)

and the vorticity is given by (2.6), with u and v defined in (2.8). Finally, the equation
of mass conservation, expressing incompressibility, is equivalent to the requirement that
the determinant of the Jacobian matrix J for the coordinate change (a,b) — (z,y) is time
invariant. The Lagrangian labels can be chosen in such a way that

% Oy
detJ:‘ o Z ‘:1. (2.11)
ob  0b
Hamilton’s principle is to find stationary points of an action integral which is usually
of the form : Ldt. Let
t1
L(z,y,u,v,\) = //Q(u2 ;_ v + g9y — Mug + vy)> da db (2.12)

1See [2, 9, 10, 11, 12, 31] for the existence of steady solutions. For aspects of the Cauchy problem
associated to (2.1)-(2.6) we refer to [22] and references therein.

2For example, to describe explicit, non-flat two or three dimensionial water waves propagating in water
of infinite depth or parallel to a beach of constant slope cf. [7, 8].
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be the Lagrangian. The scalar function A = A(¢, a, b), called striction in [26], plays the role
of a Lagrange multiplier by means of which the incompressibility of the flow, expressed by
(2.2), is enforced. According to Hamilton’s principle the variation of the action must be
zero. We obtain (see [26] for the details of the computation) the Euler-Lagrange equations

LN\ oL oL\ oL
_ (2= = _ (= = — 2.1
(5u> oz 0 <6v) 5y 0 (2.13)
with the constraint
oL
— =0. 2.14
oA ( )

The Euler-Lagrange equations (2.13) can be recognized as being precisely the Euler equa-
tion (2.9) with pressure

P=2A (2.15)
since

oL oL

= = — = . 2.1

5 U+ Ay, 50 v+ Ay (2.16)

The constraint (2.14) is nothing but the incompressibility condition (2.2). Requiring
A=0 for b=0. (2.17)

we recover the dynamic boundary condition (2.10). Indeed, since A(¢,z,n(t,z)) = 0, we
have

M+ A =0 on y=n(tx), (2.18)
and
Az + Xy =0 on y=n(tx). (2.19)
Taking into account (2.4) in combination with (2.18)-(2.19), we infer that
}\:)\t—i-u)\x—i-v)\y = At — Uz + VA = A+ 1Ay = 0

on the free surface y = n(t, ). That is, (2.10) holds in view of (2.15).
In this context, Maddocks and Pego [26] introduced the impetus, defined through

oL oL
i = = 2.20
51 Su’ 52 50 ( )
Taking into account (2.16), the equations (2.20) can be inverted to yield
u=2& — Ag, v=2_8— Ay, (2.21)

and the Legendre transform

ﬂ(%%flaf%)\) = /[)(51552) : (u,v) dadb — L('Iayauav?)‘) (222)
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yields

H(z,y, 1,69, \) = //Q(“z;”2 —gy> da db. (2.23)

The identity (2.23) is obtained from (2.22) using integration by parts and taking into
account the boundary conditions (2.5) and (2.17). Define the Hamiltonian by

H(w,y, 61, 6) = min //Q<“2 +ot gy) dadb, (2.24)

{x A=0 for b=0} 2
with (u,v) given by (2.21). The canonical Hamiltonian system resulting from (2.24) is

. ) . é
X:—H == H

=k X (2.25)

where

X:(.%',y), E:(§1,§2)-

In view of (2.21), H is convex in X so that the minimum in (2.24) will exist. Moreover,

oH

= 0, relation which is equivalent to the incompressibility condition (2.2) - see [26]

for the detailed computations. The expression (2.25) of the governing equations for water
waves as a canonical Hamiltonian system is due to Maddocks and Pego [26].

To recast the water wave problem as a Hamiltonian system in terms of scalar functions
(a, ) instead of the vector functions (X, A), one can proceed as follows. Associated with
the fluid velocity (u,v) there is a stream function v, determined up to a constant by

Ve = —v, Py = u. (2.26)

Introduce now the scalar function é(t,z,y) by requiring

9,5 = )\, (227&)
0=0 on y=n(tx), (2.27Db)

and determine the positive function a(t,z,y) > 0 by solving the first-order linear partial
differential equation

g (Vy —0y) + 0y (Yy +0,) + aw =0, (2.28)

with initial data o = 1 on the curve y = 7(t,x). Here w = —1)3, — 1y, in view of (2.6)
and (2.26). Note that to ensure the existence and uniqueness of a solution to (2.28) by
the method of characteristics, it suffices that

