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Abstract

We investigate the algebraic properties of the time-dependent Schrödinger equations
of certain nonlinear oscillators introduced by Calogero and Graffi (Calogero F & Graffi
S, On the quantisation of a nonlinear Hamiltonian oscillator Physics Letters A 313

(2003) 356-362; Calogero F, On the quantisation of two other nonlinear harmonic
oscillators Physics Letters A 319 (2003) 240-245; Calogero F, On the quantisation
of yet another two nonlinear harmonic oscillators Journal of Nonlinear Mathematical

Physics 11 (2004) 1-6). Although all of the corresponding classical Hamiltonians are
characterised by the Lie algebra sl(2, R), we find that the algebras in the quantal case
are not unique and depend upon the choice of parameters made in the quantisation
process.

1 Introduction

In a series of papers Calogero and Graffi [1] and Calogero [2, 3] have discussed the quan-
tisation and interrelationships of a set of nonlinear oscillators characterised by the Hamil-
tonians
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in which c > 0 is a parameter which plays no role in the Newtonian equations of mo-
tion derived from the application of Hamilton’s Principle to the Action Integral for each
Hamiltonian. In principle the parameter s takes the values ±1 [3], but the value s = −1 is
subsequently shown not to be physically acceptable. Here we write HEP for what Calogero
and Graffi describe as H [1] [eq (38)], with c = 1 and the coefficient of q−2 written as g,
since the corresponding Newtonian equation of motion, videlicet

q̈ + 1
4q =

4

q3
, (1.6)

is well-known in Physics as the Ermakov-Pinney equation after the mathematicians Er-
makov [4] and Pinney [12] who provided some basic results for the more general equation

q̈ + ω2(t)q =
h2

q3
. (1.7)

Calogero and Graffi and Calogero provide time-independent Schrödinger equations for
each of the Hamiltonians (1.1) – (1.5) corresponding to the time-dependent forms
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([1] [eq (14)], [3] [eq (17)], [1] [adapted from (36a)], [2] [eq (10a) with (7) and (10b)] and
[2] [same as for (1.11) with the ‘potential’ adjusted to that of (1.5)] respectively] in which
ρ is a parameter which arises in the quantisation of H1 and β and γ are parameters which
arise in the quantisation of H2 and H3.

A central theme of the papers of Calogero and Graffi [1] and Calogero [2, 3] is the
practical demonstration that the two processes of quantisation and nonlinear canonical
transformation need not commute [14]. Furthermore the papers report ground state energy
levels for the Schrödinger equations (1.8) – (1.11) (in Calogero [3] the results for the
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equation (1.12) are left as an exercise for the diligent reader) which differ and depend
upon the parameter c and the quantisation procedure, ie the value of ρ in the case of (1.8)
and the values of β and γ in the case of (1.11) (and by implication (1.12)), although the
classical Hamiltonians (1.1) – (1.5) are related by autonomous canonical transformations
and the corresponding Newtonian equations are free of the parameter c.

The interface between Classical Mechanics and Quantum Mechanics represented by
the results reported by Calogero and Graffi and Calogero are not the concern of this
paper. Indeed we are not concerned with the classical aspects at all. Our concern is
the investigation of the group theoretical properties of the Schrödinger equations (1.8) –
(1.12). We determine the Lie point symmetries of each of the Schrödinger equations and
note some unusual features. We recall the use of the Lie point symmetries to construct the
solutions of the time-dependent Schrödinger equation [6] and in the case of three of these
Hamiltonians find some anomalous results which suggest that these nonlinear quantal
oscillators present further problems of interpretation than the already serious questions
addressed in the papers of Calogero and Graffi and Calogero.

