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Abstract

sl(2)−Quasi-Exactly-Solvable (QES) generalization of the rational An, BCn, G2, F4, E6,7,8

Olshanetsky-Perelomov Hamiltonians including many-body Calogero Hamiltonian is
found. This generalization has a form of anharmonic perturbations and it appears nat-
urally when the original rational Hamiltonian is written in a certain Weyl-invariant
polynomial variables. It is demonstrated that for the QES Hamiltonian there ex-
ists a finite-dimensional invariant subspace in inhomogeneous polynomials. Eigen-
functions and corresponding eigenvalues which belong to this subspace are calculated
algebraically.

1 Introduction

Undoubtedly, the exact solutions are of great importance, especially, of the multidimen-
sional Schroedinger equations. Up to now the Hamiltonian Reduction Method which
also is called the Projection Method [1, 2] provides a unique opportunity to construct
non-trivial multidimensional exactly-solvable and completely integrable multidimensional
quantal Hamiltonians. These Hamiltonians are associated with root systems, they are
related with the Laplace-Beltrami operators on symmetric spaces. Their eigenfunctions
and eigenvalues can be found algebraically, by linear algebra means. In particular, (i)
their eigenvalues are known explicitly being a second degree polynomial in quantum num-
bers, (ii) any eigenfunction has a form of the ground state eigenfunction multiplied by a
polynomial in some arguments (factorization property). One of the particular cases of the
construction is the so-called rational case which provides the rational Hamiltonians.

In general, the rational Hamiltonian associated with a root system R of algebra g of
rank N has a form

H =
1

2

n
∑

k=1

[

− ∂2

∂x2
k

+ ω2x2
k

]

+
1

2

∑

α∈R+

g|α||α| 2
1

(α · x)2
, (1.1)
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where α ∈ R+ are positive roots of the system R which are vectors in R
n, x = (x1, . . . , xn)

is a set Cartesian coordinates, |α|2 =
∑n

1 α2
k, and the scalar product

(α · x) =
∑n

1 αkxk and ω is a parameter. Coupling constants g|α| are assumed to be
equal for roots of the same length. Hence for the An case there is a single coupling con-
stant since all roots are of the same length, for the BCn case there are three coupling
constants, since there exist roots of three different length etc. For some algebras (G2, E6,
E7) it is convenient to consider the roots (and coordinates) in subspace of the vector space
of higher dimension R

N+n (n = 1 or 2) with appropriate constraints on coordinates. In
general, the Hamiltonians of this type describe a quantum particle in multidimensional
space, although for An and G2 cases these Hamiltonians allow another interpretation as
well as the Hamiltonians describing many-body systems. These two systems are called
Calogero [3] and Wolfes [4] models, respectively.

Soon after a discovery of these Hamiltonians it became clear [2] there exists a straight-
forward generalization of these Hamiltonians to the case of arbitrary coupling constants
without breaking any nice property. It led to a loss of immediate group theoretical in-
terpretation. In particular, a property of exact-solvability remained to be preserved. It
gave a hint on existence of a more general formalism where above-mentioned Hamiltonians
appear naturally. An idea was to connect solvability with possible existence of an intrinsic
hidden algebraic structure [5]. It turned out to be true: for arbitrary coupling constants
these Hamiltonians are related with elements of the universal enveloping algebra of some
algebras of differential operators acting in the space of invariants of the corresponding
root space. Such an algebra was called the hidden algebra of the Hamiltonian. It was
found that for all An, Bn, Cn,Dn, BCn rational (and trigonometric models) this algebra is
the same (!) – it is the maximal affine subalgebra of the gln-algebra realized by the first
order differential operators in RN in symmetric representation [6, 7]. Thus, one can state
that all these models are nothing but different appearances of a single model characterized
by the hidden algebra glN . Similar situation held for the SUSY generalizations of above
models - all of them turned out to be associated to the hidden superalgebra gl(N |N − 1),
see [7]. However, one can naturally expect that the situation is drastically different for the
Hamiltonians related to the root spaces of the exceptional algebras - each Hamiltonian is
characterized by its own hidden algebra which is different for different Hamiltonians. A
first indication stemmed from a study of the G2 rational (and trigonometric) models where
the common hidden algebra turned out to be a certain infinite-dimensional, but finitely-
generated algebra of the differential operators that was called g(2) ⊂ diff(2, R) [8, 9]. Later,
it was shown that the similar situation holds for the rational (and trigonometric F4) mod-
els [10]. Both models possess the same hidden algebra which was called f (4) ⊂ diff(4, R).
Recently, a thorough study was completed for the whole set of the rational models related
to the exceptional algebras including E6,7,8 [11].

