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Switzerland.
E-mail: eloubet@math.unizh.ch

Received July 28, 2004; Accepted September 22, 2004

Abstract

We present a detailed computation leading to an explicit formula for the fourth Hamil-
tonian in the series of constants of motion with which any flow of the Camassa-Holm
hierarchy is equipped, and explain the inherent difficulties in achieving such explicit
expressions for invariants higher in the series.

1 Introduction

The equation of Camassa and Holm [2, 3] is an approximate one-dimensional description
of unidirectional propagation of long waves in shallow water. In dimensionless space-time
R × [0,+∞) ∋ (x, t) variables it reads

∂m

∂t
= (mD + Dm)(−v) , (1.1)

in which D = ∂/∂x, the real valued function v represents the fluid velocity (or equivalently
the height of the water’s free surface above flat bottom), and m = v − v′′: in extenso,

∂v

∂t
−

∂3v

∂t∂x2
+ 3v

∂v

∂x
− 2

∂v

∂x

∂2v

∂x2
− v

∂3v

∂x3
= 0 .

Its Eulerian form is more attractive: In terms of Green’s function1 G = (1 − D2)−1, it
reads

∂v

∂t
+ v

∂v

∂x
+

∂p

∂x
= 0 with the “pressure” p = G

[

v2 +
1

2
(v′)2

]

. (1.2)

It is reminiscent of the three-dimensional incompressible equations

∂v

∂t
+ (v · grad)v + grad p = 0 ,
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1In terms of the kernels: G = exp{−|x − y|}/2 for the case on the line,
and G = Ch

[
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4

)

for the analogue on the circle.
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in which △p ≡ sp(∂v/∂x)2 and G is inverse to −△, i.e. G = (4π|x − y|)−1, and p =
G[sp(∂v/∂x)2].

This model was first noticed by Fokas and Fuchssteiner [10], by the method of recursion
operators, as a formally integrable bi-Hamiltonian generalization of KdV, but it became
the subject of serious study after it was revamped from physical principles by Camassa
and Holm [2]2. Unlike this well-known ancestor, which is produced by approximation at
the leading edge, CH was found in the course of approximating directly in the Hamiltonian
for Euler’s equations in the shallow water regime [2]3. It is a good approximation for the
full inviscid water wave equation, just as consistent in the small amplitude, shallow water
regime as KdV. But more is true, the CH equation is remarkable, as compared to KdV,
(a) for its peaked solitons and the simplicity of their interactions, (b) for its equivalence to
the geodesic flow in the group of compressible diffeomorphisms of the line or of the circle
(i.e. the periodic case [18]), and (c) for the presence of breaking waves. The bulk of basic
material pertaining to “CH and all that” can be traced back to Camassa and Holm [2, 3].
Speaking further about (a), (b), and (c), we point out that Beals, Sattinger and Szmigielski
[1] adapted beautiful formulae by Stieltjes [19] to solve CH in the “multisoliton” case where
mdx reduces to a finite collection of signed point masses that lead to explicit formulas
for solition interactions. Their results can be regarded as an extreme case of McKean’s
treatment of the case on the line which involves theta-like Fredholm determinants [14]. A
complete account of the finite gap periodic case can be found in Constantin and McKean
[7]. It is interesting to note that the geometric interpretation that (1.2) affords, leads to
a confirmation of the Least Action Principle [6, 12]. On the other hand, [4] established
that the only way in which singularities may arise for a classical solution of (1.2) is in
the form of breaking waves in the sense of Whitham [20], i.e. that while the profile
stays bounded, its slope becomes unbounded in finite time. Criteria ensuring breakdown
can be found in [5, 16, 14, 16]. Moreover, it is interesting to stress that in the case
where no solitons are present, KdV and CH share a deeper kindship than their respective
derivations might have suggested [15]. In short, since it was revamped, CH has been the
subject of extensive investigations and by now has secured its place in the list of remarkable
infinite-dimensional integrable nonlinear equations. Here, we do not entertain with any
of the rich phenomena connected with this model. Rather, we focus on the well-known
fact that such an infinite-dimensional integrable system admits, implicitly, an infinite
number of independent conserved functionals. Their explicit expressions are important
for applications. Indeed, Constantin and Strauss [8] used the first three invariants to
establish, via energy estimates, the orbital stability of the peaked solitons. On the other
hand, it is well known that in the case of KdV, the constants of motion control higher
and higher Sobolev norms, implying smoothness of the profile. This can no longer be true
for the CH equation since “peaks” are present, but how can this be suspected from the
explicit transcriptions of its invariants4? We offer a direct explicit computation of the
next invariant in the sequence that starts with the most primitive ones and explain the
inherent difficulties in deriving explicitly subsequent constants of motion by the recursion

2Consult [11] for a derivation using consistent asymptotic expansions in the governing equations for
water waves.

