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Abstract

An analog of Gelfand-Levitan-Marchenko integral equations for multi- dimensional
Delsarte transmutation operators is constructed by means of studying their differential-
geometric structure based on the classical Lagrange identity for a formally conjugated
pair of differential operators. An extension of the method for the case of affine pencils
of differential operators is suggested.

1 Introduction

Consider the Hilbert space H = L2(R
m; CN ), m,N ∈ Z+, and the correspondingly conju-

gated pair H∗ ×H on which one can define the natural scalar product

(ϕ,ψ) =

∫

Rm

dx < ϕ,ψ >:=

∫

Rm

dxϕ̄⊺(x)ψ(x), (1.1)

where (ϕ,ψ) ∈ H∗ × H, the sign ” − ” denotes the complex conjugation and the sign
” ⊺ ” denotes the standard matrix transposition. Take also two linear densely defined
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differential operators L and L̃ : H → H and some two closed functional subspaces H0

and H̃0 ⊂ H−, where H− is the negative Hilbert space from a Gelfand triple

H+ ⊂ H ⊂ H− (1.2)

of the correspondingly Hilbert-Schmidt rigged [22, 1] Hilbert space H. We will use further
on the following definition.

Definition 1. (see J. Delsarte and J. Lions [2, 3] ). A linear invertible operator Ω, defined
in H and acting from H0 onto H̃0, is called a Delsarte transmutation operator for a pair
of linear differential operators L and L̃ : H −→ H, if the following two conditions hold:

• the operator Ω and its inverse Ω
−1 are continuous in H;

• the operator identity

L̃Ω = ΩL (1.3)

is satisfied.

Such transmutation operators were introduced in [2, 3] for the case of one-dimensional
differential operators. In particular, for the Sturm-Liouville and Dirac operators the com-
plete structure of the corresponding Delsarte transmutation operators was described in
[5, 6, 4], where also extensive applications to spectral theory were done. As it was shown
in [5, 7, 4], for the case of one-dimensional differential operators, an important part in the
theory of Delsarte transmutation operators is played by special integral Gelfand-Levitan-
Marchenko (GLM) equations [20, 4, 5], whose solutions are kernels of the corresponding
Delsarte transmutation operators. Some results for two-dimensional Dirac and Laplace
type operators, were also obtained in [17, 7] .

In the present work, based on the results of [10, 9, 11, 14], we shall construct for a pair
of multi-dimensional differential operators acting in a Hilbert space H a special pair of
conjugated Delsarte transmutation operators Ω+ and Ω− in H and a pair Ω

⊛
+ and Ω

⊛
−

in H∗ parametrized by two pairs of closed subspaces H0, H̃0 ⊂ H− and H∗
0, H̃

∗
0 ⊂ H∗

−,

so that the operators Φ(Ω) := Ω
−1
+ Ω− − 1 from H to H and Φ(Ω)⊛ := Ω

⊛,−1
+ Ω

⊛
− − 1

from H∗ to H∗ are compact ones of Hilbert-Shmidt type, thereby determining via the
equalities

Ω+(1 + Φ(Ω)) = Ω−, Ω
⊛
+(1 + Φ(Ω)⊛) = Ω

⊛
− (1.4)

the corresponding analogs of GLM-equations, taking into account that supports of both
kernels of integral operators Ω+,Ω− and Ω

⊛
+ ,Ω⊛

− are correspondingly disjoint. Moreover,
the following important expressions

Ω+LΩ
−1
+ = L̃ = Ω−LΩ

−1
− , (1.5)

(1 + Φ(Ω))L = L(1 + Φ(Ω)), (1 + Φ(Ω)⊛)L∗ = L∗(1 + Φ(Ω)⊛)

hold. As in the classical case [4, 5, 20], the solutions to this GLM-equation also give rise
to kernels of the corresponding Delsarte transmutation operators Ω± in H, that are very
important [1, 21] for diverse applications.

Another trend of this work is related with a similar problem of constructing Delsarte
transmutation operators and corresponding integral GLM-equations for affine pencils of
linear multi-dimensional differential operators in H, having important applications, in
particular, for the inverse spectral problem and feedback control theory [8].
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2 Generalized Lagrangian identity, its differential-geometric

structure and Delsarte transmutation operators

Consider a multi-dimensional differential operator L : H −→ H of order n(L) ∈ Z+ :

L(x; ∂) :=

n(L)
∑

|α|=0

aα(x)
∂|α|

∂xα
, (2.1)

defined on a dense subspace D(L) ⊂ H, where, as usual, one assumes that coefficients
aα ∈ S(Rm;EndCN ), α ∈ Z

m
+ is a multi-index, |α| = 0, n(L), and x ∈ R

m. The operator
formally conjugated to (2.1) L∗ : H∗ −→ H∗ is of the form

L∗(x; ∂) :=

n(L)
∑

|α|=0

(−1)|α|(
∂|α|

∂xα
· āα(x)), (2.2)

x ∈ R
m, and the dot ” · ” above denotes the usual composition of operators.

As to the standard semilinear form < ·, · > on C
N ×C

N one can write down easily the
following generalized Lagrangian identity:

< L∗ϕ,ψ > − < ϕ,Lψ >=

m
∑

i=1

(−1)i+1 ∂

∂xi

Zi[ϕ,ψ], (2.3)

where for any pair (ϕ,ψ) ∈ H∗ × H the expressions Zi[ϕ,ψ], i = 1,m, being semi-linear
on H∗ ×H. Multiplying (2.3) by the oriented Lebesgue measure dx := ∧

j=
−−→
1,m

dxj , we easily

get that

[< L∗ϕ,ψ > − < ϕ,Lψ >]dx = dZ(m−1)[ϕ,ψ], (2.4)

where

Z(m−1)[ϕ,ψ] :=

m
∑

i=1

dx1 ∧ dx2 ∧ ... ∧ dxi−1 ∧ Zi[ϕ,ψ]dxi+1 ∧ ... ∧ dxm (2.5)

is a (m− 1)-differential form [12, 13] on R
m with values in C.