It was already many years ago when V.I. Arnold [12] paid attention that the flat metric
with upper indices written in terms of the polynomial Weyl invariants of the fixed degree
is characterized by polynomial matrix elements. It implied that the coefficient functions
in front of the second derivatives in the Laplace-Beltrami operator are polynomials in
invariants of any Weyl group. Crucial observations were made in [6, 7, 8, 10, 11]: in
the variables which are the Weyl-invariant polynomials of the fixed degree the rational
Hamiltonians which are a combination of Laplace-Beltrami operator and a potential – after
the gauge (similarity) transformation both the coefficient functions in front of the second
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and the first derivatives remain polynomials1. It implies that each rational Hamiltonian
takes an algebraic form and preserves a certain flag of polynomials. Even more if a certain
set of the polynomial Weyl invariants is chosen as variables, the Hamiltonian preserves
a minimal flag of invariant subspaces of polynomials (for definition of the minimal flag
see, for instance, [11]). All these Hamiltonians in an algebraic form reveal a property of
existence an infinite family of eigenfunctions depending on a single variable [11]. This
property leads to a chance to construct a certain Lie-algebraic, Quasi-Exactly-Solvable
(QES) generalization of the rational models (see [17]).

By definition a linear differential operator is quasi-exactly-solvable (QES) if it preserves
a finite-dimensional functional space with explicitly defined basis. It implies that the op-
erator has a finite-dimensional invariant subspace spanned by known function. Therefore
one can indicate explicitly a basis where the operator being written in the matrix form has
a block-triangular form. This property leads to reducibility of the original transcendental
secular equation: its r.h.s. becomes the product of a polynomial in spectral parameter
to a transcendental function. Therefore the QES operator is characterized by the explicit
(algebraic) knowledge of a finite number of eigenstates - some eigenstates can be found
by the algebraic means. For almost all known examples of the QES operators the finite-
dimensional invariant subspace is a space of inhomogeneous polynomials in one or several
variables. What is truly remarkable it is a fact that in many cases the space of polyno-
mials can be identified with a finite-dimensional representation space of a Lie algebra of
differential operators.

The notion Quasi-Exact-Solvability was introduced in [15] and was further developed in
[16], where ten multi-parametric one-dimensional QES Schroedinger equations were con-
structed. In [17]) it was shown all those examples are related with the sl(2)-algebra of
the first-order differential operators in one variable. Later it was proven that any linear
differential operator of finite order which preserves a space of polynomials in one variable
is an element of the enveloping algebra of the sl(2)-algebra of the first-order differential op-
erators in one variable [18]. A classification and detailed analysis of the QES Schroedinger
differential equations in one variable was done in [19]. A generalization of the idea of the
quasi-exact-solvability to multidimensional and matrix differential operators was proposed
in [20] and further developed in [21, 22]. Finite-difference QES operators were introduced
and investigated in [23, 24]. In parallel with a study of QES differential and finite-difference
operator it was discovered a connection of QES problems with conformal field theories [25]
as well as with the Bethe Anzatz approach to finite magnetic, the spin chains (see [26, 27]
and references therein). Perhaps, it is worth mentioning there exist several review articles
on the subject [5, 28, 29] and a book by Ushveridze [26] which is mostly dedicated to a
so-called analytic approach to the quasi-exact-solvability rather than a (Lie)-algebraic one.

For the case of the Calogero (An rational) model QES generalization was already found
some time ago [30]. The goal of the present article is to demonstrate that one can construct
QES generalizations in the explicit form for all remaining rational models - the models
related to the BCn and exceptional algebra root spaces in a unified way.

