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Abstract

In this paper, we study the properties of a nonlinearly dispersive integrable system
of fifth order and its associated hierarchy. We describe a Lax representation for such
a system which leads to two infinite series of conserved charges and two hierarchies
of equations that share the same conserved charges. We construct two compatible
Hamiltonian structures as well as their Casimir functionals. One of the structures has
a single Casimir functional while the other has two. This allows us to extend the flows
into negative order and clarifies the meaning of two different hierarchies of positive
flows. We study the behavior of these systems under a hodograph transformation
and show that they are related to the Kaup-Kupershmidt and the Sawada-Kotera
equations under appropriate Miura transformations. We also discuss briefly some
properties associated with the generalization of second, third and fourth order Lax
operators.

1 Introduction

There has been a lot of interest in recent years in the study of the Harry Dym [1, 3, 4, 5]
and the Hunter-Zheng equations [6, 7] which define an integrable hierarchy. Besides hav-
ing applications in various physical systems, these equations represent a class of equations
where the hierarchy can be extended to both positive as well as negative integer flows.
Furthermore, in these systems of equations, the dispersive term in the equation is nonlin-
ear, unlike the KdV equation where the dispersive term is linear in the dynamical variable.
This is manifest in the structure of the Lax operator and the equation for the Harry Dym
equation

L = u2∂2,
∂L

∂t
=

[

(

L3
)

≥2
, L

]

, ut = u3uxxx . (1.1)
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In trying to understand the properties of other systems that belong to this class of nonlin-
early dispersive equations, we have chosen to consider the generalized Lax operator for the
Harry Dym equation, introduced in [2] and study the resulting systems. This leads us to
a very interesting integrable hierarchy which was proposed a few years ago [8], but whose
properties were never studied in detail. However, having a Lax representation for such a
system, we are able to analyze various aspects of this system of equations. In particular,
we construct the conserved charges for the positive flows directly from the Lax operator
itself and show that the system, in fact, contains two infinite families of conserved charges.
Correspondingly, the Lax equation really gives rise to two hierarchies of equations. Such a
behavior has been noted earlier in connection with dispersionless polytropic gas dynamics
[9], but to the best of our knowledge, this is the first example of such a behavior in sys-
tems with dispersive terms. We obtain the two compatible Hamiltonian structures thereby
showing that the two hierarchies are bi-Hamiltonian. We determine the Casimir function-
als of both the Hamiltonian structures which allows us to extend the flows to negative
orders (which are nonlocal). We construct the recursion operator as well as its inverse
which allows us to construct the non-local charges and the nonlocal flows of the system re-
cursively. We also study the behavior of these systems under a hodograph transformation
and make connection with the Kaup-Kupershmidt and Sawada-Kotera equations.

The paper is organized as follows. In section 2, we discuss the Lax representation and
the two associated hierarchies of integrable equations. In section 3 we present the con-
served charges following from the Lax operator as well as the two compatible Hamiltonian
structures which also guarantees integrability of the system. The Casimir functionals of
the system are obtained which allows us to extend the flows to negative orders. We con-
struct explicitly the first few conserved nonlocal charges through the recursion operator.
In section 4, we study the behavior of these systems under a hodograph transformation
and make connection with the Kaup-Kupershmidt and the Sawada-Kotera equations. We
point out various interesting properties of the systems under the hodograph transforma-
tion. We discuss briefly, in sec 5, some features associated with a generalized Lax operator
of second, third and the fourth order and conclude with a brief summary in section 6.

