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Abstract

A concept of strong necessary conditions for extremum of functional has been ap-
plied for analysis an existence of dual equations for a system of two nonlinear Partial
Differential Equations (PDE) in 1+1 dimensions. We consider two types of the dual
equations: the Bäcklund transformations and the Bogomolny equations. A general
form of the second order PDE with a derivative-less non-linear term has been con-
sidered. In the case of a coupled system of equations the general conditions for the
existence of the Bogomolny decomposition are derived. In the case of an uncoupled
system of equations the Bogomolny equations become the Bäcklund transformations.
It has been found a denumerable classes of coupled systems possessing the Bogomolny
relationship. Weaken the method into semi-strong necessary conditions is presented
together with an application to the Lax hierarchy. The method basing on both the
strong and the semi-strong necessary condition concept reduces the derivation of the
dual equations to an algorithm.

1 Introduction

Integrable nonlinear partial differential equations have attracted much interest both in
physics and in mathematics. These equations have rich mathematical structures which
showed up behind them. Properties of such structures are: Existence of the Lax pairs, the
Bäcklund transformations, the Bogomolny relationship, infinitely many local conservation
laws, the Miura maps and the (bi-)Hamiltonian structures [1], [2], [3]. In this paper we
present a new way of derivation of dual equations (the Bäcklund transformations, the
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Bogomolny equations and others) for nonlinear partial differential evolution equations.
There are different ways in which the dual equations may be achieved. For the derivation of
the Bäcklund transformations we refer to [4]−[7] as well as to the Appendix A , and for the
derivation of the Bogomolny equations to [8]-[14] as well as to the Appendix B. Recently,
a new variational approach to the Bäcklund transformations [15] and to the Bogomolny
decomposition [16] has been introduced on the basis of the strong necessary condition
concept [17] - [20]. The concept is grounded on the assumption that the considered
equation results from the necessary condition for an extremum of a functional to exist:

δΦ[u] = 0, (1.1)

where:

Φ[u] =

∫

E2

F (u, u,x, u,t)dx dt, (1.2)

δΦ[u] =

∫

E2

(

F,uδu + F,u,xδu,x + F,u,tδu,t

)

dx dt (1.3)

and

u(x, t) ∈ C2(E × E)

F (u, u,x, u,t) ∈ C2(R3)

Since we relate the developed method to the classical field theory we assume that the
structure of the Euclidean space for a domain of the independent variables x, t. Both
variables x and t are equivalent. Therefore, we have to determine the asymptotic conditions
for the dependent variables:

lim
x→

+

−∞

u(x, t) = lim
t→

+

−∞

u(x, t) = α (1.4)

where α is an arbitrary constant (|α| < ∞). For u,x(x, t) and u,t(x, t) we assume analogous
conditions. These conditions lead to the Euler-Lagrange equation:

F,u − DxF,u,x − DtF,u,t = 0 (1.5)

However, the (1.1) can be satisfied by assuming the strong necessary conditions:

F,u,x = 0 (1.6)

F,u,t = 0 (1.7)

F,u = 0. (1.8)

Note that all solutions of (1.6),(1.7) and (1.8) satisfy (1.5). However, in most cases the
set of solutions of (1.6),(1.7) and (1.8) is trivial (u = const) or empty. In order to extend
this set to a nontrivial one we use the gauge transformation of (1.2)

Φ → Φ + I (1.9)

and instead of (1.5) we apply (1.6),(1.7) and (1.8). The scaling functional I is invari-
ant with respect to the local variation of u(x, t): δI ≡ 0. Therefore, the Euler-Lagrange
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equations resulting from the extremum of Φ and the extremum of Φ + I are equivalent.
The (1.6),(1.7) and (1.8) are not invariant however, with respect to Φ → Φ + I, i.e. the
gauge transformation contributes to the strong necessary condition. This contribution
can extend the subset of solutions to the nontrivial one. In such a way, we derive simpler
differential equations for extremales of Φ, solutions of which form a subset of solutions
of the Euler-Lagrange equation. The aim of this paper is to present the application of
the strong necessary conditions to the analysis of the integrability of nonlinear partial
differential evolution equations. In the case of the integrable Euler-Lagrange equation the
concept of strong necessary conditions is applied to a derivation of the Bäcklund trans-
formations and in the case of two coupled equations to a derivation of the Bogomolny
equations. The paper is organized as follows: in Section 2 we apply the concept of the
strong necessary conditions to the non-linear PDE in 1+1 dimensions of the second order
with the derivative-less non-linear term. We derive the Bäcklund transformations and
the integrability conditions. Section 3 presents the same investigation program applied
to the system of two coupled PDE equations in 1+1 dimensions. In Section 4 we extend
our method into a semi-strong necessary conditions concept. As an application of this
concept we derive the auto-Bäcklund transformations for the fifth-order KdV equation.
In the summary section we discuss the algorithmic structure of the presented method and
differences between the Bäcklund transformations and the Bogomolny equations.

2 Dual equations for decoupled second order PDE in 1+1
dimensions

Let us analyze an integrability of the following class of equations:

au,xx + b u,tt + 2 c u,xt = P (u) (2.1)

In order to apply the strong necessary conditions concept we supplemented the (2.1) with
an independent similar equation and we have:

au,xx + b u,tt + 2 c u,xt = P (u) (2.2)

ã v,xx + b̃ v,tt + 2 c̃ v,xt = Q(v)

where:

u(x, t) ∈ C2(E × E), v(x, t) ∈ C2(E × E), (2.3)

and P (u) ∈ L1(R), Q(v) ∈ L1(R). These conditions guarantee the existence of p(u)
and q(v) such that: p,u = P (u), q,v = Q(v). The equation parameters a, b, c, ã, b̃, c̃ are
arbitrary real constants and λ is the Lagrangean multiplier. The u and v satisfy the
asymptotic conditions (1.4) which associates (2.2) with the π2(S2) homotopy group. Let
us formulate the following problem: What are the forms of the P (u) and the Q(v) and
what is the subspace of the equation parameters for which the (2.2) possesses the Bäcklund
transformation? The strong necessary conditions start from the generating functional:

Φ[u, v] =

∫

E2

[
a

2
u2

,x +
b

2
u2

,t + c u,xu,t + p(u) + (2.4)

λ (
ã

2
v2
,x +

b̃

2
v2
,t + c̃ v,xv,t + q(v))]dx dt
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2.1 The topological invariant

Crucial role in the concept of the strong necessary conditions plays the topological invariant
I. It must be defined on the same domain as Φ[u, v]:

I[u, v] =

∫

E2

J(u, v, u,x, v,x, u,t, v,t)dx dt (2.5)

where J(u, v, u,x, v,x, u,t, v,t) ∈ C2(R6). From the definition of the topological invariant
we derive the following conditions for J :

L̂uJ(u, v, u,x, v,x, u,t, v,t) ≡ 0 (2.6)

L̂vJ(u, v, u,x, v,x, u,t, v,t) ≡ 0 (2.7)

where

L̂u =
∂

∂u
− Dx

∂

∂u,x

− Dt
∂

∂u,t

(2.8)

L̂v =
∂

∂v
− Dx

∂

∂v,x

− Dt
∂

∂v,t

(2.9)

We can formally treat (2.6) and (2.7) as a set of the simultaneous partial differential
equations for J(u, v, u,x, v,x, u,t, v,t). General solution of (2.6), (2.7) leads to the general
form for (2.5):

I[u, v] = I1 + I2 + I3 (2.10)

where is {I1, I2, I3} complete set of invariants.

Theorem 1. [22].

Let HJ = {J : J ∈ C2(R6), (u, v, u,x, v,x, u,t, v,t)
J−→ J(u, v, u,x, v,x, u,t, v,t) ∈ R} be the

linear space. Then the set of invariants

I1 =

∫

E2

J1dx dt =

∫

E2

G1(u, v)(u,xv,t − u,tv,x)dx dt (2.11)

I2 =

∫

E2

J2dx dt =

∫

E2

DxG2(u, v)dx dt (2.12)

I3 =

∫

E2

J2dx dt =

∫

E2

DtG3(u, v)dx dt, (2.13)

where G1(u, v) ∈ C2(R×R), G2(u, v), G3(u, v) ∈ C3(R×R), is complete in the sense that
J1, J2, J3 is a complete base of ker L̂.

Proof. By the assumption J(u, v, u,x, v,x, u,t, v,t) can not depend on the second derivatives
of u and v. Let us derive conditions for J resulting from this assumption. Expanding (2.6),
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(2.7) we obtain:

∂

∂u
J −

(

∂2

∂u∂u,x

J

)

u,x −
(

∂2

∂u,x∂v
J

)

v,x −
(

∂2

∂u,x
2
J

)

u,xx −
(

∂2

∂u,x∂v,x
J

)

v,xx − 2

(

∂2

∂u,t∂u,x
J

)

u,xt −
(

∂2

∂u,x∂v,t
J

)

v,xt −
(

∂2

∂u∂u,t
J

)

u,t −
(

∂2

∂u,t∂v
J

)

v,t −
(

∂2

∂u,t∂v,x

J

)

v,xt −
(

∂2

∂u,t
2
J

)

u,tt −
(

∂2

∂u,t∂v,t

J

)

v,tt ≡ 0,

(2.14)

∂

∂v
J −

(

∂2

∂u∂v,x
J

)

u,x −
(

∂2

∂v∂v,x
J

)

v,x −
(

∂2

∂u,x∂v,x
J

)

u,xx −
(

∂2

∂v,x
2
J

)

v,xx −
(

∂2

∂u,t∂v,x

J

)

u,xt − 2

(

∂2

∂v,t∂v,x

J

)

v,xt −
(

∂2

∂u∂v,t

J

)

u,t −
(

∂2

∂v∂v,t
J

)

v,t −
(

∂2

∂u,x∂v,t
J

)

u,xt −
(

∂2

∂u,t∂v,t
J

)

u,tt −
(

∂2

∂v,t
2
J

)

v,tt ≡ 0

(2.15)

Therefore, all function coefficients of the second derivatives u,xx, u,xt, u,tt, v,xx, v,xt, v,tt in
(2.14), (2.15) must vanish:

∂2

∂u,x
2
J ≡ 0,

∂2

∂u,x∂v,x
J ≡ 0,

∂2

∂u,t∂u,x
J ≡ 0,

∂2

∂u,x∂v,t
J +

∂2

∂u,t∂v,x
J ≡ 0,

∂2

∂u,t
2
J ≡ 0,

∂2

∂u,t∂v,t
J ≡ 0, (2.16)

∂2

∂v,x
2
J ≡ 0,

∂2

∂v,t∂v,x

J ≡ 0,
∂2

∂v,t
2
J ≡ 0

These constrains lead to the following form for J(u, v, u,x, v,x, u,t, v,t):

J = G1(u, v) (u,xv,t − u,tv,x) + Au,x + B u,t + C v,x + D v,t + E (2.17)

where, A(u, v), B(u, v), C(u, v),D(u, v), E(u, v) ∈ C2(R × R). Substituting (2.17) to
(2.14), (2.15) we derive additional constrains for A(u, v), B(u, v), C(u, v),D(u, v), E(u, v):

∂E(u, v)

∂u
≡ 0,

∂E(u, v)

∂v
≡ 0 (2.18)

∂C(u, v)

∂u
− ∂A(u, v)

∂v
≡ 0 (2.19)

∂D(u, v)

∂u
− ∂B(u, v)

∂v
≡ 0 (2.20)

Therefore

E(u, v) ≡ const (2.21)

∃ G2(u, v) : A(u, v) =
∂G2(u, v)