2 Lie point symmetries of the time-dependent Schrödinger

equation

The Lie point symmetries of the time-dependent Schrödinger equations (1.8) – (1.10) are
easily calculated using LIE [5, 13] and we simply quote the results. In the case of (1.8)
there are two possibilities. For unconstrained ρ and c the symmetries are

Γ1 = i∂t

Γ2± = e±it
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2
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}

Γ4 = u∂u

Γ5 = f(t, x)∂u, (2.1)

where f(t, x) is any solution of (1.8). The symmetries Γ4 and Γ5 are generic to homo-
geneous linear partial differential equations and we do not repeat them below for the
remaining Schrödinger equations. The subalgebra consisting of the symmetries Γ1 and
Γ2± is sl(2, R). The presence of this subalgebra is common to all of the corresponding
Newtonian equations of motion for the Schrödinger equations considered in this paper.

When the quantisation parameter ρ is fixed according to ρ = c2−1/16, the symmetries
listed in (2.1) are supplemented by

Γ3± = x1/2e±it/2

{

x∂x +

[

± c

x
− 3

4

]
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}
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With Γ4 the symmetries Γ3± constitute the subalgebra A3,1 in the Mubarakzyanov clas-
sification scheme [7, 8, 9] and so is a representation of the Weyl algebra. Note that in
the case of unconstrained ρ its value does not appear in the coefficient functions of the
symmetries listed in (2.1) save through a solution of (1.8) in Γ5.

The nongeneric symmetries of (1.9) are

Γ1 = i∂t
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and of (1.10) are
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In (2.3) and (2.4) the subalgebra of the listed symmetries is sl(2, R).
For each of the Schrödinger equations (1.8) – (1.10) the algebra is {sl(2, R) ⊕ A1} ⊕s

{∞A1}, where the third subalgebra is the infinite-dimensional subalgebra of the solution
symmetries. In the case of the constraint ρ = c2−1/16 the algebra is {sl(2, R)⊕s A3,1}⊕s

{∞A1} where A3,1 is the Weyl subalgebra.
In the cases of (1.11) and (1.12) we are not able to compute directly the symmetries

using LIE due to the complexity of the coefficients3. Fortunately the situation is partially
resolved for us by Calogero [2] who has provided the transformation of the autonomous
equivalent of (1.11) to a polynomial form. Under the transformation
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, tan x = y−2, t = t (2.5)

(1.11) takes the form ([2] [(21a, 21b adapted)]
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It follows that for general values of β and γ, (1.11), which is related to (2.6) by means
of a point transformation and so preserves Lie point symmetries, can have only the two
generic symmetries, Γ4 and Γ5 of (2.1), plus Γ1 representing invariance under time trans-
lation. Only in the case βγ + 1 = 0 and β + γ − 2 = 0, ie β = 1 ±

√
2 and γ = 1 ∓

√
2, in

which the potential reduces to that of the Ermakov-Pinney equation, (1.10), are additional
symmetries found.

A similar story applies to (1.12). The same transformation, (2.5), gives the potential
(2.7) with 4c2y−2 replaced with −4c2y−2.

3 Construction of the Wave Functions

We can use the symmetries listed in (2.1) and (2.4) to construct formal solutions to
(1.8) and (1.10). The formal solutions become acceptable when the physical conditions
are satisfied. The standard procedure is to construct a basic solution and then use the
property of Lie symmetries that they map solutions into solutions [6]. In each case of
equations (1.8) – (1.12) we can use the symmetries Γ2± to obtain nontrivial results. We
illustrate the procedure with (1.8) and its Γ2± symmetries given in (2.1).

3Probably the interactive code of Nucci [10, 11] would be successful, but we did not have access to it
at the time this work was performed.
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We obtain a similarity solution of (1.8) by determining the invariants of Γ2± in (2.1) and
using these invariants as new variables to reduce (1.8) to an ordinary differential equation.
The Lie method has reduction at its core whereas the method of separation of variables
relies on the existence of a constant which plays a role analogous to that of a first integral
for ordinary differential equations.