1Similar results we also obtained in above-mentioned works for the trigonometric An, BCn, G2 and F4

Hamiltonians when the trigonometric Weyl invariants (which mean the Weyl invariants with periodicity
property in each variable with a requirement that all periods are equal) are used as coordinates. Even for
elliptic A1 and BCn models the elliptic Weyl invariants allow to get the polynomials coefficients in front
of derivatives (see for details [13] and [14], correspondingly)
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2 Construction

Let us consider the spectral problem for the Hamiltonian H given by (1.1)

HΨ(x) = EΨ(x) . (2.1)

Then make a gauge rotation of the Hamiltonian with the ground state eigenfunction Ψ0

as a gauge factor

h = −(Ψ0(x))−1(H − E0)Ψ0(x) , (2.2)

where E0 is the ground state energy. A new spectral problem appears

hϕ(x) = −ǫϕ(x) , (2.3)

with a new spectral parameter ǫ = E−E0. If in (2.1) the boundary condition corresponds
to the normalizability of Ψ(x), for (2.3) it is the normalizability of ϕ(x)Ψ0(x). It implies
that instead of the standard scalar product with unit measure, we deal with the Hilbert
space with measure Ψ2

0(x). By construction, the lowest eigenvalue ǫ0 = 0 and the lowest
eigenfunction ϕ0 = const.

Take the root space of the algebra g. In this space the Weyl group Wg acts. The
algebraically independent invariant polynomials of the lowest possible degrees a generate
the algebra SWg of Wg-invariant polynomials. The powers a are the degrees of the group

Wg. A particular form of these polynomials (denoted below as t
(Ω)
a ) can be found by

averaging elementary polynomials (ω, x)a over some group orbit Ω,

t(Ω)
a (x) =

∑

ω∈Ω

(ω, x)a , (2.4)

(see [31]), where x’s are some formal variables. We call the variables (2.4) as orbit variables

and denote them for simplicity as ta ≡ t
(Ω)
a . Usually, averaging over different orbits gives

algebraically related invariants. It is worth to emphasize that for any semi-simple algebra

g there exists invariant of the degree two, t
(Ω)
2 , which does not depend on chosen orbit.

The ground state eigenfunction of (1.1) is always related with this invariant and has a
form

Ψ0 = ∆g exp
(

− ω

2
t
(Ω)
2

)

, (2.5)

where

∆g =
∏

R+

|(αk, y)|ν|α|

and ν|α| are defined through g|α| = ν|α|(ν|α| − 1) and assumed to be equal for roots of the
same length. In the case of the short roots (or if all roots are of the same length as for
An) we denote ν|α| = ν, for the long roots ν|α| = µ.

The variables (2.4) are the variables where the gauge-rotated Hamiltonian (2.2) takes
the algebraic form

h(τ) = Aij(t)
∂2

∂ti∂tj
+ Bi(t)

∂

∂ti
, (2.6)
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where the coefficient functions Aij,Bi are polynomials. This property was discovered at
first for An [6] and then for BCn [7] as well as for G2 [8], F4 [10], E6,7,8 [11]. It was
found for all these cases a remarkable feature holds: the coefficient functions in front of
the second and first derivatives in t2 depend on the variable t2 only,

A22(t) = 4t2 , B2(t) = −4ωt2 + 2βg . (2.7)

where βg is a parameter. This parameter βg depends on the root system and is equal to

• βAn = n(1 + ν + νn)

• βBCn = n(1 − 2ν + µ + 2νn)

• βG2
= 2(1 + 3ν + 3µ)

• βF4
= 4(1 + 6ν + 6µ)

• βE6
= 6(1 + 12ν)

• βE7
= 7(1 + 18ν)

• βE8
= 8(1 + 30ν)

Surprisingly, the first factor is always equal to the rank of the algebra or, in different
words, it states

βg(ν = 0, µ = 0) = rank g . (2.8)

It can be considered as a feature of the flat Laplacian written in the Weyl-invariant coor-
dinates (2.4).

The above feature (2.7) allows immediately to draw a conclusion that among eigenfunc-
tions of the operator (1.1), which, in general, depend on several variables, there exists an
exceptional family of eigenfunctions depending on the single variable t2. These eigenstates
are the solutions of the eigenvalue problem

−h
(es)
2 ϕ ≡ −4t2

∂2ϕ

∂t2∂t2
+ (4ωt2 − 2βg)

∂ϕ

∂t2
= ǫϕ , (2.9)

they coincide to the Laguerre polynomials

ϕk(t2) = L
(

βg

2
−1)

k (ωt2) , ǫk = 4ωk , k = 0, 1, 2, . . . . (2.10)

It is worth to mention that the operator h
(es)
2 can be reduced to the self-adjoint form by

a change of variables and a gauge transformation. Finally, in the variable y =
√

t2/ω this
operator takes a form

H(es)
2 = −1

2

∂2

∂y2
+

ω2

2
y2 +

β2
g − 1

8y2
− ω

2
(1 + 2ν) ,

which correspond to the harmonic oscillator on half-line with singular interaction at y = 0.
Their eigenfunctions are

Ψ
(es)
2 = ϕk(y)y

βg+1

2 e−
ω
2

y2

.