∂u
and C(u, v) =

∂G2(u, v)

∂v
(2.22)

∃ G3(u, v) : B(u, v) =
∂G3(u, v)

∂u
and D(u, v) =

∂G3(u, v)

∂v
(2.23)

�
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2.2 The strong necessary conditions

Theorem 2. The Euler equations for (2.4) are invariant with respect to the gauge trans-
formation of Φ[u, v]:

Φ∗ = Φ + I1 + I2 + I3 (2.24)

Proof. Since δI ≡ 0, the variations of the both sides of (2.24) lead to identical Euler’s
equations for Φ∗ and Φ: δΦ∗[u, v] = δΦ[u, v] = 0 �

However, as we have mentioned in the Introduction, the strong necessary conditions (1.6)-
(1.8) are not invariant with respect to (2.24):

u : P (u) + G1,u(u,xv,t − u,tv,x) + G2,uuu,x + G2,uvv,x +

G3,uuu,t + G3,uvv,t = 0 (2.25)

v : λQ(v) + G1,v(u,xv,t − u,tv,x) + G2,uvu,x + G2,vvv,x +

G3,vuu,t + G3,vvv,t = 0 (2.26)

u,x : au,x + c u,t + G1v,t + G2,u = 0 (2.27)

u,t : b u,t + c u,x − G1v,x + G3,u = 0 (2.28)

v,x : λ ã v,x + λ c̃ v,t − G1u,t + G2,v = 0 (2.29)

v,t : λ b̃ v,t + λ c̃ v,x + G1u,x + G3,v = 0 (2.30)

This property makes a chance to derive nontrivial solutions of (2.2) from (2.25)-(2.30).
However, since the necessary conditions (2.25)-(2.30) are stronger then (2.2) in general
case the solution space of (2.25)-(2.30) is a subspace of the solution space of (2.2). The
Eqs. (2.25)÷(2.30) have to be self-consistent. Note that (2.27)-(2.30) characterize all 1+1-
dimensional PDE of the type (2.1) because they do not depend on the P (u) (since Q(v) is
optional we do not mention it in this place). Formally, we have six simultaneous equations
for the five unknown functions: u, v,G1, G2, G3. The system (2.25)-(2.30) becomes the
Bäcklund transformations if there exists such an Ansatz for the G1, G2, G3 for which the
above equations reduce to two equations for the u and v [15], [20]. Essential role in this
procedure plays reduction of the number of independent equations by an appropriate
choice of the G1, G2, G3. Only for very special P (u) and Q(v) such an Ansatz exists [23].
In the most cases of P and Q the system (2.25)-(2.30) cannot be reduced to the Bäcklund
transformations. The (2.25), (2.26) and (2.27)-(2.30) require different ways of treatment.
In order to make all (2.25), (2.26) and (2.27)-(2.30) self-consistent we reduce the (2.25),
(2.26) to a tautology and make the (2.27)-(2.30) linear dependent.

2.3 Reduction of the (2.25)-(2.30) to the Bäcklund transformations

We will reduce the system (2.27)-(2.30) to two equations by setting the following condition:

rank









a c 0 G1 G2,u

c b −G1 0 G3,u

0 −G1 λã λc̃ G2,v

G1 0 λc̃ λb̃ G3,v









= 2 (2.31)
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Then using (2.27)-(2.30) and the constrains for the equation parameters and Gi functions
resulting from (2.31), we reduce (2.25),(2.26) to the tautology. The (2.31) can be satisfied
by three different classes of the equation parameters and the Gi functions.

2.3.1 The class: G1 6= 0, a 6= 0, ã 6= 0

The procedure reducing (2.25)-(2.30) to the Bäcklund transformations we close in four
points.
I. Transforming the matrix of equations (2.27)-(2.30) to the Gauss-Jordan form we satisfy
(2.31) by setting the following relations for the equation parameters and G1:

c̃ = c
ã

a

b̃ = b
ã

a
(2.32)

G2
1 =

λ ã

a
(a b − c2) (2.33)

as well as
II. the following set of differential equations for G2 and G3:

(a b − c2) G2,v + G1 (aG3,u − cG2,u) = 0 (2.34)

aG3,v − G1 G2,u − cG2,v = 0 (2.35)

where

G1 6= 0, a 6= 0, ã 6= 0 (2.36)

It results from (2.36) and (2.33) that

Det

[

a c
c b

]

6= 0 (2.37)

and G1 = const. Therefore, we reduce four equations (2.27)-(2.30) to the Bäcklund
transformations represented by (2.27)-(2.28).
III. Now we will make (2.25),(2.26) a tautology. Taking into account (2.33) we solve (2.27)
and (2.28) with respect to u,x and u,t and substitute them to (2.25),(2.26) and obtain:

P (u)(a b − c2) + A1v,x + B1v,t + C1 = 0 (2.38)

G2
1aQ(v) + A2v,x + B2v,t + C2 = 0 (2.39)

where

A1 = −cG1G2,uu + a bG2,uv − c2G2,uv + aG1G3,uu (2.40)

B1 = −bG1G2,uu + cG1G3,uu + a bG3,uv − c2G3,uv (2.41)

C1 = cG2,uuG3,u + cG3,uuG2,u − aG3,uuG3,u − bG2,uuG2,u (2.42)

A2 = −ã cG1G2,uv + ã a bG2,vv − ã c2G2,vv + ã aG1G3,uv (2.43)

B2 = −ã bG1G2,uv + ã cG1G3,uv + ã a bG3,vv − ã c2G3,vv (2.44)

C2 = ã cG2,uvG3,u + ã cG3,uvG2,u − ã aG3,uvG3,u − ã bG2,uvG2,u (2.45)
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Theorem 3. If (2.34) and (2.35) is true then

A1 ≡ 0, B1 ≡ 0, A2 ≡ 0, B2 ≡ 0 (2.46)

Proof. Inserting (2.34) and (2.35) to (2.40),(2.41),(2.43),(2.44) we obtain (2.46). �

Finally, (2.25),(2.26) become:

P (u)(a b − c2) +
1

2

(

−aG2
3,u − bG2

2,u + 2 cG2,uG3,u

)

,u
= 0 (2.47)

λQ(v)(a b − c2) +
1

2

(

−aG2
3,u − bG2

2,u + 2 cG2,uG3,u

)

,v
= 0 (2.48)

(2.47) and (2.48) can be integrated into one condition:

2 (a b − c2)(p(u) + λ q(v)) +
(

−aG2
3,u − bG2

2,u + 2 cG2,uG3,u

)

= C
′

(2.49)

where C
′ ∈ R.