The invariants of Γ2± (2.1b) are found from the solution of the equation Γ2±g(t, x, u) =
0 for which the associated Lagrange’s system is

dt

±i
=
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x
=
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(

± c

x
− 1

2

)

u
(3.1)

after the common exponential term has been removed. From the first and second com-
ponents of (3.1) we obtain the invariant v = x exp[±it] and from the second and third
components of (3.1) with v taken into account to avoid an x1/2 in the characteristic we
find the second invariant to be w = u exp[±( c

x − 1
2 it)]. Consequently the similarity solution

has the structure

u = exp
[

∓ c

x
± 1

2 it
]

h(v), v = x exp[±it]. (3.2)

This we substitute into (1.8) to obtain the ordinary differential equation

x2e±2ith′′ + 3xe±ith′ +
(
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)

h = 0

⇔ v2h′′ + 3vh′ +
(

1 + ρ − c2
)

h = 0, (3.3)

where the prime denotes differentiation with respect to the similarity variable v, for h(v).
Equation (3.3) is an Euler equation with the solution set

{h1, h2} = {v−1+α, v−1−α}, (3.4)

where α =
√

c2 − ρ. Consequently the solution set of (1.8) invariant under Γ2± is
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Solutions of (1.8) are required to be square integrable over x ∈ (0,∞) and for proper
behaviour at x = 0 we must take the upper, negative, sign in (3.5). Thus we have

uα± = exp
[

− c

x
−

(

1
2 ∓ α

)

it
]

x−1±α. (3.6)

With the change of variable x = η−1 the norm over (0,∞) can be written as

||uα±||2 =

∫ ∞

0
η∓2α exp [−2cη] dη. (3.7)

which is manifestly convergent for uα−. In the case of uα+ the integral in (3.7) is improper.
However, it is convergent for 2α < 1. For (1.8) to be well-posed it is necessary for ρ ≤ c2,
ie there is a constraint on the quantisation procedure as was already noted by Calogero
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and Graffi [1]. Hence the uα+ solution has finite norm for c2 − 1
4 < ρ ≤ c2. Nevertheless

the solution fails to be acceptable since the Schrödinger equation (1.8) is not self-adjoint as
also was already noted by Calogero and Graffi [1]. Hence there is just the single acceptable
solution of (1.8),

u0 = exp
[

− c

x
−

(

1
2 + α

)

it
]

x−1−α, (3.8)

corresponding to the symmetry Γ2+.
The solution (3.8) has no zero within (0,∞) and so represents a proper ground state.

The energy eigenvalue is given by

Γ1u0 = E0u0

E0 = α + 1
2 . (3.9)

We can create further solutions by the use of the Lie Bracket of Γ2− with Γ5 which is
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Thus for example we obtain

u1 = (2c − (1 + 2α)x) x−2−α exp
[

− c

x
− 1

2(3 + 2α)it
]

(3.11)

E1 = α + 3
2 . (3.12)

Higher states are similarly constructed. In general we have

En = 1
2 + n + α, (3.13)

ie the increment in the energy levels is one. The parameter c of the Hamiltonian (1.1) and
the parameter ρ of the quantisation procedure used to obtain (1.8) occur only through
the ground state. That this interesting phenomenon occurs for each of the Schrödinger
equations (1.8) – (1.11) has been reported by Calogero and Graffi [1] and Calogero [2, 3]
and is inferred for (1.12).

In a similar manner the solutions for (1.9) and (1.10) can be constructed by using the
corresponding Γ2± symmetries in (2.3) and (2.4). The base solution is constructed using
Γ2+ and subsequent solutions from the Lie Bracket of Γ2− and Γ5. The energy is the
eigenvalue of the equation

Γ1un = Enun. (3.14)

As there is no methodological development beyond that given for (1.8) above, we simply
quote the results. In all formulæ we assume that the parameter c is a positive real number.
For (1.9) we find that

u0 = xc exp
[

−
(

cx + (1
2 + c)it

)]
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un =
{

e−it
[

i∂t + x∂x + (1
2 − cx)

]}n
u0 (3.15)

En = 1
2 + n + c

in the case that s = 1. The case s = −1 is not physical. In the case of (1.10) we obtain
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where β =
√

1 + 16c2. In the case that β < 5/64 a second base solution

u−
0 = x(1−β)/2 exp

]

−1
4

(

cx2 + (2 − β)it
)]

exists for which ||u0|| < ∞. However, as Calogero and Graffi [1] have observed, the
equation ceases to be self-adjoint.