Consider now a pair (ϕ,ψ) ∈ H∗
0 ×H0 ⊂ H∗

− ×H−, where

H0 := {ψ(ξ) ∈ H− : Lψ(ξ) = 0, ψ(ξ)|Γ = 0, ξ ∈ Σ ⊂ C
p},

H∗
0 := {ϕ(η) ∈ H∗

− : L∗ϕ(η) = 0, ϕ(η)|Γ = 0, η ∈ Σ ⊂ C
p},

(2.6)

with Σ ⊂ C
p being some ”spectral” parameter space, Γ ⊂ R

m being some (m − 1)-
dimensional hypersurface piecewise smoothly imbedded into R

m, and H∗
− ⊃ H∗, H− ⊃ H,

being as before the correspondingly Hilbert-Schmidt rigged [1, 22, 20] Hilbert spaces,
containing so called generalized eigenfunctions of the operators L∗ and L. Thereby, for any
pair (ϕ,ψ) ∈ H∗

0×H0 one gets from (2.4) that the differential (m−1)-form Z(m−1)[ϕ,ψ] is
closed in the Grassmann algebra Λ(Rm; C). As a result, from the Poincaré lemma [12, 13]
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one finds that there exists an (m− 2)-differential form Ω(m−2)[ϕ,ψ] ∈ Λm−2(Rm; C) semi-
linearly depending on H∗

0 ×H0, such that

Z(m−1)[ϕ,ψ] = dΩ(m−2)[ϕ,ψ]. (2.7)

Now making use of the expression (2.7), Stokes’ theorem [12, 13] implies that

∫

S+(σ
(m−2)
x ,σ

(m−2)
x0

)
Z(m−1)[ϕ(η), ψ(ξ)] =

∫

σ
(m−2)
x

Ω(m−2)[ϕ(η), ψ(ξ)] −
∫

σ
(m−2)
x0

Ω(m−2)[ϕ(η), ψ(ξ)] :=

Ωx(η, ξ) − Ωx0(η, ξ),

(2.8)

for all (η, ξ) ∈ Σ×Σ, where an (n−1)-dimensional hypersurface S+(σ
(m−2)
x , σ

(m−2)
x0 ) ⊂ R

m

with the boundary ∂S+(σ
(m−2)
x , σ

(m−2)
x0 ) = σ

(m−2)
x − σ

(m−2)
x0 is defined as a film spanning,

in some way, between two (m − 2)-dimensional homological nonintersecting each other

cycles σ
(m−2)
x and σ

(m−2)
x0 ⊂ R

m, parametrized, respectively , by some arbitrary but fixed
points x and x0 ∈ R

m. The quantities Ωx(η, ξ) and Ωx0(η, ξ), (η, ξ) ∈ Σ × Σ, obtained
above have to be considered naturally as the corresponding kernels [1, 19, 20] of bounded

Hilbert-Schmidt type integral operators Ωx,Ωx0 : H → H, where H := L
(ρ)
2 (Σ; C) is a

Hilbert space of functions on Σ measurable with respect to a finite Borel measure ρ on
Borel subsets of Σ, and satisfying the following weak regularity condition

lim
x→x0

Ω(η, ξ)] = Ωx0(η, ξ) (2.9)

for any pair (ϕ(η), ψ(ξ)) ∈ H∗
0 ×H0, (η, ξ) ∈ Σ × Σ.

Now we are just as with [9, 10, 11] in a position to construct the corresponding pair of
spaces H̃∗

0 and H̃0 ⊂ H, related with a Delsarte transformed linear differential operator
L̃ : H −→ H and its conjugated expression L̃∗ : H∗ −→ H∗,

L̃(x; ∂) :=

n(L̃)
∑

|α|=0

ãα(x)
∂|α|

∂xα
, (2.10)

with coefficients ãα ∈ S(Rm;EndCN ), α ∈ Z
m
+ is a multi-index, |α| = 0, n(L̃), x ∈ R

m,

under the condition that n(L̃) = n(L) ∈ Z+ be fixed. Namely, let closed subspaces
H̃∗

0 ⊂ H̃∗
− and H̃0 ⊂ H̃− be defined as

H̃0 := {ψ̃(ξ) ∈ H− : ψ̃(ξ) = ψ(ξ) · Ω−1
x Ωx0,

(ϕ(η), ψ(ξ)) ∈ H∗
0 ×H0, (η, ξ) ∈ Σ × Σ},

H̃∗
0 := {ϕ̃(η) ∈ H∗

− : ϕ̃(η) = ϕ(η) · Ω⊛,−1
x Ω⊛

x0
,

(ϕ(η), ψ(ξ)) ∈ H∗
0 ×H0, (η, ξ) ∈ Σ × Σ}}.