Solving (2.34), (2.35) we obtain solutions for G2 and G3:

G2 =

(

−
√
−a b + c2 + c

)

F2 (ζ)

b
+

(√
−a b + c2 + c

)

F1 (ξ)

b
+ C1 , (2.50)

G3 = F2 (ζ) + F1 (ξ) (2.51)

where

ξ = −1/2 v
1

√

−a b−c2

G1
2

+ 1/2 u, (2.52)

ζ = v +

√

−a b − c2

G1
2 u, (2.53)

F1, F2 are arbitrary functions of C2. In order to determine admissible set of solutions of
(2.47) and (2.48) we set the following conditions: ∂

∂v
P (u) = 0 and ∂

∂u
Q(v) = 0, which can

be expressed by the F1 and F2:

4 D (F1 ) (ξ)
(

D(3)
)

(F2 ) (ζ) (a b − c2) +
(

D(3)
)

(F1 ) (ξ) G1
2D (F2 ) (ζ) = 0 (2.54)

where

D(p)(F )(ζ) =
dp

dζp
F (ζ). (2.55)

Separating variables in (2.54) we obtain:

F
′′′

1 (ξ)

F
′

1(ξ)
= −4 (a b − c2)

G2
1

F
′′′

2 (ζ)

F
′

2(ζ)
= ω (2.56)

where ω is a separation constant.
IV. Therefore, if the equation coefficients satisfy (2.32), if F1 and F2 satisfy (2.56) then
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(2.49) is the tautology and the equations (2.27) and (2.28) are the Bäcklund transfor-
mations for the system (2.2) subjected to (2.32) . The solutions of (2.56) together with
(2.50), (2.51) and (2.47), (2.48) determine all subjected to (2.32) systems possessing the
Bäcklund transformations of the following forms:

au,x + c u,t + G1v,t + G2,u = 0 (2.57)

b u,t + c u,x − G1v,x + G3,u = 0 (2.58)

where G2 and G3 are given by (2.50), (2.51) and (2.52), (2.53). In the particular case of
a = ã = b = b̃ = 1 and c = c̃ = 0 we derive the known result for the non-linear wave
equations:

G1 =
+
− 1, λ = 1

G2 = −i F2(v + i u) + i F1(
u + i v

2
)

G3 = F2(v + i u) + F1(
u + i v

2
)

p(u) + q(v) = F
′

1F
′

2 (2.59)

u,x + v,t +
i

2
F

′

1 + F
′

2 = 0

u,t − v,x +
1

2
F

′

1 + i F
′

2 = 0

where F1, F2 satisfy (2.56). Therefore we have obtained results for the elliptic equations.
This means that the results of this subsection concern whole class of the elliptic equations
covering their particular form of the Klein-Gordon type [20], [24] − [28].

2.3.2 The class: G1 6= 0, a = 0, ã = 0

Note that ã = 0 results from a = 0. Repeating whole procedure of the previous subsection
we derive the following results.
I. The conditions for the equation parameters and G1:

c̃ b = c b̃ (2.60)

G2
1 = −λ c c̃ (2.61)

In order to much the parameter conditions of this class we have to set also the following
conditions: c 6= 0 and c̃ 6= 0.
II. The following set of the differential equations for G2 and G3:

cG2 ,v + G1G2 ,u = 0 (2.62)

c2 G3 ,v − cG1G3 ,u + bG1G2 ,u = 0 (2.63)

III. The following condition for p(u) and q(v):

b

2
G2 ,u

2 − cG2 ,u G3 ,u + c2(p(u) + λ q(v)) = C
′′

(2.64)
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where C
′′ ∈ R.

Solving (2.62), (2.63) we obtain solutions for G2 and G3:

G2 (u, v) = F1 (x) , (2.65)

G3 (u, v) =
1

2

bF1 (x) + 2 F2 (y) c

c
(2.66)

where

x = −−vG1 + c u

G1

, (2.67)

y =
vG1 + c u

G1

(2.68)

and F1, F2 are arbitrary functions of C2. Expressing P (u) and Q(v) by F1 and F2 we
obtain:

P (u) =
c2

G3
1

((

D(2)
)

(F1 ) (x) D (F2 ) (y) − D (F1 ) (x)
(

D(2)
)

(F2 ) (y)
)

, (2.69)

Q (v) = − c

λG2
1

((

D(2)
)

(F1 ) (x) D (F2 ) (y) + D (F1 ) (x)
(

D(2)
)

(F2 ) (y)
)

, (2.70)

In order to determine admissible set of solutions of (2.69) and (2.70) we set the following
conditions: ∂

∂v
P (u) = 0 and ∂

∂u
Q(v) = 0, which can be expressed by the F1 and F2:

F
′′′

1 (x)

F
′

1(x)
=

F
′′′

2 (y)

F
′

2(y)
= ω (2.71)

The separation constant ω labels the solutions of the one parameter family equivalent to
the results tabulated in [20].
IV. And the Bäcklund transformations for (2.2):

cu,t + G1v,t + G2 ,u = 0 (2.72)

bu,t + cu,x − G1v,x + G3 ,u = 0 (2.73)

where G2 and G3 are given by (2.65) and (2.66). In the particular case of a = ã = b = b̃ = 0
and c = c̃ = 1