In the case of general values of β and γ equations (1.11) and (1.12) do not have easily
accessible wave functions as can be inferred from the comment of Calogero [2] [paragraph
after (24)]. For the specific choice of the parameter as stated in §2 the results are as given
in (3.16).

4 The exceptional case

We turn now to the exceptional case of (1.8) in which ρ = c2 − 1/16 and the additional
symmetries, Γ3± of (2.2), occur. The Γ2± solutions are now
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The associated Lagrange’s system for Γ3± is
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for which the invariants are evidently v = t and w = ux3/4e±c/x. We seek a similarity
solution of the form

u± = x−3/4 exp
[

∓ c

x

]

h(t). (4.4)

Substitution of (4.4) into (1.8) with ρ = c2 − 1/16 yields the first-order equation

2icḣ ∓ 1
2ch = 0

so that the similarity solution is

u± = x−
3
4 exp
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∓
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x
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4 it
)]

. (4.5)
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The norm is given by

||u±||2 =
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0
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3
2 exp

[

∓2c

x

]

dx

=

∫ ∞

0
η−

1
2 exp [∓2cη] dη, η = x−1.

The integral is convergent with the upper sign and so we have a replication of the solution
u1

4+
given in (4.1) and this is the solution corresponding to Γ3+.

The technique of using the Lie Bracket of Γ3− with Γ5 gives

fnew = x1/2 exp
[

−1
2 it

]

{

x∂x +

(
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4
∓ c
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fold. (4.6)

Using Γ3− with f+old = u1
4+

we obtain

fnew = 2cx−
5
4 exp
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−
(

c

x
+

3

4
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which is just u1
4−
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For ρ = c2 − 1/16 the basic solution is

u0 = x−
3
4 exp

[

− c

x
− 1

4 it
]

(4.7)

E0 = 1
4 , (4.8)

which corresponds to the Γ2+ solution of (3.8) when ρ = c2 − 1/16 and α = −1
4 . Further

solutions are generated by the action of Γ3− on the initial solution derived from the use
of Γ3+.

5 The exceptional case and the simple harmonic oscillator

The algebra of the Lie point symmetries of (1.8) in the exceptional case for which ρ = c2−
1/16 is {sl(2, R)⊕sWeyl}⊕s{∞A1} which has the two additional symmetries Γ3± of (2.2).
These two symmetries with Γ1 constitute the Weyl algebra which is the algebra of the Dirac
creation and annihilation operators and the identity element in the standard treatment of
the quantal simple harmonic oscillator. Indeed the algebra {sl(2, R) ⊕s Weyl} ⊕s {∞A1}
is the algebra of the Lie point symmetries of the time-dependent Schrödinger equation for
the simple harmonic oscillator [6]. The algebras of (1.8) in the nonexceptional case, (1.9)
and (1.10) are characteristic of the time-dependent Schrödinger equations for potentials
of Ermakov-Pinney type.

The time-dependent Schrödinger equation for a simple harmonic oscillator with an
Hamiltonian written in the spirit of (1.1) – (1.5), videlicet

HSH0 = 1
2

{

p2

c
+

c

4
q2

}

, (5.1)
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is, cf (1.10),

2ic
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∂t
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∂2u

∂x2
− 1

4c2x2u = 0. (5.2)

Equation (5.2) possesses the Lie point symmetries

Γ1 = i∂t

Γ2± = e±it
[

±i∂t − 1
2x∂x + 1

4
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1 ± cx2
)

u∂u

]

Γ3± = e±
1
2 it [

−∂x ± 1
2cxu∂u

]

(5.3)

Γ4 = u∂u

Γ5 = f(t, x)∂u,

where f(t, x) is a solution of (5.2), in which the numbering of the symmetries follows
the convention established above. We note that Γ1, Γ2±, Γ4 and Γ5 coincide with the
symmetries of (1.10). The solution of the time-dependent Schrödinger equation (5.2) is
found using the symmetries Γ3± in (5.3) as we have demonstrated above. We find that

u0 = exp
[

−1
4

(

cx2 + it
)]

un =
{

exp[−1
2 it]