Quasi-Exactly Solvable Hamiltonians related to Root Spaces 665

(see (2.10)).
The operator in the l.h.s. of (2.9) can be rewritten in terms of the generators J0

k , J−

of the Cartan subalgebra of the algebra sl(2) of the first order differential operators:

J+
k = t22

∂

∂t2
− kt2 , J0

k = t2
∂

∂t2
− k

2
, J− =

∂

∂t2
, (2.11)

(see e.g. [16]). For integer k the generators (2.11) have a common invariant subspace in
polynomials of the degree not higher than k,

Pk = 〈tp2 | 0 ≤ p ≤ k〉 , (2.12)

where the dimension of the representation dimPk = (k + 1). Finally, the operator (2.9)
takes the sl(2)-Lie-algebraic form

h
(es)
2 = 4J0

0 J− − 4ωJ0
0 + 2βgJ

− . (2.13)

It is easy to check that the operator h
(es)
2 preserves an infinite flag of the spaces of poly-

nomials (2.12),

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pk ⊂ . . . , (2.14)

and, in particular, any eigenfunction L
(

βg

2
−1)

k (ωt2) ∈ Pk (see (2.10)) and hence it is an
element of the flag.

Following a standard strategy for construction of quasi-exactly-solvable problems [16]
(for a general discussion see e.g. [5]), let us modify the operator (2.13) by adding a term
with raising generator J+

k ,

h
(qes)
2 = 4J0

kJ− + 4aJ+
k − 4ωJ0

k + 2(k + βg − 2γ)J− , (2.15)

where a ≥ 0 and γ are parameters. It is evident that h
(qes)
2 maps a certain space Pk to

itself but it does not preserve the flag (2.14). By substitution of the explicit expressions
of the sl(2)-generators (2.11) into (2.15) we get a second order differential operator

h
(qes)
2 = 4t2

∂2

∂t2∂t2
+ 2(2at22 − 2ωt2 + βg − 2γ)

∂

∂t2
− 4akt2 + 2ωk , (2.16)

which has the space Pk as a finite-dimensional invariant subspace. Hence (2.16) has (k+1)
polynomial eigenfunctions of the form

P
(k)
j (t2) =

k
∑

i=0

γ
(j)
i ti2 , j = 0, 1, . . . , k ,

where for any j, without loss of generality, the coefficient in front of the leading degree

can be placed equal to one, γ
(j)
k = 1.

Now we are ready to proceed to a construction of a QES generalization of (1.1). We
look for QES Hamiltonian in a certain form:

H(qes) = H + V (qes)(t2) , (2.17)
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where V (qes)(t2) is a potential. Let us make a gauge rotation of (2.17) in the form (2.2)
with gauge factor (2.3). Then impose a requirement that the resulting operator possesses
t2-depending family of eigenfunctions. It results to the equation

−h
(qes)
2 ϕ ≡ −4t2

∂2ϕ

∂t2∂t2
+ (4ωt2 − 2βg)

∂ϕ

∂t2
+ V (qes)(t2)ϕ = ǫϕ , (2.18)

which describes this family.
Now one can pose a question: under what condition on potential V (qes), the operator

h
(qes)
2 is Lie-algebraic. The problem appeared for the first time in [30], where a QES

generalization of the Calogero model was studied. Its solution is given by implementation

of the following procedure: we look for a gauge rotation of h
(qes)
2 which allows (i) to gauge

away potential V (qes) (up to constant terms), and (ii) to reduce the resulting operator to
the sl(2) Lie-algebraic form. Following the philosophy of quasi-exact-solvability it is not
surprising that such a gauge rotation exists. Finally, we arrive at the operator

h
(sl(2)−qes)
2 (t2) = t−γ

2 exp(
a

4
t22) h

(qes)
2 tγ2 exp(−a

4
t22)