2 Lax Representation

Let us consider the Lax operator introduced by Konopelchenko and Oevel [2]

L = u3∂3 . (2.1)

It can be checked with some algebra that this Lax operator leads to two consistent hier-
archies of equations of the form

∂L

∂t
(∓)
n

=

[

(

L2n∓ 1
3

)

≥2
, L

]

, (2.2)
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where n = 1, 2, 3 . . .. Let us note that the first few equations of the two hierarchies have
the forms

u
t
(−)
1

= u4
(

u2
)

5x

u
t
(−)
2

= −
1

81
u4

[

30u7u6x + 270u6uxu5x · · ·
]

5x
,

u
t
(+)
1

=
1

3
u4

(

2u3uxx − u2u2
x

)

5x
,

u
t
(+)
2

= −
1

243
u4

[

42u9u8x + 840u8uxu7x · · ·
]

5x
. (2.3)

These are even more nonlinearly dispersive than the Harry Dym equation (as we had
anticipated earlier) and we note that in terms of the variable ϕ = u−3, the two lowest
order equations take the forms

ϕ
t
(−)
1

=
(

ϕ−2/3
)

5x

ϕ
t
(+)
1

= − 2
(

ϕ−1
((

ϕ−1/3
)

xx
− 2

(

ϕ−1/6
)2

x

)

)

5x
. (2.4)

These equations indeed coincide with the equations considered by Holm and Qiao [8].
However, having a Lax representation for these two hierarchies, we can study their prop-
erties systematically in the following. In particular, the Lax representation shows that the
two equations belong to two distinct hierarchies (this will become more clear in the next
section) and guarantees that the two hierarchies are integrable.

We recall here that the Lax operator for the Harry Dym equation is unique. In fact,
it can be checked that the only generalization of the Lax operator (1.1) that leads to a
consistent equation has the form

L = u2∂2 + uux∂ = (u∂)2,

∂L

∂t
=

[

(

L3/2
)

≥2
, L

]

, (2.5)

and leads to the equation

ut =
(

u3uxx

)

x
, (2.6)

which is different from (1.1). However, in the present case, we find that the Lax operator
is not unique. For example, it can be checked that the Lax operator and the equation

L = u3∂3 +
3

2
u2ux∂

2,
∂L

∂t
(−)
1

=

[

(

L5/3
)

≥2
, L

]

, (2.7)

also lead to the fifth order equation in (2.3). We will comment on the general third order
Lax operator in one dynamical variable in sec 5.

Finally, we note that one can try to generalize such Lax operators to even higher orders.
However, a simple Lax operator and equation such as

L = um∂m, m ≥ 4,
∂L

∂t
=

[

(

Ln/m
)

≥2
, L

]

, (2.8)

where n is not a multiple of m, does not lead to consistent equations.
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3 Bi-Hamiltonian Structure

In this section we will show that the equations (2.3) are Hamiltonian equations. In fact,
as we will show, they represent a bi-Hamiltonian system of equations. From the structure
of the Lax operator, we note that we can define two series of conserved charges for the
system corresponding to (up to multiplicative constants)

H(−)
n =

∫

dx Tr L2n− 1
3 , H(+)

n =

∫

dx Tr L2n+ 1
3 , n = 0, 1, 2, . . . , (3.1)

where “Tr” represents the Adler trace over pseudo-differential operators. The other frac-
tional powers of the Lax operator can be easily shown to give trivial charges. Even though
the charges in (3.1) come from the same Lax operator, we have written them as two dis-
tinct series for reasons that will become clear shortly. We note here that the first few
charges of the series can be written explicitly as

H
(−)
0 = −

∫

dx
1

u
,

H
(−)
1 =

1

81

∫

dx
(

− 6u6xu4 − 54u5xuxu3 − 102u4xuxxu3 − 84u4xu2
xu

2 − 57u2
3xu3

− 204u3xu2xuxu2 + 12u3xu3
xu − 40u3

2xu2 + 60u2
xxu − 30uxxu4

x + 5u6
xu−1

)

,

H
(+)
0 = −

1

3

∫

dx
u2

x

u
,

H
(+)
1 = −

1

243

∫

dx
[

6u6u8x + 120u5uxu7x

+ 264u5uxxu6x + 372u5uxxxu5x + 213u5u2
4x

+ 708u4u2
xu6x + 2376u4uxuxxu5x2712u4uxuxxxu4x + 1488u4u2

xxu4x

+ 1308u4uxxu
2
xxx + 1332u3u3

xu5x + 4452u3u2
xuxxu4x + 2058u3u2

xu2
xxx

+ 2976u3uxu2
xxuxxx + 112u3u4

xx + 552u2u4
xu4x + 984u2u2

xu2
xxx

− 224u2u2
xu3

xx + 24uu5
xuxxx + 168uu4

xu2
xx − 56u6

xuxx + 7u−1u8
x

]