(2.11)
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Here, similarly to (2.8), we defined the kernels of bounded invertible integral operators
Ω⊛

x and Ω⊛
x0

: H −→ H as follows:

∫

S+(σ
(m−2)
x ,σ

(m−2)
x0

)
Z̄(m−1),⊺[ϕ(η), ψ(ξ)]

=
∫

σ
(m−2)
x

Ω̄(m−2),⊺[ϕ(η), ψ(ξ)] −
∫

σ
(m−2)
x0

Ω̄(m−2),⊺[ϕ(η), ψ(ξ)]

:= Ω⊛
x (η, ξ) − Ω⊛

x0
(η, ξ)

(2.12)

for all (η, ξ) ∈ Σ × Σ, where homological (m − 2)-cycles σ
(m−2)
x and σ

(m−2)
x0 ⊂ R

m are
the same as taken above. Thereby, making use of the classical method of variation of
constants as in [10, 14, 9], one gets easily from (2.12) that for any (ϕ(η), ψ(ξ)) ∈ H∗

0 ×H0,
(η, ξ) ∈ Σ × Σ,

ψ̃(ξ) = Ω+ψ(ξ), ϕ̃(η) = Ω
⊛
+ϕ(η), (2.13)

where the integral expressions

Ω+ := 1 −
∫

Σ dρ(ξ)
∫

Σ dρ(η)ψ̃(ξ)Ω−1
x0

(ξ, η)
∫

S+(σ
(m−2)
x ,σ

(m−2)
x0

)
Z(m−1)[ϕ(η), ·],

Ω
⊛
+ := 1 −

∫

Σ dρ(ξ)
∫

Σ dρ(η)ϕ̃(η)Ω⊛,−1
x0 (ξ, η)

∫

S+(σ
(m−2)
x ,σ

(m−2)
x0

)
Z̄(m−1),⊺[·, ψ(ξ)]

(2.14)

are bounded Delsarte transmutation operators of Volterra type defined on the whole spaces
H and H∗, respectively.

Now, based on operator expressions (2.14) and the definition (1.3), one easily obtaines
the expressions for the Delsarte transformed operators L̃ and L̃∗ :

L̃ = Ω+LΩ
−1
+ = L+ [Ω+, L]Ω−1

+ ,

L̃∗ = Ω
⊛
+LΩ

⊛,−1
+ = L∗ + [Ω⊛

+, L
∗]Ω⊛,−1

+ .

(2.15)

Here also note that the transformations similar to the above in the one-dimensional case
were studied in [4, 20, 5, 6]. They satisfy evidently the following easily found conditions:

L̃ψ̃ = 0, L̃∗ϕ̃ = 0 (2.16)

for any pair (ϕ̃, ψ̃) ∈ H̃∗
0 × H̃0, which can be specified by constraints

ψ̃|Γ̃ = 0, ϕ̃|Γ̃∗ = 0 (2.17)

for some hypersurface Γ̃ ⊂ R
m, related with the previously chosen hypersurface Γ ⊂ R

m

and the homological pair of (m−2)-dimensional cycles σ
(m−2)
x and σ

(m−2)
x0 ⊂ R

m. Thereby,
the closed subspaces H̃0 and H̃∗

0 can be re-defined similarly to (2.6) :

H̃0 := {ψ̃(ξ) ∈ H− : L̃ψ(ξ) = 0, ψ̃(ξ)|Γ̃ = 0, ξ ∈ Σ ⊂ C
p},

H̃∗
0 := {ϕ̃(η) ∈ H∗

− : L̃∗ϕ̃(η) = 0, ϕ̃(η)|Γ̃ = 0, η ∈ Σ ⊂ C
p}

(2.18)

Moreover, the following lemma, based on a pseudo-differential operators technique from
[1, 20, 14], holds.
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Lemma 1. The Delsarte transformed operators (2.14) obtained via (2.13), are differential
if the operator L : H −→ H is taken differential.

As a simple consequence of the structure of the Delsarte transformed operators (2.14)
one finds that for any pair (ϕ̃, ψ̃) ∈ H̃∗

0×H̃0 the following differential forms equality holds:

Z̃(m−1)[ϕ̃, ψ̃] = dΩ̃(m−2)[ϕ̃, ψ̃], (2.19)

where, by definition, a pair (ϕ̃, ψ̃) ∈ H̃∗
0 × H̃0 is fixed and the equality

(

< L̃∗ϕ̃, ψ̃ > − < ϕ̃, L̃ψ̃ >
)

dx = dZ̃(m−1)[ϕ̃, ψ̃] (2.20)

holds. The equality (2.18) makes it possible to construct the corresponding kernels

Ω̃x(η, ξ) :=
∫

σ
(m−2)
x

Ω̃(m−2)[ϕ̃(η), ψ̃(ξ)],

Ω̃x0(η, ξ)] :=
∫

σ
(m−2)
x0

Ω̃(m−2)[ϕ̃(η), ψ̃(ξ)]
(2.21)

of bounded integral invertible Hilbert-Schmidt operators Ω̃x, Ω̃x0 : H → H, and corre-
sponding kernels

Ω̃⊛
x (η, ξ) :=

∫

σ
(m−2)
x

¯̃Ω(m−2),⊺[ϕ̃(η), ψ̃(ξ)],

Ω̃⊛
x0

(η, ξ) :=
∫

σ
(m−2)
x0

¯̃Ω(m−2,⊺)[ϕ̃(η), ψ̃(ξ)]

(2.22)

of bounded integral invertible Hilbert-Schmidt operators Ω̃x, Ω̃x0 : H∗ → H∗. Then the
following equalities hold for all mutually related pairs (ϕ,ψ) ∈ H∗

0 × H0 and (ϕ̃, ψ̃) ∈
H̃∗

0 × H̃0 :

ψ(ξ) = ψ̃(ξ) · Ω̃−1
x Ω̃x0,

ϕ(η) = ϕ̃(η) · Ω̃⊛,−1
x Ω̃⊛

x0

(2.23)

where (η, ξ) ∈ Σ×Σ. Thus, based on the symmetry property between relations (2.10) and
(2.22), one easily finds from expression (2.23), that expressions