2 we recover the result for the hyperbolic equations [20]:

G1 =
+
− 1

2
λ = −1

G2 = F1(u − v); G3 = F2(u + v)

p(u) − q(u) = 2 F
′

1F
′

2 (2.74)

u,x − v,x + 2 F2(u + v) = 0

u,t + v,t + 2 F1(u − v) = 0

where F1 and F2 are solutions of (2.71).
Therefore we have obtained results for the hyperbolic equations. This means that the
results of this subsection concern whole class of the hyperbolic equations covering their
particular form of the sine-Gordon type [20], [21].
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2.3.3 The case: G1 = 0, ã = 0, b̃ = 0, c̃ = 0

(Note that ã = b̃ = c̃ = 0 ⇐= G1 = 0). This case is trivial because the second equation of
(2.2) does not correspond to any differential equation:Q(v) = 0.

3 Dual equations for coupled second order PDE in 1+1 di-
mensions

Let us consider the following set of two coupled PDE-s:

au,xx + b u,tt + 2 c u,xt = P (u, v) (3.1)

ã v,xx + b̃ v,tt + 2 c̃ v,xt = Q(u, v)

where u(x, t) and v(x, t) satisfy (2.3), P (u, v) ∈ L1(R × R) and Q(u, v) ∈ L1(R × R).
Additionally we assume that V,u = P (u, v), V,v = Q(u, v). The equation parameters
a, b, c, ã, b̃, c̃ are arbitrary real constants. All considerations run parallel to Section 2.
Therefore the action functional takes the following form:

Φ[u, v] =

∫

E2

[
a

2
u2

,x +
b

2
u2

,t + c u,xu,t + (3.2)

ã

2
v2
,x +

b̃

2
v2
,t + c̃ v,xv,t + V (u, v))]dx dt

Using the concept of the strong necessary conditions we derive the following field equations:

u : P (u, v) + G1,u(u,xv,t − u,tv,x) + G2,uuu,x + G2,uvv,x + G3,uuu,t + G3,uvv,t = 0

(3.3)

v : Q(u, v) + G1,v(u,xv,t − u,tv,x) + G2,uvu,x + G2,vvv,x + G3,vuu,t + G3,vvv,t = 0

(3.4)

u,x : au,x + c u,t + G1v,t + G2,u = 0 (3.5)

u,t : b u,t + c u,x − G1v,x + G3,u = 0 (3.6)

v,x : ã v,x + c̃ v,t − G1u,t + G2,v = 0 (3.7)

v,t : b̃ v,t + c̃ v,x + G1u,x + G3,v = 0 (3.8)

The equations (3.3)-(3.8) have to be self-consistent. Again, we have six simultaneous
equations for the five unknown functions: u, v,G1, G2, G3. The system (3.3)-(3.8) becomes
the Bogomolny equations if there exists such an Ansatz for G1, G2, G3 for which the above
equations reduce to two equations for u and v [20], [16]. Like in Section 2 the reduction of
the number of independent equations by an appropriate choice of G1, G2, G3 plays essential
role in this procedure. Only for a very special V (u, v) such an Ansatz exists [29]. In most
cases of V (u, v) the system (3.3)-(3.8) cannot be reduced to the Bogomolny equations.
The (3.3), (3.4) and (3.5)-(3.8) require different ways of treatment. In order to make all
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(3.3), (3.4) and (3.5)-(3.8) self-consistent we reduce (3.3), (3.4) to a tautology and make
(3.5)-(3.8) linear dependent. The condition for the reduction of the (3.5)-(3.8) is:

rank









a c 0 G1 G2,u

c b −G1 0 G3,u

0 −G1 ã c̃ G2,v

G1 0 c̃ b̃ G3,v









= 2 (3.9)

3.1 The Bogomolny equations

In the limit case of V (u, v) = p(u) + λ q(v) the (3.1) becomes (2.2) for λ = 1. Therefore,
all considerations for the coupled equations run as in Section 2. However the fixed λ value
causes additional conditions for the equation parameters.

3.1.1 The class: G1 6= 0, a 6= 0, ã 6= 0

I. Transforming the matrix of equations (3.5)-(3.8) to the Gauss-Jordan form we satisfy
(3.9) by setting the following relations for the equation parameters and G1:

c̃ = c
ã

a

b̃ = b
ã

a
(3.10)

G2
1 =

ã

a
(a b − c2) (3.11)

a b > c2 ∧ a ã > 0 ∨ a b < c2 ∧ a ã < 0 (3.12)

and
II. the following set of differential equations for G2 and G3:

(a b − c2) G2,v + G1 (aG3,u − cG2,u) = 0 (3.13)

aG3,v − G1 G2,u − cG2,v = 0 (3.14)

It results from (3.11) that G1 = const.
III. Analogously to the considerations in 2.3.1 we derive the condition which reduces the
(3.3), (3.4) to tautology:

aG2
3,u + bG2

2,u − 2 cG2,u G3,u − 2 ((a b − c2) V (u, v) = C(3) (3.15)

where C(3) ∈ R.
Since, (3.13), (3.14) are equivalent to (2.34), (2.35) we apply the solutions for G1 and G2

given by (2.50), (2.51).Substituting G2 and G3 to (3.15) we derive the following form for
the integrable potential V (u, v) ( in the Bogomolny decomposition sense):

V (u, v) =
α

b
D (F1 ) (ξ) D (F2 ) (ζ) (3.16)
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where F2 and F3 are arbitrary functions of C2,

ξ =
1

2

−v + αu

α
,

ζ = v + αu,

α =

√

−ab − c2

G1
2 .