3More recently, (1.2) has risen as a model for nonlinear waves in cylindrical axially symmetric hyperbolic
rods, with v representing the radial stretch relative to a pre-stressed state [9].

4See remark 4.
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method. We close the discussion by signaling that, in practice, alternative descriptions of
the invariants also fail in producing, in a systematic fashion, concrete expressions for the
independent Hamiltoninans.

2 Explicit Computation of the 4
th CH-Hamiltonian

Either expressed in terms of the velocity field v or the “mass” potential m = v − v′′, the
first CH-Hamiltonians are5

H0 =

∫

v =

∫

m , (2.1a)

H1 =
1

2

∫

(v2 + v′2) =
1

2

∫

mG[m] , (2.1b)

H2 =
1

2

∫

v(v2 + v′2) =
1

2

∫

G[m](G[m]2 + {G[m]}′2) . (2.1c)

More explicitly these invariants are functionals6

H[m] = H ◦ (1 − D2)[v] ,

from which it is plain that functional gradients with respect to m, and v respectively, are
related to each other. Indeed, let w ≡ (1 − D2)(p) denote a variation of the potential m,
and p the effect of the latter registered along v. Then7

d

dǫ
H[m + ǫw]|ǫ=0 = dmH[w] =< w, ∂H/∂m >0 ,

is nothing but

d

dǫ

(

H ◦ (1 − D2)
)

[v + ǫp]|ǫ=0 = dv{H ◦ (1−D2)}[p] =< p, ∂{H ◦ (1 − D2)}/∂v >0 .

Since the variation is arbitrary, and the operator (1 − D2) is self-adjoint with respect to
H0-inner product, we learn that (1 − D2)(∂H/∂m) = ∂{H ◦ (1 − D2)}/∂v.

Remark 1. This is could have been expected from the formal chain rule ∂H/∂m =
∂H/∂(v − v′′) = (1 − D2)−1(∂H/∂v).

Warning 1. In the sequel we will use the symbols h ≡ ∂H/∂m, and8 h♯ ≡ ∂H/∂v
respectively to denote the H0-functional gradients. Hence the last result reads

h♯ = (1 − D2)(h) = h − h′′ . (2.2)

5The present considerations hold for either the periodic case or the case on the line (with suitable decay
at infinity of v). Therein the reason why we keep the domain of integration deliberately unspecified. More
significantly, in either of these two cases, boundary terms arising when integrating by parts wash out.

6The underlying function spaces where v and thus m live, are such that the expressions for the invariants
are well-defined, and for which associated H0-gradients make sense.

7< · , · >0 denotes the standard H0-scalar product.
8∂H/∂v is of course short for ∂{H ◦ (1 − D2)}/∂v.
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Now, it is a standard fact that the number of invariants under any flow of the CH-
hierarchy is infinite [3]. This is a byproduct of the bi-Hamiltonian structures in terms of
which such flows may be expressed, i.e. the Lénard raising/lowering rule [13] by which
corresponding Hamiltonian vector fields are identified. More precisely, we have the

Poisson Structures.

J ≡ mD + Dm ,

K ≡ D(1 − D2) ,

connecting the functional gradients of subsequent Hamiltonians in the (countably infinite)
list via the

Lénard rule.

J (hn) = K(hn+1) , for n ≥ 0 .

In symbols: Hn ↑ Hn+1 ↓ Hn; the up ↑/ down ↓ arrows expressing the fact that the
Hamiltonian raises/lowers.

Warning 2. For clarity, we will stick to the gradients throughout the sequel with the
understanding that they arise from computations involving an integral in the background.

These are all the items we need for the actual computation of H3. Indeed, by integration
by parts

h♯
2

=
(

3v2 + v′2 − 2(vv′)′
)

/2

=
3

2
v2 +

1

2
v′2 −

(

1

2
v2

)

′′

. (2.3)

We will actually need h2 rather than h♯
2
. Now (2.2), dictates that h2 = G[h♯

2
], hence all

we need to do is to factor out the operator (1 − D2) from the above display. Trivially,

h♯
2

= (1 − D2)(
1

2
v2) + v2 +

1

2
v′2 ,

so that, up to possible element in the kernel of (1 − D2) that we ignore, the functional
gradient h2 reads

h2 =
1

2
v2 + G

[

v2 +
1

2
v′2
]

. (2.4)

Remark 2. Notice that the above result is consistent with the original recipe9 m• +
J (h1) = 0 defining CH equation (1.1). Indeed, modulo the “factor” (1 − D2), and the
identification J (h1) = K(h2), the latter reads v• + (h2)

′ = 0, i.e. (1.2) as (2.4) would
indicate.

