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Abstract

The article is devoted to studying the Millionshtchikov closure model (a particular
case of a model introduced by Oberlack [14]) for isotropic turbulence dynamics which
appears in the context of the theory of the von Kármán-Howarth equation. We write
the model in an abstract form that enables us to apply the theory of contractive
semigroups and then to present a solution to the initial-boundary value problem by
Chorin-type formula.

1 Introduction

For decaying isotropic turbulence von Kármán and Howarth [8] found that the governing
equation for the two-point velocity correlation functions is given by

∂BLL

∂t
=

1

r4

∂

∂r
r4

(

BLL,L + 2ν
∂BLL

∂r

)

. (1.1)

Here ν is the kinematic viscosity, BLL is the longitudinal two-point correlation function of
velocity fluctuations and BLL,L is the corresponding two-point moment of the third-order.
Equation (1.1) is not closed since it contains two unknowns BLL and BLL,L which cannot
be defined from (1.1) without the use of additional hypotheses. The simplest assumption
is the Kármán–Howarth’s hypothesis on the similarity of the correlation functions BLL

and BLL,L which are (see [12])

BLL(r, t) = V 2(t)f(η), BLL,L(r, t) = V 3(t)h(η), η = r/L(t), (1.2)

where V 2(t) is the scale for the turbulent kinetic energy, V 3(t) is the scale for the turbulent
transfer and L(t) is the global length scale of the turbulence. Substituting these hypothe-
sized expressions into equation (1.1), we straightforwardly demonstrate that this equation
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admits a complete similarity solution of type (1.2) only when Rel = V L/ν = const. It is
known that this condition is normally not satisfied in experimental measurements of de-
caying isotropic turbulence at finite Reynolds number. In [3] Batchelor et al. carried out
a similarity analysis of this problem in Fourier space and shown that a similarity solution
could be found during the final period of decay when the nonlinear terms become negligi-
ble. Millionshtchikov outlined in [13] a more general hypotheses which produces parametric
models of isotropic turbulence based on a closure procedure for von the Kármán–Howarth
equation. The essence of these hypotheses is that BLL,L is given by the following relation
of gradient-type

BLL,L = 2K
∂BLL

∂r
, (1.3)

where K is the turbulent kinematic viscosity which is characterized by a single length and
velocity scale. Millionshtchikov’s hypotheses assumes [13] that

K = κ1ur, u2 = BLL(0, t), (1.4)

where κ1 denotes an empirical constant.
An original way of closing the von Kármán–Howarth equation was suggested by Ober-

lack in [14] which connects the two-point correlation functions of the third-order BLL,L

and the second order BLL by using the gradient type hypothesis that according to [14]
takes the form

K = κ2r
√

DLL, DLL = 2[u2 − εBLL(r, t)], ε = 1. (1.5)

The Millionshtchikov hypotheses is a consequence of the above formula in the case when
ε = 0. The model (1.5) holds for a wide range of well accepted turbulence theories
for homogeneous isotropic turbulence such as Kolmogorov’s first and second similarity
hypothesis and the integral invariant theory, which is a generalization of Loitsiansky’s and
Birkhoff’s integrals.

We note that Hasselmann (see, [7]) was the first to hypothesize a connection between
the correlation functions of the second- and third-order. His model for isotropic turbu-
lence contains one empirical constant and a rather complicated expression for the turbulent
viscosity coefficient. Onufriev [16] obtained the closed mathematical model of isotropic
turbulence dynamics based on a system of two partial differential equations for the longi-
tudinal two-point double and triple correlation functions. He used the finite-dimensional
probability density equation and the Millionshtchikov approach for closing this system.

Besides the models based on solving the von Kármán–Howarth equation, there are
some other approaches to investigate theoretically isotropic turbulence dynamics, which
include: analysis of possible self-similar solutions of the unclosed von Kármán–Howarth
equation or its spectral analog, attempts to close the equation for the energy spectrum,
direct numerical simulation of isotropic turbulence decay based on solving the Navier–
Stokes equations. These approaches and the results obtained therein have been derived
by Barenblatt et al. [2], Monin [12], Korneev et al. [9], Schumann et al. [17], George [6],
Speciale et al. [18] and others.

Analysis of the literature has shown that there is a relatively small number of publica-
tions devoted to numerical experiments of the von Kármán-Howarth equation, and there
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are very few results devoted to the mathematical study, known to the authors, that are
based on closed models of the von Kármán-Howarth equation. Exceptions are selfsimilar
solutions to the model (1.1)-(1.4) which were obtained in [13]; selfsimilar and numerical
solutions to model (1.1), (1.3), (1.5) which were presented in [14].