1 -0,

e G+ #0 on y=n(tz)
T Y T

cf. [18]. This determinant can be explicitely computed as

wy'i‘ax_(waﬁ_ey)nx:u+ax+v77ar+0y77ar:u+m7x:u+77t77x+ung
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if we take into account (2.4), (2.26) and the fact that (2.27b) ensures 6, + 6,1, = 0 on
y =n(t,x). Viewing the above expression as a polynomial in 7, we see that if

n? < 4u® on y=n(t ), (2.29)
then the method of characteristics gives the unique solution of (2.28). Defining

“ult s, y) +6:(ts,y) /y v(t,0,s) +6y(,0,5)
t = d d
ﬁ( 7x7y) s/O Oé(t,S,y) o —d Oé(t,O,S) >

we deduce that

u=—0, + aby, (2.30a)
v=—0,+ af,. (2.30b)

Note that this decomposition is trivial in the irrotational case: if ¢ is the velocity potential
of the irrotational flow (defined up to a constant by the requirements ¢, = u, ¢, = v), we
can take 8 = ¢+6 and a = 1. To our knowledge, Clebsch-type representations of the form
(2.30) were previously used only in the context of water flows without a free boundary
(see e.g. the discussion in [30]).

An explicit calculation confirms that (2.30) yields

2,2 _
i =0, (_at +af + 2 ;’” ) — B+ Bac, (2.31a)
2. ,2 .
b= 0y(=0n+ o+ ) — ay B+ By (2.31b)

On the other hand, from (2.9), (2.15) and (2.27) we infer that

Htx = —’l.L, th = —0— g. (232)
Denoting
u? 4 v?
H = af + —5— + gy, (2.33)

we obtain from (2.31) and (2.32) that

H, = a,f — Bsa, (2.34a)
H, = oyt — Byc. (2.34D)

Hence H = H(t,a, 3) by the implicit function theorem. By the chain rule,

O0H OH
H, = %O‘x + %ﬂx,

OH OH
Hy = 5oy + %ﬁy-
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In combination with (2.34), the above relations yield

. OH . OH
Qg <_B + %) + /31‘ (Oé + 8—) - 07 (2353‘)
. OH . OH
(%<—ﬁ+~a;)+ﬂy0w+55>:0. (2.35D)
The assumption of non-vanishing vorticity ensures that the linear system (2.35) has a non-
zero determinant since a3, — a0, = —w in view of (2.30). Therefore its only solution is
the zero solution, so that
OH . OH
Yy =—— = — 2.36
“T T oo’ (2.36)

with H given by (2.33). This is the Hamiltonian form of the water wave problem with
non-vanishing vorticity in terms of conjugate variables which are scalar functions, provided
that the free surface satisfies (2.29). Note that for waves that are not near breaking one has
u # 0 on the free surface [21] so that (2.29) is a smallness condition on the time-variation
of the free surface profile.

3 Example

In this section we will compute the canonically conjugated variables («, () for the Hamil-
tonian formulation of the water wave problem in the case of a flow with constant vorticity
w # 0 and flat surface y = 0 over the bed y = —d. The velocity field is given by

u=—-w(ly+d+1), v =0,
while

P=—gy
is the pressure. Clearly (2.29) holds. We first find

0 = —gty.

Therefore (2.28) becomes
gtog —w(y+d+1)ay +wa =0.

The unique solution with data @ = 1 on the non-characteristic curve y = 0 is

_y+d+1

d+1
This yields
f=—-wd+1)x—g(d+ 1)t In(y+d+1).

Therefore

2 2
+d+1
H = —my+d+1ﬂmy+d+1y+ﬂi£7?——L

w?(d +1)2a?
2

+ 9y

= —g(d+1a n[a(d+1)] + +g9(d+1)(a—1).



Hamiltonian Formulation for Water Waves with Non-Vanishing Vorticity 209

We compute now

H
?9—a = —g(d+1) Infa(d+ 1)] + w(d+ 1)%a,
oH
== =0
op ’
and
a = o+ uog +voy =0,

B = Btube+ vy =—g(d+1) Infa(d + 1)] + w?(d + 1)’

which completes the checking of (2.36).
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