9(·)• is short for ∂(·)/∂t.
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On the other hand, the Lénard rule in combination with (2.2) yield J (h2) = K(h3) =

(h♯
3
)′, which prompts writing J (h2) = (mh2)

′ + mh′

2 as a total derivative. To this end,
observe that

mh′

2 = (v − v′′)h′

2

= (vh2 − v′h′

2)
′ − v′(h2 − h′′

2)

= (vh2 − v′h′

2)
′ − v′h♯

2
.

Now in order to spell the remaining item in the last display as a derivative, we invoke
(2.3) and combine terms suitably as in

v′h♯
2

= v′
(

3

2
v2 −

1

2
v′2 − vv′′

)

=

(

1

2
v3

)

′

−
1

2
v′3 − vv′v′′

=

(

1

2
v3 −

1

2
vv′2

)

′

.

In other words, mh′

2 = (vh2 − v′h′

2 − v3/2 + vv′2/2)′, so that putting everything together

(h♯
3
)′ =

(

(m + v)h2 − v′h′

2 −
1

2
v3 +

1

2
vv′2

)

′

,

i.e.10

h♯
3

= (2v − v′′)h2 − v′h′

2 −
1

2
v3 +

1

2
vv′2 + a

= 2vh2 − (v′h2)
′ −

1

2
v3 +

1

2
vv′2 + a . (2.5)

The next step consists in identifying the right-hand-side of (2.5) as the functional gradient
it should correspond to.

Remark 3. Here it is important to stress that the main difficulty lies in coping with
terms which involve derivatives as these arise from terms (in the integrand defining the
Hamiltonian) of either the form vα{Dγ(v)}β or {Dγ(v)}β . Indeed, they originate from the
latter from an intrinsic integration by parts which produces factors involving products of
suitable derivatives, whereas, in conformity to Leibniz rule, they are generated from the
former also via the functional differentiation of the factor vα. It is the assembling of the
terms thus produced which makes the recovery of the Hamiltonian difficult when starting
from its associated gradient.

Keeping the above remark in mind, we first observe that11 2vh2 − (v′h2)
′ = h2∂(v2 +

1/2v′2)/∂v, so that by Leibniz rule,

2vh2 − (v′h2)
′ =

∂

∂v

{

(v2 +
1

2
v′2)h2

}

− (v2 +
1

2
v′2)

∂h2

∂v
.

10a denotes a constant.
11cf. warning 2.
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But then switching momentarily to the symbolic shortcut q ≡ (v2 + v′2/2), a more conve-

nient expression for h♯
3

arises:

h♯
3

=
∂(qh2)

∂v
− q

∂h2

∂v
−

1

2
v3 + vv′2 + a . (2.6)

Indeed, recall (2.4) to express the last chunk as in 12

−q
∂h2

∂v
−

1

2
v3 +

1

2
vv′2 = −q

(

v + G

[

∂q

∂v

])

−
1

2
v3 +

1

2
vv′2

= −
1

2

∂

∂v
(qG [q]) −

3

2
v3

= −
∂

∂v

(

1

2
qG [q] +

3

8
v4

)

,

so that when substituted back in (2.6), the latter reads13

h♯
3

=
∂

∂v

(

qh2 −
1

2
qG [q] −

3

8
v4

)

+ a

=
∂

∂v

(

1

2
v2

q +
1

2
qG [q] −

3

8
v4 + av + b

)

,

in which a, and b denote constants. Thence we can finish the job by simply infering what
the third invariant with respect to CH-flow has to be. Setting a = b = 0 for simplicity14,
we conclude that

H3 =
1

2

∫
{

(v2 +
1

2
v′2)G

[

v2 +
1

2
v′2
]

+
1

4
v2(v2 + 2v′2)

}

. (2.7)

Remark 4. Notice that the expression within braces is non-local with respect to v. This
is in sharp contrast to the KdV case, in which all integrands of invariant functionals
correspond to homogeneous differential polynomials of the velocity potential V 15. More
important is the fact that in this case only v and v′ intervene. Indeed, this discovery is in
agreement to the fact that in the case of CH one cannot expect to control higher Sobolev
norms of the solution because of the inherent possibility of breakdown.

Finally, we point out that if we mimic previous steps in order to figure out the next
Hamiltonian in the series, we face an obstacle. The first couple of steps carry through
without extra complications. Indeed, J (h3) = (h♯

4
)′ where J (h3) = (mh3)

′ + mh′

3. By

12Symmetry of the kernel G, the fact that qv = v(v2 + v′2/2), and Leibniz rule are used in passing to
the second line below.

13As before we invoke (2.4) to come up with a final expression involving only v and q.
14Notice that H0 =

∫

v, so that a = 0 simply expresses the fact that H3 is functionally independent of
H0, while b = 0 enforces H [0] = 0, i.e. that the density of no invariant contains constant terms.