= 4J0
kJ− + 4aJ+

k − 4ωJ0
k + 2(k + βg − 2γ)J− , (2.19)

where a ≥ 0 and γ are parameters, and J+,0,− are the sl(2)-algebra generators (2.11) (cf.
(2.15)). The corresponding potential V (qes) (see (2.18)) which assure the existence of the
representation (2.19) is of the form

V (qes) = a2t32 + 2aωt22 − 2a(2k + 2βg − γ − 1)t2 +
2γ(γ − 2βg + 3)

t2
, (2.20)

where the constant terms are dropped off. Now one can give the final expression of the
sl(2)-quasi-exactly-solvable Hamiltonian associated with the root space g and written in
the Weyl invariant form

H = − 1

2

N
∑

k=1

∂2

∂x2
k

+

[

ω2

2
− a(2k + 2βg − γ − 1)

]

∑

α∈R+

(α · x)2 +

1

2

∑

α∈R+

g|α||α| 2
1

(α · x)2
+

2γ(γ − 2βg + 3)
∑

α∈R+
(α · x)2

+

2aω

(

∑

α∈R+

(α · x)2
)2

+ a2

(

∑

α∈R+

(α · x)2
)3

, (2.21)

where center-of-mass is added (if necessary). In this Hamiltonian we know (k + 1) eigen-
states explicitly, they can be calculated by algebraic means. Their eigenfunctions are of
the form

Ψ
(r)
0 (x) = ∆g ·

(

∑

α∈R+

(α · x)2
)γ

· Pk(
∑

α∈R+

(α · x)2)

exp



−ω

2

(

∑

α∈R+

(α · x)2
)

− a

4

(

∑

α∈R+

(α · x)2
)2



 , (2.22)
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where Pk is a polynomial of degree n and

∆g =
∏

α∈R+

|(α, x)|ν|α| ,

where ν|α| are defined through g|α| = ν|α|(ν|α| − 1), they assumed to be equal for roots of
the same length. In the case of the short roots (or if all roots are of the same length as
for An) we denote ν|α| = ν and the constant g|α| is denoted as gs, as for the long roots
ν|α| = µ and gl, correspondingly.

3 Concrete cases

The aim of the Section to present concrete formulas for all A − D − E models.

Quasi-exactly-solvable generalization of the An rational model

After substitution the data of the An into (2.21) we arrive at the quasi-exactly-solvable
generalization of the Calogero model, or in other words, quasi-exactly-solvable An rational
model, which was found in [30]. In Cartesian coordinates the Hamiltonian has a form

H
(2)
Cal =

1

2

n
∑

i=1

(

− ∂2

∂xi
2

+ ω2x2
i

)

+

n
∑

j<i

g

(xi − xj)2
+

2γ [γ − 2n(1 + ν + νn) + 3]

x2

+ a2(x2)3 + 2aω(x2)2 − a [2k + 2n(1 + ν + νn) − γ − 1]x2, (3.1)

where x2 =
∑n

i<j yiyj. The Perelomov coordinates of the relative motion (see e.g. [2] and
references therein) are introduced

yPerelomov
1,...,n = x1,...,n − 1

n
X , X =

n
∑

1

xi , (3.2)

with a condition
∑n

1 yi = 0, where X is the center-of-mass coordinate and x2 is the second
order invariant of the An root space.

Ψ
(qes)
0 (x) = (∆)ν(x2)γPk(x

2) exp

[

−ω

2

n
∑

k=1

x2
i −

a

4
(x2)2

]

, (3.3)

where Pk is a polynomial of degree k, gs = ν(ν − 1) > −1
4 and gl = 3µ(µ− 1) > −3

4 . Here
∆(y) is the Vandermonde determinant

∆(x) =
∏

R

|(αk, y)| =

n
∏

i<j

|yi − yj| .
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Quasi-exactly-solvable generalization of the BCn rational model

After substitution the data of the BCn into (2.21) we arrive at the quasi-exactly-solvable
BCn rational model. In Cartesian coordinates the Hamiltonian has a form

H(qes)
BCn

=
1

2

n
∑

i=1

(

− ∂2

∂xi
2

+ ω2x2
i

)

+ g

n
∑

i<j

[

1

(xi − xj)2
+

1

(xi + xj)2

]