IV. Therefore if there exist G1(u, v), G2(u, v) and G3(u, v) obeying the (3.13)-(3.15) then
for (3.1) with coefficients satisfying (3.10) the (3.5) and (3.6) become the Bogomolny
equations:

au,x + c u,t + G1v,t + G2,u = 0 (3.17)

b u,t + c u,x − G1v,x + G3,u = 0 (3.18)

In comparison to the decoupled systems we obtain denumerable class of integrable poten-
tials V (u, v). Which means that each smooth enough F1 and F2 generate V (u, v) leading
to the system which is integrable in the sense of the Bogomolny decomposition. In the
particular case of a = ã = b = b̃ = 1 and c = c̃ = 0 we derive the known result for the
non-linear wave equations:

G1 =
+
− 1

G3,u = −G2,v

G3,v = G2,u

V (u, v) =
1

2
(G2

2,u + G2
2,v) (3.19)

u,x + v,t + G2,u = 0

u,t − v,x + G3,u = 0

3.1.2 The class: G1 6= 0, a = 0, ã = 0

Note that ã = 0 results from a = 0.
I. Analogously to the results of the previous subsection we obtain the equations for the
equation parameters and G1:

c̃ b = c b̃ (3.20)

G2
1 = −c c̃ (3.21)

c c̃ < 0 (3.22)

II. The following set of the differential equations for G2 and G3 is:

cG2 ,v + G1G2 ,u = 0 (3.23)

c2 G3 ,v − cG1G3 ,u + bG1G2 ,u = 0 (3.24)

and
III. the following condition reduces (3.3),(3.4) to tautology:

b

2
G2 ,u

2 − cG2 ,u G3 ,u + c2V (u, v) = C(4) (3.25)
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where C(4) ∈ R.
Since, (3.23), (3.24) are equivalent to (2.62), (2.63) we apply (2.65), (2.66) for further
considerations. Substituting formulae for G2 and G3 to (3.15) we derive the following
form for the integrable potential V (u, v) ( in the Bogomolny decomposition sense):

V (u, v) = − c

G1
2 D (F1 )

(

vG1 − cu

G1

)

D (F2 )

(

vG1 + cu

G1

)

(3.26)

IV. And the Bogomolny equations for (3.1):

cu,t + G1v,t + G2 ,u = 0 (3.27)

bu,t + cu,x − G1v,x + G3 ,u = 0 (3.28)

we obtain denumerable class of integrable potentials V (u, v). Which means that each
smooth enough F1 and F2 generate V (u, v) leading to the system which is integrable in
the sense of the Bogomolny decomposition. In the particular case of a = ã = b = b̃ = 0
and c = c̃ = 1

2 we recover the result for the hyperbolic equations [29]:

G1 =
+
− 1

2
G2,v + G2,u = 0

G3,v − G3,u = 0

V (u, v) = 2 G2,uG3,u (3.29)

u,x − v,x + 2 G3,u = 0

u,t + v,t + 2 G2,u = 0

3.1.3 The class: G1 = 0, ã = 0, b̃ = 0, c̃ = 0

This case is trivial because it excludes from considerations the second equation of (3.1),
which means no Bogomolny decomposition.

4 Semi-strong necessary condition concept and the Lax hi-

erarchy fifth-order KdV equation

In order to make our formalism more universal we have to extend the strong necessary
condition concept to a semi-strong one [16]. Let Φ be a functional on a set of differentiable
functions. These functions can be regarded as elements of the space C2. Let Φ depend on
the higher derivatives of u(x, t):

Φ[u] =

∫ t2

t1

∫

X

F (u, u,t, u,x, u,xx)dxdt (4.1)

Accordingly, one can investigate the necessary condition for the extremum of (4.1) to exist:

∫ t2

t1

∫

X

(
∂F

∂u
δu +

∂F

∂u,t
δu,t +

∂F

∂u,x
δu,x +

∂F

∂u,xx
δu,xx)dxdt = 0 (4.2)
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Now, there are more then one possibilities to satisfy (4.2) beyond the Euler-Lagrange’s
equation. One of them is a semi-strong necessary condition:

u : F,u = 0 (4.3)

u,t : F,u,t = 0 (4.4)

δ

δu,x
: F,u,x − DxF,u,xx = 0. (4.5)

If (4.1) depends on the higher derivatives of u(x, t) until u(x, t),kx then (4.5) takes the
following extended form:

F,u,x − DxF,u,xx + D2
xF,u,xxx − D3

xF,u,xxxx + ... + (−1)k−1Dk−1
x F,u,kx

= 0 (4.6)

where u,kx means the derivative of the order k. Semi-strong necessary condition concept
supplies a helpful tool for the theory of non-linear partial differential equations.

4.1 The fifth-order KdV equation

We present its application to the Lax hierarchy of the fifth-order KdV equation

u,t + 30u2u,x − 20u,xu,xx − 10uu,xxx + u,5x = 0 (4.7)

The topology associated with (4.7)is equivalent to that associated with the (2.1). Since
(4.7) is Lagrangean-less equation we transform the field functions u −→ ū,x

ū,xt + 30ū2
,xū,xx − 20ū,xxū,xxx − 10ū,xū,4x + ū,6x = 0 (4.8)

This equation possesses the following density of the Lagrangean functional

L = −ū,xū,t − 5ū4
,x − 10ū,xū2

,xx − ū2
,xxx (4.9)

For further considerations we omit bars ū −→ u. Therefore, we have to consider two
independent fields u and v governed by:

u,xt + 30u2
,xu,xx − 20u,xxu,xxx − 10u,xu,4x + u,6x = 0

v,xt + 30v2
,xv,xx − 20v,xxv,xxx − 10v,xv,4x + v,6x = 0 (4.10)

The action functional generating (4.10) takes the following form

Φ[u, v] =

∫

E2

[

u,xu,t + 5u4
,x + 10u,xu2

,xx + u2
,xxx (4.11)