Ω
−1
+ := 1−

∫

Σ dρ(ξ)
∫

Σ dρ(η)ψ(ξ)Ω̃−1
x0

(ξ, η)
∫

S+(σ
(m−2)
x ,σ

(m−2)
x0

)
Z̃(m−1)[ϕ̃(η), ·],

Ω
⊛,−1
+ := 1 −

∫

Σ dρ(ξ)
∫

Σ dρ(η)ϕ(η)Ω̃⊛,−1
x0 (ξ, η)

∫

S+(σ
(m−2)
x ,σ

(m−2)
x0

)
Z̃

(m−1),⊺

[·, ψ̃(ξ)]

(2.24)

for some homological (m− 2)-dimensional cycles σ̃
(m−2)
x , σ̃

(m−2)
x0 ⊂ R

m are Delsarte trans-
mutation integral operators of Volterra type inverse to (2.14), satisfying the following
relationships:

ψ(ξ) = Ω
−1
+ · ψ̃(ξ), ϕ(η) = Ω

∗,−1
+ · ϕ̃(η) (2.25)

for all arbitrary but fixed pairs of functions (ϕ(η), ψ(ξ)) ∈ H∗
0 × H0 and (ϕ̃(η), ψ̃(ξ)) ∈

H̃∗
0 × H̃0, (η, ξ) ∈ Σ × Σ. Thus, one can formulate the following characterization of the

constructed Delsarte transmutation operators.
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Theorem 1. Let a matrix multi-dimensional differential operator (2.1) acting in a Hilbert
space H = L2(R

m; CN ) and its formally adjoint operator (2.2) acting in a Hilbert space
H∗ = L∗

2(R
m; CN ), possess, respectively, a pair of closed spaces H0 and H∗

0 (2.6) of their
generalized kernel eigenfunctions parametrized by some set Σ ⊂ C

p. Then there exist
bounded invertible Delsarte transmutation integral operators Ω+ : H −→ H and Ω⊛

+ :
H∗ −→ H∗, so that for this pair (H0,H

∗
0) of closed subspaces (2.6) and their dual (2.18)

the bounded invertible mappings (2.14) Ω+ : H0 → H̃0 and Ω
⊛
+ : H∗

0 → H̃∗
0 are compatibly

defined. Moreover, the operator expressions (2.15) are also differential, acting in the
corresponding spaces H and H∗.

The above structure of the Delsarte transmutation operators (2.14) makes it possible to
understand more deeply their properties by means of deriving new integral equations that
are multi-dimensional analogs of the well known Gelfand-Levitan-Marchenko equations
[4, 5, 20, 7, 6] to be a topic of the next section. We will only mention here that our approach
devised above is a special case of the general De Rham-Hodge-Skrypnik theory [15, 16]
of differential complexes on metric spaces recently successfully adapted to construction of
Delsarte transmutaion operators in multi-dimension.

3 Multi-dimensional Gelfand-Levitan-Marchenko type inte-

gral equations

While investigating the inverse scattering problem for a three-dimensional perturbed
Laplace operator

L(x; ∂) = −

3
∑

j=1

∂2

∂x2
j

+ q(x), (3.1)

with q ∈W 2
2 (R3), x ∈ R

3, in the Hilbert space H = L2(R
3; C), L.D. Faddeev [17] suggested

studing the structure of corresponding Delsarte transmutation operators Ωγ : H → H of

Volterra type, based on a priori chosen half-spaces S
(3)
±γ,x = {y ∈ R

3 :< y − x,±γ > > 0},
parametrized by unity vectors γ ∈ S

2, where S
2 ⊂ R

3 is the standard two-dimensional
sphere a three-dimensional analog of the integral GLM-equation, whose solution gives rise
to the kernel of the corresponding Delsarte transmutation operator for (3.1). But two
important problems related with this approach were not discussed in detail: the first
one concerns the question whether the Delsarte transformed operator L̃ = ΩγLΩ̂

−1
γ is

also a differential operator of Laplace type, and the second one concerns the question of
the existence of Delsarte transmutation operators in the Faddeev form and their interior
spectral structure.

Below we will study our multi-dimensional Delsarte transmutation operators (2.14),

parametrized by a hypersurface S+(σ
(m−2)
x , σ

(m−2)
x0 ) piecewise smoothly embedded into

R
m.

Consider now some (m − 2)-dimensional homological cycles σ
(m−2)
x and σ

(m−2)
x0 ⊂ R

m

and two (m− 1)-dimensional smooth hypersurfaces

S+(σ(m−2)
x , σ(m−2)

x0
), S−(σ(m−2)

x , σ(m−2)
x0

)
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spanned between them in such a way that the whole hypersurface S+(σ
(m−2)
x , σ

(m−2)
x0 )

∪S−(σ
(m−2)
x , σ

(m−2)
x0 ) is closed. Then as in Section 2 one can naturally define two pairs of

Delsarte transmutation operators for a given pair of multi-dimensional differential opera-
tors (2.1) and (2.9), namely the operators Ω+ : H ⇋ H, Ω⊛

+ : H∗ ⇋ H∗, defined by (2.14)
and the operators Ω

⊛
− : H∗ ⇋ H∗, Ω⊛

− : H∗ ⇋ H∗, where, by definition,

Ω− := 1 −
∫

Σ dρ(ξ)
∫

Σ dρ(η)ψ̃(ξ)Ω−1
x0

(ξ, η)
∫

S−(σ
(m−2)
x ,σ

(m−2)
x0

)
Z(m−1)[ϕ(η), ·],

Ω
⊛
− := 1 −

∫

Σ dρ(ξ)
∫

Σ dρ(η)ϕ̃(η)Ω⊛,−1
x0 (ξ, η)

∫

S−(σ
(m−2)
x ,σ

(m−2)
x0

)
Z̄(m−1),⊺[·, ψ(ξ)]

(3.2)

As to the Delsarte transmutation operators (2.13) ) and (3.2) the following operator
relationships