+
g2

2

n
∑

i=1

1

x2
i

+ a2(x2)3 + 2aω(x2)2 (3.4)

−a [2k + 2n(1 − 2ν + µ + 2νn) − γ − 1]x2 +
2γ [γ − 2n(1 − 2ν + µ + 2νn) + 3]

x2
,

where x2 =
∑n

i xi
2 is the second invariant in BCn root space. For this Hamiltonian we

know (k + 1) eigenstates explicitly (by algebraic means) and their eigenfunctions are of
the form

Ψ0 =





∏

i<j

|xi − xj |ν |xi + xj |ν
n

∏

i=1

|xi|µ


 (x2)γPk(x
2)e−

ω
2
x

2− a
4
(x2)2 , (3.5)

where g = ν(ν − 1), gl = µ(µ − 1) and where Pk is a polynomial of degree k.

Quasi-exactly-solvable generalization of the G2 rational model

After substitution the data of the G2 into (2.21) we arrive at the quasi-exactly-solvable
G2 rational Hamiltonian. In Cartesian coordinates it has a form

H(qes)
G2

=
1

2

3
∑

i=1

[

− ∂2

∂x2
i

+ ω2x2
i

]

+ gs

3
∑

i<l

1

(xi − xl)2
+ gl

3
∑

i<l , i,l 6=m

1

(xi + xl − 2xm)2

+ a2(x2)3 + 2aω(x2)2 + 2a[2k − 1 − 2γ − (3µ + 3ν + 1)]x2

+
4γ(γ + 3µ + 3ν)

x2
, (3.6)

where x2 =
∑3

i<j (yi − yj)
2 and the Perelomov coordinates of the relative motion (see e.g.

[2] and references therein) are introduced

yPerelomov
1,2,3 = x1,2,3 −

1

3
X , X = x1 + x2 + x3 , (3.7)

with a condition y1 + y2 + y3 = 0, where X is the center-of-mass coordinate and x2 is
the second order invariant of the G2 root space. For this Hamiltonian we know (k + 1)
eigenstates explicitly (by algebraic means) and their eigenfunctions are of the form

Ψ
(qes)
0 (x) = (∆s)

ν(∆l)
µ(x2)γPk(x

2) exp

[

−ω

2

3
∑

i=1

x2
i −

a

4
(x2)2

]

, (3.8)
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where Pk is a polynomial of degree k, gs = ν(ν − 1) > −1
4 and gl = 3µ(µ− 1) > −3

4 . Here
∆s(y) and ∆l(y) are Vandermonde determinants

∆s(x) =
∏

Rshort

|(αp, y)| =

3
∏

i<j

|yi − yj| ,

∆l(x) =
∏

Rlong

|(αp, y)| =

3
∏

i<j; i,j 6=p

|yi + yj − 2yp| .

Hence, we constructed the sl(2) QES deformation of the rational G2 model. All at-
tempts to construct other QES deformation of the G2 rational model fault so far.

Quasi-exactly-solvable generalization of the F4 rational model

After substitution the data of the F4 into (2.21) we arrive at the quasi-exactly-solvable
F4 rational Hamiltonian. In Cartesian coordinates it has a form

H(qes)
F4

=
1

2

4
∑

i=1

(

− ∂2

∂x2
i

+ 4ω2x2
i

)

+ 2gl

∑

j>i

(

1

(xi − xj)2
+

1

(xi + xj)2

)

+
gs

2

4
∑

i=1

1

xi
2

+ 2gs

∑

ν′s=0,1

1

[x1 + (−1)ν2x2 + (−1)ν3x3 + (−1)ν4x4]
2

+ a2(x2)3 + 2aω(x2)2 + 2a[2k − γ + 3(4µ + 4ν + 1)]x2

+
2γ[γ − 12µ − 12ν − 1)]

x2
, x2 =

4
∑

i=1

xi
2 , (3.9)

where gl = ν(ν − 1), gs = µ(µ− 1) are coupling constants related to sets of long and short
roots. In this Hamiltonian we know (k + 1) eigenstates explicitly, they can be calculated
by algebraic means. Their eigenfunctions are of the form

Ψ
(qes)
0 (x) = (∆−∆+)ν (∆0∆)µ (x2)γPk(x

2) exp
[

−ωx2 − a

4
(x2)2

]