15V stands for the velocity profile satistying the KdV equation: ∂V/∂t + V ∂V/∂X + ∂3V/∂X3 = 0.
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direct computation

mh′

3 = (vh3 − v′h′

3)
′ − v′h♯

3
,

v′h♯
3

= 2vv′h2 − v′(v′h2)
′ −

1

2
v3v′ +

1

2
vv′3 . Now

2vv′h2 − v′(v′h2)
′ =

[

(v2 −
1

2
v′2)h2

]

′

− h′

2q by integration by parts,

and h′

2q =

(

1

4
v4 +

1

2
qG [q]

)

′

+
1

2
vv′3 . Hence

v′h♯
3

=

(

(v2 −
1

2
v′2)h2 −

1

2
qG [q] −

3

8
v4

)

′

,

so that upon reassembling all these pieces

(h♯
4
)′ =

(

(m + v)h3 − v′h′

3 − (v2 −
1

2
v′2)h2 +

1

2
qG [q] +

3

8
v4

)

′

.

We infer, exactly as before, that

h♯
4

= 2vh3 −
(

v′h3

)

′

− (v2 −
1

2
v′2)h2 +

1

2
qG [q] +

3

8
v4 .

Comparing the latter with (2.5), suggests going one step further by writing the first two
terms above as in h3∂q/∂v = ∂(qh3)/∂v − q∂h3/∂v, so that

h♯
4

=
∂

∂v

(

qh3 +
3

40
v5

)

+ R

R = −q
∂h3

∂v
− (v2 −

1

2
v′2)h2 +

1

2
qG [q] .

The problem now is that R does not offer any indication as to how to recast it as the
functional gradient it should correspond to. In fact, we cannot even produce a “nice”
expression for h3 starting from (2.5) which we could then exploit with the hope of getting
a more manageable expression, by which we mean, one from which terms containing deriv-
iatives would offer some insight as to how to assimilate them as the result of computing a
suitable gradient16. In short, the inherent difficulty in establishing the latter identification
of (necessarily more and more complex) derivative terms, reveals the limited character of
the recursive approach for producing explicitly the invariants.

Remark 5. An analogous iterative method for computing KdV invariants might give
rise to similar obstructions. Fortunately, there is a way out in this case. Indeed, we
can guess which combinations of V, V ′, V ′′ · · · will show up in the integrands defining
the KdV functionals since they correspond to homogenous (in some appropiate sense)
differential polynomials in V , i.e. the “hands-on” computation of further KdV constants
of motion boils down to the determination of the constant weights, multiplying each of
the factors which conform to the homogeneity constraint. Actually, “homogeneity” of the
integrands is not a problem in the case of CH as the first couple of invariants show: indeed,

16cf. remark 3.
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upon declaring deg(v) = deg(v′) ≡ 1, it follows that17 deg[(2.1a)] = 1, deg[(2.1b)] = 2,
deg[(2.1c)] = 3, deg[(2.7)] = 4, etc.... Here the obstruction to “guess,” i.e. to compute the
constants factors, is rather due to the non-local character of the invariants.

To conclude we point out to the reader that, in the periodic case [7], there is an alterna-
tive way18of potentially computing the invariants. It suggests itself to be more direct than
the previous attempt in that it avoids passing through the gradients. Indeed, consider
Ch−1[△(λ)] where △(λ) = 1

2
× trace of the monodromy matrix, alias the discriminant

which in turn is constructed from a pair of so called standard solutions of the acoustic
problem19. The latter invariant may be regarded as a generating function for all other
ones since the McLaurin series of the former with respect to 2λ, embody as coefficients
the aforementioned series of Hamiltonians20. To wit21,

−2Ch−1[△(λ)] = −2Ch−1[△]|0 −

(

△•

√

△2 − 1

)

|0 × (2λ)

−
1

8

[

−△(△•)2

(△2 − 1)3/2
+

△••

√

△2 − 1

]

|0 × (2λ)2 + O
(

(2λ)3
)

.

Indeed, the constant term on the expansion can be computed immediately from the mon-
odromy properties of standard solutions as Floquet theory would indicate. It corresponds
to the period. For the computations pertaining to the remaining coefficients, we also need
to make use of the integral expressions that the standard solutions satisfy to compute
the values of the derivatives (at the origin) of the discriminant which arise in the expan-
sion. Following this procedure, we recover as expected △•(△2 − 1)−1/2|0 = H0, and after
some effort H1, i.e. the coefficients associated to (2λ), and (2λ)2 respectively. We did
not even pursue the verification that the next coefficient corresponds to H2 because the
computations are lengthy, and more significantly, because they give indication of a sort of
obstruction (analogous to that of the former method) that requires some extra thinking
to breakthrough. In short, there does not seem to be an infallible systematic way for
computing explicitly the invariants.
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