+λ0

(

v,xv,t + 5v4
,x + 10v,xv2

,xx + v2
,xxx

)]

dx dt

4.2 The Topological invariants

According to the Theorem 1 we complete the set of independent invariants with the func-
tionals (2.11), (2.13) and

I2 =

∫

E2

DxG2(u, v, u,x, v,x, u,xx, v,xx, ..., u,5x, v,5x) dx dt (4.12)
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4.3 The semi-strong necessary conditions for the fifth-order KdV equa-
tion

Since (2.11), (2.13) and (4.12) establish the complete set of the topological invariants we
are able to create the following gauge transformed functional:

Φ∗[u, v] = Φ[u, v] − I1 − I2 − I3 (4.13)

Corresponding set of the semi-strong necessary conditions for the system (4.10) reads:

u :
∂L∗

∂u
= 0

v :
∂L∗

∂v
= 0

δ

δu,x
:

∂L∗

∂u,x
− D,x

∂L∗

∂u,xx
+ D2

,x

∂L∗

∂u,xxx
− D3

,x

∂L∗

∂u,4x
+ D4

,x

∂L∗

∂u,5x
= 0

δ

δv,x
:

∂L∗

∂v,x
− D,x

∂L∗

∂v,xx
+ D2

,x

∂L∗

∂v,xxx
− D3

,x

∂L∗

∂v,4x
+ D4

,x

∂L∗

∂v,5x
= 0

u,t :
∂L∗

∂u,t
= 0

v,t :
∂L∗

∂v,t
= 0

where L∗ denotes the functional density of (4.13). The explicit form of these conditions
is:

u : G1,u(u,xv,t − u,tv,x) + DxG2,u + DtG3,u = 0 (4.14)

v : G1,v(u,xv,t − u,tv,x) + DxG2,v + DtG3,v = 0 (4.15)

δ

δu,x
: u,t + 20u3

,x − 10u2
,xx − 20u,xu,xxx + 2u,5x = G1v,t + G2,u

(4.16)

δ

δv,x
: λ0(v,t + 20v3

,x − 10v2
,xx − 20v,xv,xxx + 2v,5x) = −G1u,t + G2,v

(4.17)

u,t : u,x = −G1v,x + G3,u (4.18)

v,t : λ0v,x = G1u,x + G3,v (4.19)

According to the general rules described in the subsection 2.2 we set the following problem.
For which forms of G1, G2, G3 and λ0 the set (4.14) ÷ (4.19) reduces to the Bäcklund
transformations?. In the first step we reduce (4.18) and (4.19) to the one equation by
making them linear dependent by setting:

G1 = 1, λ0 = −1 (4.20)
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and

G3(u, v) =
1

6
(u − v)3 + E(u − v) + D (4.21)

where D and E are arbitrary real constants.
The following Ansatz for G2:

G2(u, v, ..., u,5x, v,5x) = (u − v)
[

10(u3
,x + v3

,x) − 5(u2
,xx + v2

,xx)

−10(u,xu,xxx + v,xv,xxx) + (u + v),5x] (4.22)

and (4.20),(4.21) reduce (4.18),(4.19) to the first Bäcklund relation:

u,x + v,x =
1

2
(u − v)2 + D (4.23)

and (4.16), (4.17) to the second Bäcklund relation:

u,t − v,t = −10(u3
,x − v3

,x) + 5(u2
,xx − v2

,xx) + 10(u,xu,xxx − v,xv,xxx)− u,5x + v,5x (4.24)

We have to show that (4.14) and (4.15) become a tautology or they are equivalent to linear
combination of (4.23) and (4.24).

Theorem 4. If G1, G2, G3 and λ0 have the form of (4.20),(4.21) and (4.22) then (4.14),
(4.15) are equivalent to the Bäcklund relations.

Proof. Let us consider (4.14). Taking into account (4.20) the (4.14) reduces to:

DxG2,u + DtG3,u = 0 (4.25)

According to (4.21) the second term of this relation takes the following form:

DtG3,u = (u − v)(u,t − v,t) (4.26)

whereas, the first one needs the separate considerations:

G2,u = 10(u3
,x + v3

,x) − 5(u2
,xx + v2

,xx) − 10(u,xu,xxx + v,xv,xxx) + u,5x + v,5x (4.27)

For further considerations we need the four first derivatives of the (4.23):

u,x + v,x =
1

2
(u − v)2 + D

(u,x + v,x),x = (u − v)(u,x − v,x)) (4.28)

(u,x + v,x),xx = (u,x − v,x)2 + (u − v)(u,xx − v,xx)) (4.29)

(u,x + v,x),xxx = 3(u,x − v,x)(u,xx − v,xx) + (u − v)(u,xxx − v,xxx)) (4.30)

(u,x + v,x),4x = 3(u,xx − v,xx)2 + 4(u,x − v,x)(u,xxx − v,xxx) + (u − v)(u,4x − v,4x)

(4.31)

Using (4.28) ÷ (4.31) we reduce expression for DxG2,u to the following form:

DxG2,u = (u − v)
[

15(u2
,x + v2

,x)(u,x − v,x) − 10u,xu,xxx (4.32)

+10v,xv,xxx − 5(u,x − v,x)(u,xxx + v,xxx) + u,5x − v,5x]
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Assuming (4.28) ÷ (4.31) we prove the following relation:

15(u2
,x + v2

,x)(u,x − v,x) − 5(u,x − v,x)(u,xxx + v,xxx) (4.33)

= 10(u3
,x − v3

,x) − 5(u2
,xx − v2

,xx)

Therefore, DxG2,u takes the following form:

DxG2,u = (u − v)
[

10(u3
,x − v3

,x) (4.34)

−5(u2
,xx − v2

,xx) − 10u,xu,xxx + 10v,xv,xxx + u,5x − v,5x

]

Substituting (4.26) and (4.34) to (4.25) we derive:

DxG2,u + DtG3,u = (u − v)
[

u,t − v,t + 10(u3
,x − v3

,x) (4.35)

−5(u2
,xx − v2

,xx) − 10u,xu,xxx + 10v,xv,xxx + u,5x − v,5x

]

= 0

Therefore we derive (4.24). By the analogous way we can prove that (4.15) is equivalent
to the Bäcklund relations. �

Concluding, we have prove that (4.23) and (4.24) establish the auto-Bäcklund transfor-
mations for the fifth-order KdV equation.