Our intention is to study some open mathematical problems of the dynamics of isotropic
turbulence using two-point turbulence models. We begin the study of isotropic turbulence
dynamics with an investigation of the Millionshtchikov model which occupies an intermedi-
ate location according to complexity in the hierarchy of closing the von Kármán–Howarth
equation. Firstly we write the model in an abstract form on the product of R+ × X × Y ,
where we can rewrite equation (1.1) in a form suitable to employ the theory of contrac-
tive semigroups. Then using Chorin’s formula [5] (or a Trotter–Kato formula for pairs
of contractive continuous semigroup) we find a solution to our model. This formula was
discovered by Chorin in an attempt to find solutions of the Navier–Stokes equations.

Remark 1. Millionshtchikov’s [13] model may be considered as a particular case of Ober-
lack’s model [14], [15] by using formula (1.5) for ε = 0 and the present study of the
Millionshtchikov model is the first step for investigation of the general model (1.1), (1.3),
(1.5).

2 Problem Formulation

In order to study the dynamics of homogeneous isotropic turbulence we use the closed von
Kármán–Howarth equation in dimensionless form

∂B̃LL

∂t̃
= HB̃LL ≡ 2

r̃4

∂

∂r̃
r̃4

(

K̃ +
1

ReM

)

∂B̃LL

∂r̃
. (2.1)

where B̃LL = BLL/U2
∞; t̃ = U∞t/M = x/M , t is time, connected with x the distance from

the grid in a wind tunnel. U∞ is the velocity of the stream in the working section of the
wind channel, r̃ = r/M (r is a distance between two points of space) and M is a size of
a grid mesh; ReM = U∞M/ν, ν designates a kinematic viscosity coefficient; K̃ = κ1ũr̃,
ũ2 = B̃LL(0, t) and κ1 is the empirical constant.

For the initial condition we set a positive decreasing function B̃0LL(r̃), consistent with
the experimental data:

B̃LL(r̃, t0) = B̃0LL(r̃), t̃ = t̃0, r̃ ≥ 0. (2.2)

Equation (1.1) is supplemented by the boundary conditions:

B̃LL,L = 2K
∂B̃LL

∂r̃
= 0, r̃ = 0 and B̃LL = 0, r̃ → ∞. (2.3)

Bellow the tilde symbol for dimensionless variables is omitted for convenience.

3 Solution to the Problem

In this section we address an abstract form of equation (2.1) and construct approximate
solutions to the above problem.
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Consider the operator

H =
2

r4

∂

∂r
r4

(

κ1ru(t) +
1

ReM

)

∂

∂r
=

2κ1u(t)

[

r
∂2

∂r2
+ 5

∂

∂r

]

+ 2
1

ReM

[

∂2

∂r2
+

4

r

∂

∂r

]

.

(3.1)

By introducing the new variable s = 2
√

r and replacing r by s in the first operator
[

r
∂2

∂r2
+ 5

∂

∂r

]

(3.2)

we can rewrite (3.1) in the following form

H =
2

ReM

[

κ1ReMu(t)

(

∂2

∂s2
+

9

s

∂

∂s

)

+

(

∂2

∂r2
+

4

r

∂

∂r

)]

. (3.3)

The operator

Bk =
∂2

∂q2
+

k

q

∂

∂q
(3.4)

is often called the Bessel operator and represents the spherical Laplacian acting on a
(k + 1)-dimensional sphere Sk+1. The operator H admits a representation in the form of
the spherical Laplacian on the product S5 × S10 with appropriate metrics.

Let Z be a manifold isometric to the product X ×Y (where X and Y are, respectively,
manifolds of dimension n and m with the metrics dx2 and dy2) and endowed with the
metric

dz2 = dx2 + γ2dy2 (3.5)

where γ is a smooth positive function. Calculating the Laplace operator ∆Z on the
manifold Z we arrive at the following (see [19])

∆Z = ∆X + γ−2∆Y , (3.6)

where ∆X and ∆Y are the Laplace operators on X and Y . We define X = S5, Y = S10

and dx2, dy2 which are, respectively, the metrics on S5, S10. Let γ = 1/
√

κ1ν−1u(t).
Then the operator H is calculated as follows:

H = ∆Z ≡ 2

ReM

[

∆S5 + γ−2∆S10

]