(

−∂x + 1
2cx

)}n
u0 (5.4)

En = 1
4(2n + 1),

in which un follows from repeatedly taking the Lie Bracket of Γ3− and Γ5 with f = u0.
We note that En is independent of c.
The symmetries of (2.2) and (5.3c) can be related by means of a point transformation

of rather special type. It is evident that time is unchanged, space maps to space and the
wavefunction transforms linearly. We use uppercase letters for (5.2) and its symmetries
(5.3) and lowercase letters for (1.8). It is a simple matter to show that the transformation
connecting (2.2) and (5.3c) is

t = T, x = 4X−2, u = X
3
2 U. (5.5)

Under this transformation (1.8) reduces to

2ic
∂U

∂T
+

∂2U

∂X2
+

{[

4
(

1 + ρ − c2
)

− 15

4

]

X−2 − c2

4
X2

}

U = 0 (5.6)

which becomes

2ic
∂U

∂T
+

∂2U

∂X2
− 1

4c2X2U = 0, (5.7)

ie (5.2), when ρ takes the exceptional value of c2 − 1/16.
We have the peculiar result that a nonlinear oscillator, H (1.1), constructed from the

Ermakov-Pinney Hamiltonian (1.3) [2], becomes a linear oscillator under a specific choice
of quantisation procedure. This quantisation has the effect of a transformation of the
variables, both independent and dependent, which is nonlocal since the number of Lie
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point symmetries changes. A quantisation scheme which changes the underlying Physics
is disturbing and is more than worthy of further investigation from the viewpoint of its
physical meaning in contrast to the mathematical approach of this paper.

In this treatment of the exceptional case for (1.8), videlicet ρ = c2 − 1/16, we see that
in the general case the equation transforms to

2ic
∂U

∂T
+

∂2U

∂X2
− 1

4

[

c2X2 −
(

1 + 16
(

ρ − c2
))

X2

]

U = 0 (5.8)

which coincides with (1.10) only if ρ = −1/16 in which case the energy levels of (1.8) and
(1.10) are the same as they are equivalent descriptions of the same system.

6 Conclusion

In this paper we have considered a number of quantal nonlinear oscillators, introduced
by Calogero and Graffi [1] and Calogero [2, 3] (apart from the Ermakov-Pinney system)
from a perspective of their curious variations as quantal systems from classical behaviour,
from the viewpoint of the Lie algebras of their time-dependent Schrödinger equations. In
general all systems have the same algebraic structure and we have demonstrated how to
construct their wave functions using standard algebraic techniques. During the course of
the analysis of (1.8) we found an increase in the number of point symmetries when two
parameters were related in a specific way. This indicated a fundamental change in the
nature of the underlying physical problem since one went from a potential with a repulsive
centrifugal term to that of a simple harmonic oscillator even though this was not evident
in the time-dependent Schrödinger equation, (1.8), describing the system. Apart from the
slightly disconcerting lack of obvious difference between ρ = c2 − 1/16 and ρ 6= c2 − 1/16
there are sufficient instances in the literature of critical values of parameters for this not to
be a surprise. What is disconcerting in this case, however, is that the parameter in question
occurs in a quantisation procedure, ie the choice of the parameter in the procedure can
change the nature of the physical problem under consideration.

In a similar vein the analyses of (1.11) and (1.12) showed that for a general quantisation
scheme there were only the symmetries expected for an arbitrary autonomous potential.
Again a particular choice of the parameters of the quantisation scheme lead to an increase
in the number of nontrivial symmetries so that the nontrivial algebra was sl(2, R).

This is not good Physics! It does, however, provide an impetus to study again the
process of quantisation to see if a consistent procedure can be established to avoid prob-
lems such as the one illustrated here. In the papers of Calogero and Graffi and Calogero
particular point was made of the general noncommutivity of nonlinear canonical transfor-
mations and quantisation. Here we have found an anomaly even within the quantisation
procedure. We are indebted to Francesco Calogero for opening this line of research to
reveal a succession of fundamental questions to be answered.
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