L̃ = Ω±LΩ
−1
± , Ω

⊛
±L

⊛
±Ω

⊛,−1
± = L̃∗ (3.3)

hold. As in the theory of classical GLM-equations [4, 5, 20, 6], we can now construct linear
integral compact operators Φ(Ω): H → H and Φ(Ω)⊛ : H∗ → H∗, so that the expressions

1 + Φ(Ω) := Ω
−1
+ ·Ω−, 1 + Φ(Ω)⊛ := Ω

⊛,−1
+ · Ω⊛

− (3.4)

are Fredholmian [18] operators. Making use of the expressions (3.4), one easily gets a pair
of linear integral GLM-equations

Ω+ · (1 + Φ(Ω)) = Ω−, Ω
⊛
+ · (1 + Φ(Ω)⊛) = Ω

⊛
−, (3.5)

whose solution is a pair of the corresponding Volterra type kernels for the Delsarte trans-
mutation operators Ω+ and Ω

⊛
+. Thus, the problem of constructing Delsarte transmutation

operators for a given pair of differential operators (2.1) and (2.9) is reduced to describing a
suitable class of linear Fredholm type operators (3.4) in the Hilbert space H, satisfying the
following natural conditions: operators (1+Φ(Ω)) : H −→ H and (1+Φ⊛(Ω)): H∗ −→ H∗

are onto, bounded and invertible and, moreover,

(1 + Φ(Ω))L = L(1 + Φ(Ω)), (1 + Φ⊛(Ω))L∗ = L∗(1 + Φ⊛(Ω)) (3.6)

owing to (3.5) and (2.14). This problem is very important for applications of the theory
devised here to find diverse spectral properties of a given pair of Delsarte transformed
differential operators (3.3). We plan to study this in detail in another place.

4 The structure of Delsarte transmutation operators for

affine pencils of multidimensional differential expressions

Consider in the Hilbert space H = L2(R
m; CN ) a pencil of multi-dimensional differential

operators defined in terms of an affine polynomial in λ ∈ C, having the form:

L(x; ∂|λ) :=

r(L)
∑

i=0

λiLi(x; ∂), (4.1)
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where x ∈ R
m, ordLi(x; ∂) = ni ∈ Z+, i = 1, r(L), the order r(L) ∈ Z+ is fixed and

Li(x; ∂) :=

ni
∑

|αi|=0

ai,αi
(x)

∂|αi|

∂xαi

(4.2)

are differential expressions with smooth coefficients ai,αi
∈ S(Rm;EndCN ), i = 1, r(L).

The pencil (4.1) can be, in particular, characterized by its spectrum

σ(L) = {λ ∈ C : ∃ ψ(x;λ) ∈ H−, L(x; ∂|λ)ψ(x;λ) = 0}. (4.3)

As it was demonstrated in [8] the transformations of the pencil (4.1) which preserve a
part of the spectrum σ(L) and simultaneously change in a prescribed way the rest of the
spectrum (so called an assignment spectrum problem [8] ) are very important for feedback
control theory and its applications in different fields of mechanics.

We shall interpret these ”spectrum assignment” transformations as ones of Delsarte
transmutation type, satisfying some additional special conditions. Thus, we look for such
transformation Ω : H −→ H of the pencil (4.1) into a similar pencil

L̃(x; ∂|λ) =

r(L)
∑

i=1

λiL̃i(x; ∂), L̃i(x; ∂) :=

ni
∑

|αi|=0

ãi,αi
(x)

∂|αi|

∂xαi

(4.4)

with ãi,αi
∈ S(Rm;EndCN ), i = 1, r(L), λ ∈ C, of the same polynomial and differential

orders, so that

L̃ = L+ [Ω, L]Ω−1 = ΩLΩ
−1. (4.5)

For such an operator Ω : H → H to be constructed, we suggest an extension of
the polynomial pencil of differential operators (4.1) to a pure differential operator Lτ :=
L(x; ∂|∂/∂τ), x ∈ R

m, τ ∈ R, with R ∋ τ -independent coefficients and acting suitably in
the parametric functional space H(τ) := L1(Rτ ;H). Thereby we get to the same situation,
which was studied before in [11]. For completeness, we shall give a short derivation of the
corresponding affine expression for the Delsarte transmutation operator Ω : H −→ H.

Let a pair of functions (ϕ(τ), ψ(τ)) ∈ H∗
(τ)×H(τ) be arbitrary and consider the following

semi-linear scalar form on H∗
(τ) ×H(τ) :

(ϕ(τ), ψ(τ)) :=

∫

Rτ

dτ

∫

Rm

dxϕ̄⊺

(τ)(x)ψ(τ)(x). (4.6)

Then as to the interior semi-linear form < ·, · > on C
N×C

N one can write down for
the operator L(τ) : H(τ) −→ H(τ) and any pair (ϕ(τ), ψ(τ)) ∈ H∗

(τ) × H(τ) the following
Lagrangian identity:

[

< L∗
(τ)ϕ(τ), ψ(τ) > − < ϕ(τ), L(τ)ψ(τ) >

]

dτ ∧ dx = dZ
(m)
(τ) [ϕ,ψ], (4.7)

where Z
(m)
(τ) [ϕ,ψ] ∈ Λm(Rτ × R

m; C) is the corresponding differential m-form with values

in C, parametrically depending on τ ∈ R. Thus, for defining the closed subspaces H∗
(τ),0 ⊂
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H∗
(τ),− one can write down, respectively, the following expressions:

H(τ),0 := {ψ(τ)(ξ) ∈ H(τ),− : L(τ)ψ(τ)(ξ) = 0,

τ ∈ R, ψ(τ)(ξ)|Γ = 0, ξ ∈ Σ ⊂ C
p},

H∗
(τ),0 := {ϕ(τ)(η)(∈ H∗

(τ),− : L∗
(τ)ϕ(τ)(η) = 0,

τ ∈ R, ϕ(τ)(η)|Γ = 0, η ∈ Σ ⊂ C
p},

(4.8)

where Γ ⊂R
m is some piecewise smooth boundary hypersurfaces in R

m. One can also write
down similar expressions for the Delsarte transformed operator expression L̃ : H(τ) −→
H(τ) :

H̃(τ),0 := {ψ̃(τ)(ξ) ∈ H(τ),− : L̃(τ)ψ̃(τ)(ξ) = 0,

τ ∈ R, ψ̃(τ)(ξ)|Γ̃ = 0, ξ ∈ Σ ⊂ C
p},

H̃∗
(τ),0 := {ϕ̃(τ)(η) ∈ H∗

(τ),− : L̃∗
(τ)ϕ̃(τ)(η) = 0,

τ ∈ R, ϕ̃(τ)(η)|Γ̃ = 0, η ∈ Σ ⊂ C
p},

(4.9)

where Γ̃ ⊂R
3 is some piecewise smooth boundary hypersurface in R

m.

Making use of the expressions (4.6) and (4.7), we easily find that the differential m-

form Z
(m)
(τ) [ϕ,ψ] ∈ Λm(Rτ × R

m; C) is exact for any pair (ϕ,ψ) ∈ H∗
(τ),0 × H(τ),0. This

means due to the Poincaré lemma [12, 13], that there exists a differential (m − 1)-form

Ω
(m−1)
τ [ϕ,ψ] ∈ Λm−1(Rτ × R

m; C), so that

Z
(m)
(τ) [ϕ,ψ] = dΩ(m−1)

τ [ϕ,ψ] (4.10)

for all pairs (ϕ(τ), ψ(τ)) ∈ H∗
(τ),0 ×H(τ),0. Now we are in a position to begin our definition

of the corresponding Delsarte transmutation operators Ω(τ) : H(τ),0 → H̃(τ),0 and Ω
⊛

(τ)
:

H∗
(τ),0 → H̃∗

(τ),0 :

ψ̃(τ)(ξ) = Ω(τ) · ψ(τ)(ξ) := ψ(τ)(ξ) · Ω
−1
(x,τ)Ω(x0,τ) =

(1 − ψ̃(τ)Ω
−1
(x0,τ)

∫

S(σ
(m−1)
x ,σ

(m−1)
x0

)
Z

(m)
(τ)

[ϕ(τ), ·])ψ(τ)(ξ),

ϕ̃(τ)(η) = Ω
⊛

(τ) · ϕ(τ)(η) := ϕ(τ)(η) · Ω
⊛,−1
(x,τ) Ω

⊛

(x0,τ) =

(1 − ϕ̃(τ)Ω
⊛,−1
(x0,τ)

∫

S(σ,
(m−1)
x ,σ

(m−1)
x0

)
Z̄

(m),⊺
(τ) [·, ψ(τ)])ϕ(τ)(η).

(4.11)

Here (ϕ(τ)(η), ψ(τ)(ξ)) ∈ H∗
(τ),0×H(τ),0, ξ, η ∈ Σ, and, due to (4.9), for kernels Ω(x,τ)(η, ξ),

Ω(x0,τ)(η, ξ) ∈ H ⊗ H and Ω⊛

(x,τ)(η, ξ), Ω⊛

(x0,τ)(η, ξ) ∈ H∗ ⊗ H∗ of the corresponding
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integral operators Ω(x,τ), Ω(x0,τ) : H → H and Ω⊛

(x,τ), Ω⊛

(x0,τ) : H∗ → H∗ one has

∫

S(σ
(m−1)
x ,σ

(m−1)
x0

)
Z

(m)
(τ) [ϕ(τ)(η), ψ(τ)(ξ)] =

∫

σ
(m−1)
x

Ω
(m−1)
(τ) [ϕ(τ)(η), ψ(τ)(ξ)]

−
∫

σ
(m−1)
x0

Ω
(m−1)
(τ)

[ϕ(τ)(η), ψ(τ)(ξ)] := Ω(x,τ)(η, ξ) − Ω(x0,τ)(η, ξ),

(4.12)

∫

S(σ,
(m−1)
x ,σ

(m−1)
x0

)
Z̄

(m),⊺
(τ) [ϕ(τ)(η), ψ(τ)(ξ)] =

∫

σ
(m−1)
x

Ω̄
(m−1),⊺
(τ) [ϕ(τ)(η), ψ(τ)(ξ)]

−
∫

σ
(m−1)
x0

Ω̄
(m−1),⊺
(τ) [ϕ(τ)(η), ψ(τ)(ξ)] := Ω⊛

(x,τ)(η, ξ) − Ω⊛

(x0,τ)(η, ξ),

where, as before, S(σ
(m−1)
x , σ

(m−1)
x0 ) ⊂ R

m is a smooth hypersurface in the configuration
space R

m, respectively spanning between two arbitrary but fixed nonintersecting each other

homological (m− 1)-dimensional cycles σ
(m−1)
x and σ

(m−1)
x0 ⊂ R

m, parametrized by points
x, x0 ∈ R

m. As a result of the construction above, the Volterra type integral operators

Ω(τ) := 1−

∫

Σ
dρ(ξ)

∫

Σ
dρ(η)ψ̃(τ)(ξ)Ω

−1
(x0,τ)(ξ, η)

∫

S−(σ
(m−2)
x ,σ

(m−2)
x0

)
Z

(m−1)
(τ) [ϕ(τ)(η), ·], (4.13)

and

Ω
⊛

(τ) := 1−

∫

Σ
dρ(ξ)

∫

Σ
dρ(η)ϕ̃(τ)(η)Ω

⊛,−1
(x0,τ)(ξ, η)

∫

S−(σ
(m−2)
x ,σ

()m−2)
x0

)
Z̄

(m−1),⊺
(τ) [·, ψ(τ)(ξ)]

(4.14)

being bounded and invertible act, correspondingly, in the spaces H(τ) and H∗
(τ). Moreover,

the Delsarte transformed operator L̃(τ) : H(τ) −→ H(τ) can be written down as

L̃(τ) = Ω(τ)L(τ)Ω
−1
(τ) = L(τ) + [Ω(τ), L(τ)]Ω

−1
(τ), (4.15)

being, due to reasoning as in [14, 9], also a differential multi-dimensional operator in H(τ).