, (3.7)

where Z = S5 × S10 with the above metric. Here the operator ∆Si is the corresponding
Bessel operator. The representation obtained for the operator H gives a reason to assume
that H generates a semigroup in some functional space. To prove this property we use
Chorin’s formula [5] (or the Trotter–Kato formula for pairs of continuous contractive
semigroups in some Banach space). The basis of employing this approach uses the results
of [1] for the Bessel operator which ensures that Bk generates an analytic contractive
semigroup eBkt in the functional space Hλ

0 :

Hλ
0 = {u ∈ C0 : u ∈ hλ([0,∞))}, (3.8)
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where C0 is a set of bounded, uniformly continuous functions {f} on [0,∞) such that
f(q) → 0 as q → ∞ and hλ denotes the little Hölder space. With the Hölder norm on
u, H0 becomes a Banach space [1]. Therefore u(t) = eBktu(0) is a weak solution of the
equation ut = Bku for u(0) ∈ Hλ

0 [1]. Moreover the well-known result about regularity of
solutions to parabolic equations [10] guarantees that in fact u(t) is the classical solution
to the above equation for t > 0.

It is useful to present this analytic semigroup in an explicit form. To this end we
consider the equation

∂v

∂t
= x

∂2v

∂x2
+ α

∂v

∂x
(3.9)

for α > 1 and x ∈ R+, t > 0 keeping in mind that there exists a correspondence between
the Bessel operator Bk and the operator

Dα = x
∂2

∂x2
+ α

∂

∂x
(3.10)

by change of variables q = 2
√

x at k = 2α−1. According to the theory for parabolic equa-
tions which are degenerate on a boundary (see, for example [20]), the correctly formulated
problem to equation (3.9) with initial condition

v(x, 0) = v0(x), x ∈ R+ (3.11)

requires to set free the boundary {x = 0} from boundary conditions. The degeneracy
of (3.9) at {x = 0} may be observed since the first term on the right hand side becomes
zero and formally a hyperbolic equation is obtained. The following formula [20],

v(x, t) =

∫ ∞

0
G(x, ξ, t)v0(ξ)dξ, (3.12)

gives a (positive) solution to problem (3.9), (3.11) (for the positive function v0(x)), where
G(x, ξ, t) is a Green’s function for (3.9), (3.11) which has the form

G(x, ξ, t) =
1

t

(

x

ξ

)m/2

exp

(

−x + ξ

t

)

Im

(

2
x1/2ξ1/2

t

)

, m = α − 1. (3.13)

Here Iq(x) is the modified Bessel function. It is easy to check that the Green’s function
G satisfies the equality

∫ ∞

0
G(x, ξ, t)dξ = 1. (3.14)

The formula (3.12) and the results obtained by Tersenov [20] for degenerate parabolic
equations of the form (3.9) give the explicit representation for the semigroup eBkt and
arguments to prove that Bk generates an analytic contractive semigroup in Hλ

0 . For
example the strong continuity of eBkt at t = 0 follows from the formula

v(x, t) =

∫ ∞

0
G(x, ξ, t){v0(ξ) − v0(x)}dξ + v0(x) (3.15)
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and the equality

lim
t→0

∫ ∞

0
G(x, ξ, t){v0(ξ) − v0(x)}dξ = 0. (3.16)

We note that the convergence of v(x, t) to zero as x → ∞ is a consequence of the rapidly
decreasing the Green’s function G(x, ξ, t) as x → ∞.

Therefore u(q, t) ≡ v(x, t) is a solution to equation ut = Bku with initial data u0. In
fact u(q, t) is the classical solution of the equation ut = Bku in the domain q ≥ 0, t > 0 due
to the result on regularity of weak solutions to parabolic equations [10] (or for degenerate
parabolic equations of the form (3.9); see [20]). We have that (∂/∂q)u(0, t) = 0 for t > 0
due to the spherical symmetry of the solutions. The function v(x, t), being the solution
of (3.9), defines another semigroup eDαt : Hµ

0 → Hµ
0 , µ ≤ λ, t > 0; u(q, t) = v(x, t) =

eDαtv0(x).
Following the ideas of [5] we reduce the study of problem (1.1)–(1.5) to the study of

the two partial problems

∂B1LL

∂t
= 2κ1u(t)

[

r
∂2

∂r2
+ 5

∂

∂r

]

B1LL (3.17)

and

∂B2LL

∂t
= 2

1

ReM

[

∂2

∂r2
+

4

r

∂

∂r

]

B2LL (3.18)

with initial-boundary conditions

BiLL(r, 0) = Bi0LL(r), i = 1, 2, (3.19)

2K
∂BiLL

∂r
(r, t) = 0, r = 0, t > 0, Bi0LL = 0, r → ∞. (3.20)

Using Chorin’s formula we can solve problem (2.1)–(2.3).