, (3.10)

where Pk is a polynomial of degree k and

∆+∆− =
∏

Rlong

|(αk, x)| =

4
∏

j<i

(xi + xj)

4
∏

j<i

(xi − xj) ,

∆0∆ =
∏

Rshort

|(αk, x)|

=

4
∏

i=1

xi

∏

ν′s=0,1

∣

∣

∣

∣

x1 + (−1)ν2x2 + (−1)ν3x3 + (−1)ν4x4

2

∣

∣

∣

∣

. (3.11)

Hence, we constructed the sl(2) QES deformation of the F4 rational model. If in (3.9)
the parameter gs (and, hence, µ) vanishes, we arrive at the sl(2) QES generalization of
the D4 rational model. The latter differs from the sl(5) QES deformation of D4 which
was found in [32].



670 A V Turbiner

Quasi-exactly-solvable generalization of the E6 rational model

After substitution the data of the E6 into (2.21) we arrive at the quasi-exactly-solvable
E6 rational Hamiltonian. Similar to what was done in [11] for E6 rational model it is con-
venient to represent the Hamiltonian writing it in an 8−dimensional space {x1, x2, . . . x8}
with imposing of two constraints x7 = x6, x8 = −x6,

H(qes)
E6

= − 1

2
∆(8) +

ω2

2

8
∑

i=1

x2
i + g

5
∑

j<i=1

[

1

(xi + xj)2
+

1

(xi − xj)2

]

+ g
∑

νj

1
[

1
2

(

−x8 + x7 + x6 −
∑5

j=1(−1)νjxj

)]2

+ a2(x2)3 + aω(x2)2 − 4a(k + γ + 18ν + 2)x2

+
4γ(γ + 36ν + 2)

x2
, (3.12)

where νj = 0, 1 and
∑5

j=1 νj = even (see [11]), x2 = 2(
∑5

i=1 y2
i + 1/3y2

6) with y’s defined
as

yi = xi , i = 1 . . . 5

y6 = x6 + x7 − x8 , (using the constraints y6 = 3x6)

y7 = x6 − x7 , (using the constraints y7 = 0)

y8 = x6 + x8 , (using the constraints y8 = 0) . (3.13)

In these coordinates the Laplacian becomes

∆(8) = ∆(5)
y + 3

∂2

∂y2
6

+ 2

[

∂2

∂y2
7

+
∂2

∂y2
8

+
∂2

∂y7∂y8
,

]

(3.14)

In the Hamiltonian (3.12) we know (k + 1) eigenstates explicitly (by algebraic means).
Their eigenfunctions are of the form

Ψ
(r)
0 (x) = (∆

(5)
+ ∆

(5)
− )ν(∆E6

)ν(x2)γPk(x
2)e−

1

4
ωx

2− a
4
(x2)2 , (3.15)

where Pk is a polynomial of degree k and where

∆
(5)
± =

5
∏

j<i=1

(yi ± yj)

∆E6
=

∏

{νj}



y6 +

5
∑

j=1

(−1)νjyj





with g = ν(ν − 1).
Hence, we constructed the sl(2) QES deformation of the rational E6 model. All at-

tempts to construct other QES deformations of the E6 rational model fault so far.
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Quasi-exactly-solvable generalization of the E7 rational model

After substitution the data of the E7 into (2.21) we arrive at the quasi-exactly-solvable
E7 rational Hamiltonian. Similar to what was done in [11] for E7 rational model it is con-
venient to represent the Hamiltonian writing it in an 8−dimensional space {x1, x2, . . . x8}
with imposing of two constraints x8 = −x7,

H(qes)
E7

= − 1

2
∆(8) +

ω2

2

8
∑

i=1

x2
i + g

6
∑

j<i=1

[

1

(xi + xj)2
+

1

(xi − xj)2

]

+ g
1

(x7 − x8)2
+ g

∑

νj

1
[

1
2

(

−x8 + x7 −
∑6

j=1(−1)νj xj

)]2

+ 2a2(x2)3 + 2aω(x2)2 − 4a(2k + 2γ + 72ν + 5)x2

+
8γ(γ + 72ν + 3)

x2
, (3.16)

where νj = 0, 1 and
∑6

j=1 νj = odd (see [11]), x2 = 1/3(
∑6

i=1 y2
i + 1/2y2

7) with y’s defined
as

yi = xi , i = 1 . . . 6

y7 = x7 − x8 , (using the constraints y7 = 2x7)