5 Conclusions

We have shown that due to the strong necessary condition concept the derivation of the
dual equations for the systems of the PDE-s of the second order with the derivative-less
non-linear term can be reduced to an algorithm. The algorithm works both for uncoupled
and coupled systems.
The decoupled systems play an important role in the derivation of the Bäcklund trans-
formations for the non-linear PDE-s. It means that in order to derive the Bäcklund
transformations for the non-linear partial differential equation we have to complete this
with an independent partial differential equation in such a way that the whole system of
equations is associated with the non-trivial homotopy group π2(S2). Next, applying the
described method we obtain the Bäcklund transformations and the conditions for their
existence. The described procedure for coupled equations runs very similar to that for
decoupled ones. However, there are significant differences between the uncoupled and
coupled systems.
In Table 1 we summarize conditions for the potential of decoupled and coupled PDE’s
which admit the dual equations. It is easy to understand why it is possible to derive
denumerable classes of the coupled equations admitting the Bogomolny decomposition,
whereas the decoupled ones admit only few classes of systems possessing the Bäcklund
transformations. As we see for both cases the integrability conditions are expressed by
two arbitrary functions F1 and F2. In the case of decoupled system the function variables
u and v apearing in must be separated in (2.47) and (2.48) which means tha u can’t appear
in (2.48) and vice versa. This leads to the strong constrain for F1 and F2 (2.56), which
can be satisfied by very few functions. Whereas, in the coupled case such a constrain does
not exist and any smooth enough functions F1 and F2 correspond to the integrable system
in the Bogomoly sense.
In some cases of the nonlinear PDE the strong necessary conditions must be weaken into
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Table 1. Conditions for existence of the Bäcklund transformations and the Bogomolny decompo-

sition.

the Bäcklund transformations the Bogomolny decomposition
(uncoupled equations) (coupled equations)

elliptic hyperbolic elliptic hyperbolic
conditions constrains conditions constrains conditions constrains conditions constrains

for for for for for for for for
P (u),Q(v) F1,F2 P (u),Q(v) F1,F2 V (u, v) F1,F2 V (u, v) F1,F2

(2.47),(2.48) (2.56) (2.69), (2.70) (2.71) (3.16) no (3.26) no

the semi-strong necessary conditions concept. Which is closer to the Euler-Lagrange equa-
tions method. For the first time we have applied this procedure to the KdV equation [15].
In this paper we present application of the semi-strong necessary conditions to the fifth-
order KdV equation. As the finale result we present the Bäcklund transformations.
The described here algorithm can be easily extended into the systems of m partial dif-
ferential equations for p unknown functions in an arbitrary n-dimensional space of the
independent variables. The simplest case occurs if p = n. Then we set up boundary con-
ditions for which any continuous solution u1, u2..., un generates a mapping belonging to
the πn(Sn) homotopy group. Therefore, we should take into account an optimal number of
topological invariants [22]. In the case of p < n we have to supply the investigated system
with some independent systems in such a way that the supplemented system will generate
the πn(Sn) homotopy group. This procedure is a combination of both: the Bäcklund
transformation and the Bogomolny decomposition.

6 Appendix A

In this Appendix we approach to the simplest case of the Bäcklund transformations [1]−[6].
Suppose we consider two uncoupled partial differential equations, in two independent
variables x and t, for the two functions u and v:

Eq1(u) = 0, Eq2(v) = 0 (6.1)

where Eq1 and Eq2 are two operators, which are in general nonlinear. Let Ri = 0 be a
pair of relations,

Ri(u, v, u,x, v,x, u,t, v,t, · · · ; x, t) = 0, i = 1, 2 (6.2)

between the two functions u and v. The Ri = 0 is a Bäcklund transformation if it is
integrable for v after the Eq1(u) = 0 is fulfilled and if the resulting v is a solution of
Eq2(v) = 0, and vice versa. If Eq1 ≡ Eq2, so that u and v satisfy the same equation, the
Ri is called an auto-Bäcklund transformation. This approach to the solution of (6.1) is
useful if (6.2) are simpler than (6.1). Usually the order of (6.1) is lower than the order of
(6.2).
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7 Appendix B

An elementary approach to the Bogomolny equations can be explained with the problem
of minimum of the following functional [8], [30]:

H[u] =

∫ +∞

−∞

[

1

2

(

du(x)

dx

)2

+ U [u(x)]

]

dx (7.1)

where u(x) ∈ C2(R), U(u) ∈ C1(R) and U(u) ∈ L1(R). Then the ground state of (7.1)
must satisfy the associated Euler’s equation:

y(x),xx = U,y[y(x)]. (7.2)

Following the Bogomolny decomposition one splits H[y]:

H[y] =
1

2

∫ +∞

−∞

[

dy(x)

dx

+
−

√

2(U [y] − C)

]2

dx + I0 (7.3)

where

I0 =
−
+

∫ +∞

−∞

dy(x)

dx

√

2(U [y] − C)dx +

∫

X

Cdx (7.4)

is a topological invariant. C is a constant satisfying the following condition:

|
∫ +∞

−∞

Cdx |< ∞ (7.5)

It results from (7.3) that, y(x) is the minimum of (7.1) if and only if y(x) satisfies the first
order differential equation:

dy(x)

dx

+
−

√

2(U [y] − C) = 0 (7.6)

The (7.6) is called the Bogomolny equation.
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rations.

References

[1] Wadati M, Sanuki H and Konno K, Relationships among inverse method, Bäcklund
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