First we study the problem associated to the equations (3.17), (3.19), (3.20) emerging
from equation (2.1). This problem is of special interest in view of studying the dynamics
of isotropic turbulence in the case when the influence of the kinematic molecular viscosity
coefficient ν is negligibly small in comparison with the turbulent viscosity coefficient K.

Introducing formally the change of time variable

dτ = 2κ1udt, τ(0) = 0, u2(t) = B1LL(0, t) (3.21)

we can rewrite equation (3.17) and the initial-boundary conditions (3.19), (3.20) in the
following form:

∂v

∂τ
= r

∂2v

∂r2
+ 5

∂v

∂r
, (3.22)

v(r, 0) = v0(r) ≡ B10LL(r), (3.23)

2K
∂v

∂r
= 0, r = 0, v = 0, r → ∞, (3.24)
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where v(r, τ) = B1LL(r, t). Therefore we can work with the new equation (3.22) and
subsequently translate our results to (3.17). By using the formula

dt =
dτ

2κ1

√

v(0, τ)
(3.25)

we can recover the original time t for the positive function v(0, τ).
To establish solvability of problem (3.22)–(3.24) we use that equation (3.22) is of the

form (3.9). Thus the function defined by the formula v(r, τ) = eDατv0(r), α = 5 is a posi-
tive solution to the above problem. The boundary condition 2Kvr(τ, r)(≡ 2κ1urvr(τ, r)) =
0 at r = 0 for τ > 0 is satisfied in view of the equality

√
rvr(r, τ) = uq(q, τ). Expressed in

terms of (r, t) the function v(r, τ) takes the form

v(r, τ) ≡ B1LL(r, t) = eDατ(t)B10LL(r) (3.26)

which solves problem (3.17), (3.19), (3.20).
It is easily verified that equation (3.22) admits the following exact solutions: v(r, τ) =

e−r/ττ−α and v(r, τ) = r1−αe−r/τ τ−α−2. Using (3.25) the first solution corresponds to the
well-known Millionshtchikov solution

B1LL(r, t) = c1t
ne−rc2tβ , (3.27)

where c1, c2 are some constants and n = −10/7, β = −2/7 which agrees with Kolmogorov’s
law of decaying isotropic turbulent flow.

In the same way the solution to problem (3.18)–(3.20) is defined by the formula

B2LL(r, t) = eBkθ(t)B20LL(r), (3.28)

where k = 4 and θ is determined by

dθ = 2
1

ReM
dt. (3.29)

Then the formula

S(t) = lim
n→∞

(eDατ(t/n)eBkθ(t/n))n, (3.30)

known as Chorin formula, defines a continuous semigroup S(t) according to [4, 11] to the
full equation (2.1). In this formula the power n means iteration. For example:

(eDατ(t/2)eBkθ(t/2))2 = eDατ(t/2)eBkθ(t/2)eDατ(t/2)eBkθ(t/2). (3.31)

As a result we obtain that the function

BLL(t) = S(t)BLL(0) = lim
n→∞

(eBkθ(t/n)eDατ(t/n))nBLL(0), BLL(t) = BLL(·, t), (3.32)

defines a solution to the full equation (2.1) of class C([0,∞);Hµ
0 ).

We note that the important feature of formulas of this type is that the error for large
n is O(1/n) independent of ReM (see, [11]). Therefore the functions

Bn
LL(t) = (eDατ(t/n)eBkθ(t/n))nBLL(0) (3.33)

represent approximate smooth solutions to the closed von Kármán–Howarth equation (2.1)
which satisfy the boundary conditions (2.3) exactly due to the existence result for prob-
lem (3.17), (3.19), (3.20).
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4 Conclusion

Formula (3.33) is of special interest in view of its application to find the so-called infinites-
imally close asymptotic solutions to the original problem. We divide the time scale into n
parts and then iterates the following procedure: at first solve equation (3.17), then solve
equation (3.18) etc. Using this formula we can obtain that Bn

LL is independent of ReM as
ReM → ∞. The latter enables us to take the limit in the original model as ReM → ∞
and to study the asymptotic behavior of solutions to the problem under consideration.

The solution obtained (3.32) may be used as the initial approximation to a solution of
Oberlack’s model [14] by using the so-called method of prolongation with respect to the
parameter ε.
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