Y =
1

2
(x7 + x8) , (using the constraint Y = 0)

In these variables the Laplacian becomes

∆(8) = ∆(6)
y + 2

∂2

∂y2
7

+
1

2

∂2

∂Y 2
, (3.17)

In the Hamiltonian (3.12) we know (k + 1) eigenstates explicitly (by algebraic means).
Their eigenfunctions are of the form

Ψ
(r)
0 (x) = (∆

(6)
+ )ν(∆

(6)
− )νyν

7 (∆E7
)ν(x2)γPk(x

2)e−
3

2
ωx

2− a
4
(x2)2 , (3.18)

where Pk is a polynomial of degree k and

∆
(6)
± =

6
∏

j<i=1

(yi ± yj) ,

∆E7
=

∏

{νj}



y7 +

6
∑

j=1

(−1)νjyj



 ,

where g = ν(ν − 1) > −1
4 .

Hence, we constructed the sl(2) QES deformation of the rational E7 model. All at-
tempts to construct other QES deformations of the E7 rational model fault so far.
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Quasi-exactly-solvable generalization of the E8 rational model

After substitution the data of the E8 into (2.21) we arrive at the quasi-exactly-solvable
E8 rational Hamiltonian written in the Cartesian coordinates

H(qes)
E8

= −1

2
∆(8) +

ω2

2

8
∑

i=1

x2
i + g

8
∑

j<i=1

[

1

(xi + xj)2
+

1

(xi − xj)2

]

+ g
∑

νj

1
[

1
2

(

x8 +
∑7

j=1(−1)νj xj

)]2

+ a2(x2)3 + 2aω(x2)2 − 2a(2k + 2γ + 240ν + 9)x2

+
4γ(γ + 120ν + 3)

x2
, (3.19)

where νj = 0, 1 and
∑7

j=1 νj = even (see [11]), x2 = (
∑8

i=1 x2
i ), for which we know (k +1)

eigenstates explicitly (by algebraic means). Their eigenfunctions are of the form

Ψ
(r)
0 (x) = (∆

(8)
+ ∆

(8)
− )ν∆ν

E8
(x2)γPk(x

2)e−
ω
2
x

2− a
4
(x2)2 , (3.20)

where Pk is a polynomial of degree k, g = ν(ν − 1) > −1
4 and where

∆
(8)
± =

8
∏

j<i=1

(xi ± xj) ,

∆E8
=

∏

{νj=0,1}



x8 +

7
∑

j=1

(−1)νj xj



 ,

Hence, we constructed the sl(2) QES deformation of the rational E8 model. All at-
tempts to construct other QES deformations of the E8 rational model fault so far.

4 Conclusion

We have found in an unified way the sl(2)-quasi-exactly-solvable generalization of all
rational integrable models associated with root systems of classical and exceptional Lie
algebras. It is a great challenge to find other QES generalizations of these models. The
only known particular example of such a type is a QES generalization of the Calogero
model found by Hou and Shifman [32].
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[28] A. González-Lopéz, N. Kamran and P.J. Olver, “Quasi-Exact Solvability” in Lie
algebras, cohomologies and new findings in quantum mechanics (N. Kamran and
P. J. Olver, eds.), AMS Contemporary Mathematics, vol. 160, pp. 113–140, 1994

[29] M.A. Shifman, in Lie algebras, cohomologies and new findings in quantum
mechanics (N. Kamran and P. J. Olver, eds.), AMS Contemporary Mathematics,
vol. 160, pp. 237–262, 1994

[30] A. Minzoni, M. Rosenbaum and A. Turbiner, “Quasi-Exactly-Solvable Many-Body
Problems”,
Mod. Phys. Lett. A11 (1996) 1977-1984
hep-th/9606092

[31] N. Bourbaki, in ”Groups et Algebras de Lie” (Hermann, Paris,1968) Chaps. IV–VI,
(V-5-4, prop.5)

[32] X. Hou, M.A. Shifman, “A quasi-exactly-solvable N -body problem with the
sl(N + 1) algebraic structure”,
Int.Journ.Mod.Phys. A14 (1999) 2993-3004
hep-th/9812157