Now we can make the pullback reduction of our τ -dependent objects, recalling, that
our operator (4.1) is independent of the parameter τ ∈ R. In particular, from (4.8) one
obtains for any (ϕ(τ)(η), ψ(τ)(ξ)) ∈ H∗

(τ),0 ×H(τ),0, ξ, η ∈ Σ,

ψ(τ)(ξ) = ψλ(ξ)eλτ , ϕ(τ)(η) = ϕλ(η)e−λ̄τ (4.16)

with λ ∈ σ(L) ∩ σ̄(L∗) and for any pair (ϕλ(ξ), ψλ(ξ)) ∈ H∗
0 ×H0, ξ, η ∈ Σσ,

H0 := {ψλ(ξ) ∈ H− : L(x; ∂|λ)ψλ(ξ) = 0,

ψλ(ξ)|Γ = 0, (λ; ξ) ∈ σ(L) ∩ σ̄(L∗)×Σσ},

H∗
0 := {ϕλ(η) ∈ H∗

− : L∗(x; ∂|λ)ϕλ(η) = 0,

ϕλ(η)|Γ = 0, (λ; η) ∈ σ(L) ∩ σ̄(L∗)×Σσ},

(4.17)
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where, by definition, Σσ × C ⊂ Σ is some ”spectral” set of parameters. With respect to
the closed subspaces H0 ⊂ H− and H∗

0 ⊂ H∗
− the corresponding Delsarte transmutation

operators Ω : H → H and Ω
⊛ : H∗ → H∗ can be retrieved easily by substituting the

expressions (4.16) into (4.13) and (4.14) :

Ω := 1−
∫

σ(L)∩σ̄(L∗) dρσ(λ)
∫

Σσ
dρΣσ

(ξ)
∫

Σσ
dρΣσ

(η)ψ̃λ(ξ)

×Ω−1
x0

(λ; ξ, η)
∫

S(σ
(m−1)
x ,σ

(m−1)
x0

)
Z(m)[ϕλ(η), ·],

Ω
⊛ := 1−

∫

σ(L)∩σ̄(L∗) dρσ(λ)
∫

Σσ
dρΣσ

(ξ)
∫

σ(L)∩σ̄(L∗)

∫

Σσ
dρΣσ

(η)ϕ̃λ(η)

×Ω⊛,−1
x0 (λ; ξ, η)

∫

S(σ
(m−1)
x ,σ

(m−1)
x0

)
Z(m)[·, ψλ(ξ)],

(4.18)

where dρσ × dρΣσ
is the corresponding finite Borel measure on Borel subsets of σ(L) ∩

σ̄(L∗)×Σσ ⊂ Σ,

ψ̃λ(ξ) := ψλ(ξ) · Ω−1
x Ωx0

ϕ̃λ(η) := ϕλ(η) · Ω⊛,−1
x Ω⊛

x0
.

(4.19)

Owing to semi-linearity, the expressions for kernels

Ωx(λ; ξ, η) := Ω(x,τ)[ϕλe
−λ̄τ , ψλe

λτ ],

Ωx0(λ; ξ, η) := Ω(x0,τ)[ϕλe
−λ̄τ , ψλe

λτ ],

Z(m)[ϕλ, ψλ] := Z
(m)
(τ) [ϕλe

−λ̄τ , ψλe
λτ ],

(4.20)

from the Hilbert space L
(ρ)
2 (Σσ; C)⊗L

(ρ)
2 (Σσ; C) don’t depend on the whole on the param-

eter τ ∈ Rτ but only on the spectral parameter λ ∈ σ(L)∩ σ̄(L∗). Now we write down the
differential m-form Z(m)[ϕλ, ψλ] ∈ Λm(Rτ × R

m; C), (ϕλ(ξ), ψλ(ξ)) ∈ H∗
0 ×H0, ξ, η ∈ Σσ,

as

Z(m)[ϕλ, ψλ] =

m
∑

i=1

dx1 ∧ dx2 ∧ ... ∧ dxi−1 ∧ Zi[ϕλ, ψλ]dτ ∧ dxi+1 ∧

... ∧ dxm + Z0[ϕλ, ψλ]dx. (4.21)

Then, owing to the specially chosen (m − 1)-dimensional homological cycles (σ
(m−1)
x

, σ
(m−1)
x0 ) and the corresponding closed m-dimensional surface S(σ

(m−1)
x , σ

(m−1)
x0 ) = R

m

at which dτ = 0, the differential m-forms Z(m)[ϕλ, ψλ] ∈ Λm(Rm; C), λ ∈ σ(L) ∩ σ̄(L∗),
satisfies the following expressions:

Z(m)[ϕλ, ψλ] = Z0[ϕλ, ψλ]dx, (4.22)

since for any i = 0,m

Zi[ϕλ, ψλ] := Zi,(τ)[ϕλe
−λ̄τ , ψλe

λτ ], (4.23)
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being not dependent on the parameter τ ∈ R but only on λ ∈ σ(L) ∩ σ̄(L∗). Thus, due
to (4.21) and (4.22) one can finally write down Delsarte transmutation operators (4.12)
and (4.13) as the following invertible and bounded of Volterra type integral expressions:

Ω := 1−
∫

Σσ
dρΣσ

(ξ)
∫

Σσ
dρΣσ

(η)ψ̃λ(ξ)

×Ω−1
x0

(λ; ξ, η)
∫

S(σ
(m−1)
x ,σ

(m−1)
x0

)
Z(0)[ϕλ(η), ·]dx,

Ω
⊛ := 1−

∫

Σσ
dρΣσ

(ξ)
∫

σ(L)∩σ̄(L∗)

∫

Σσ
dρΣσ

(η)ϕ̃λ(η)

×Ω⊛,−1
x0 (λ; ξ, η)

∫

S(σ
(m−1)
x ,σ

(m−1)
x0

)
Z(0)[·, ψλ(ξ)]dx,

(4.24)

where, by definition, (ϕλ, ψλ) ∈ H∗
0 ×H0, (̃ϕλ, ψ̃λ) ∈ H̃∗

0 × H̃0 and λ ∈ σ(L) ∩ σ̄(L∗). The
operator expressions (4.24) were defined on closed subspaces of generalized eigenfunctions
H0 and H∗

0. When these spaces are dense, respectively, in ambient spaces H− and H∗
− , the

kernels of the operator expressions (4.24) can be naturally extended to their corresponding
Hilbert spaces H− and H∗

− defining invertible integral operators of Volterra type in their
corresponding spaces H and H∗ due to duality [22, 1] between Hilbert spaces H− and
H+, where the latter space is dense in H. Just as above in Section 3 one can construct
the corresponding pair (3.5) of Gelfand-Levitan-Marchenko integral equations for an affine
polynomial pencil (4.1) of multi-dimensional differential operators in the Hilbert space H.
This completes our present analysis of the structure of Delsarte transmutation operators
for pencils of multidimensional differential operators. As for their natural applications to
the inverse spectral problem and related problems of feedback control theory mentioned
before, we plan to study them in more detail later.
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Basel, 1986

[5] Levitan B.M. and Sargasian I.S. Sturm-Liouville and Dirac operators. Moscow, Nauka
Publ., 1988 (in Russian)

[6] Levitan B.M. Sturm-Liouvilee inverse problems. M.; Nauka, 1984 (in Russian)

[7] Nizhnik L.P. Inverse scattering problems for hyperbolic equations. Kiev, Nauk. Dumka
Publ., 1991 (in Russian)

[8] Datta B.N. and Sarkissian D.R. Feedback control in distributed parameter gyroscopic
systems: a solution of the partial eigenvalue assignment problem. Mechanical Systems
and Signal Processing, 2002, v.16, N.1, p.3-17

[9] Prykarpatsky Y.A., Samoilenko A.M. and Samoylenko V.G. The structure of Darboux-
type binary transformations and their applications in soliton theory. Ukr. Mat. Zhur-
nal, 2003, v.55, N12, p. 1704-1719(in Ukrainian)

[10] Prykarpatsky A.K., Samoilenko A.M., and Prykarpatsky Y.A. The multi-dimensional
Delsarte transmutation operators, their differential-geometric structure and applica-
tions. Part 1. Opuscula Mathematica, 2003, N 23, p. 71-80

[11] Golenia J., Prykarpatsky Y.A., Samoilenko A.M. and Prykarpatsky A.K. The general
differential-geometric structure of multidimensional Delsarte transmutation operators
in parametric functional spaces and their applications in soliton theory. Part 2. Opus-
cula Mathematica, 2004, N 24.

[12] Godbillon C. Geometric differentielle et mechanique analytique. Paris, Hermann,
1969.

[13] Cartan A. Differential calculus. Differential forms. Moscow, Mir Publ., 1971 (in Rus-
sian)

[14] Samoilenko A.M.and Prykarpatsky Y.A. Algebraic-analytic aspects of completely in-
tegrable dynamical systems and their perturbations. Kyiv, NAS, Inst. Mathem. Pub-
lisher, 2002, v. 41 (in Ukrainian)

[15] Prykarpatsky Y.A., Samoilenko A.M. and Prykarpatsky A.K. The De Rham-Hodge-
Skrypnik theory of vDelsarte transmutation operators in multidimension and its ap-
plications. Part.1/arXive:math-ph/04.04.04 v1 Apr 2004/

[16] Skrypnik I.V. Periods of A-closed forms. Proceedings of the USSR Academy of Sci-
ences, 1965, v. 160, N4, p. 772-773 (in Russian)

[17] Faddeev L.D. Quantum inverse scattering problem. II. in Modern problems of math-
ematics, M: VINITY Publ., 1974, v.3, p. 93-180 (in Russian)

[18] Gokhberg I.C. and Krein M.G. Theory of Volterra operators in Hilbert spaces and its
applications. Moscow, Nauka, 1967 (in Russian)



The Structure of Gelfand-Levitan-Marhenko Type Equations: Part 1 87

[19] Krein M.G. About a trace formula in theory of pertubations. Mathem. Sbornik, 1953,
v.33, N3, p.597-626 (in Russian)

[20] Naimark M.A. Linear differential operators. Moscow, Nauka Publ., 1969 (in Russian)

[21] Novikov S.P. (Editor) Theory of solitons. Moscow, Nauka Publ., 1980 (in Russian)

[22] Berezansky Yu. M. Eigenfunctions expansions related with differential operators. Kiev,
Nauk.Dumka Publ., 1965 (in Russian)

[23] Shubin M.A. Pseudo-differential operators and spectral theory. Moscow, Nauka Publ.,
1978 (in Russian)