. (3.2)

In addition, we have found another charge (not following from the Lax operator) that is
also conserved,

H−1 =

∫

dx
1

u3
. (3.3)

Given the conserved charges in (3.2) and (3.3), it is now easy to check that the two
hierarchies of nonlinearly dispersive equations in (2.3) can be written in the bi-Hamiltonian
form

u
t
(−)
n

= D1
δH

(−)
n−1

δu
= D2

δH
(−)
n

δu
,

u
t
(+)
n

= D1
δH

(+)
n−1

δu
= D2

δH
(+)
n

δu
, n = 1, 2, . . . , (3.4)
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where

D1 = u4∂5u4

D2 = u2∂u−1∂−3u−1∂u2 . (3.5)

The Hamiltonian structures in (3.5) are manifestly anti-symmetric. It can also be checked
using the method of prolongation [10] that they satisfy Jacobi identity. For example, for
the first structure, we have

D1θ = u4
(

u4θ
)

5x
,

ΘD1 =
1

2

∫

dx
(

u4θ
)

∧
(

u4θ
)

5x
,

prVD1θ (ΘD1) = 4

∫

dx
(

u4θ
)

5x
∧

(

u7θ
)

∧
(

u4θ
)

5x
= 0 . (3.6)

Similarly, the vanishing of the prolongation for the second structure can also be easily
checked. The compatibility of the two Hamiltonian structures in (3.5) can also be checked
through the method of prolongation [10] with a little bit of algebra. This shows that
the two hierarchies of equations (2.3) are indeed bi-Hamiltonian. As a result, they are
integrable.

We note that because of the simplicity in the structure in (3.5), we can construct the
recursion operator for the system in the closed form as

R = D−1
2 D1 = u−2∂−1u∂3u∂−1u2∂5u4 , (3.7)

and it can be checked that the conserved charges (3.2) are related recursively as

δH
(∓)
n+1

δu
= R

δH
(∓)
n

δu
, n = 0, 1, 2, . . . . (3.8)

We note also that both of the Hamiltonian structures in (3.5) have Casimir functionals
corresponding to conserved quantities whose gradients are annihilated by the appropriate
Hamiltonian structure. Thus, for example, D1 has the Casimir functional H−1 defined in
(3.3) such that

D1
δH−1

δu
= 0 . (3.9)

Similarly, D2 has two Casimir functionals, namely, H
(−)
0 ,H

(+)
0 such that

D2
δH

(∓)
0

δu
= 0 . (3.10)

This as well as (3.8) clarifies why we grouped the conserved charges into two infinite series
even though they arise from the same Lax operator.

Because of the existence of Casimir functionals, it is possible to extend the flows into
negative orders. In fact, let us note that the recursion operator (3.7) can be inverted in a
closed form to give

R−1 = D−1
1 D2 = u−4∂−5u−2∂u−1∂−3u−1∂u2 , (3.11)
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and we can define negative flows for negative values of n through the recursion relation

δH−n−1

δu
= R−1 δH−n

δu
, n = 1, 2, . . . . (3.12)

Using these one can construct the charges associated with the negative flows recursively
and the first few take the forms

H−1 =

∫

dx
1

u3
,

H−2 =
1

18

∫

dx
(

∂−2u−3
)3

,

H−3 =

∫

dx

(

9
(

∂−2u−3
)

(

∂−1
(

∂−2u−3
)2

)2
+ 4

(

∂−2u−3
)3

(

∂−2
(

∂−2u−3
)2

)

)

,

(3.13)

and so on. These nonlocal charges are conserved under the positive flows by construction,
which can also be explicitly checked. However, at this time we do not know how to obtain
them from the Lax operator.

The nonlocal Hamiltonians (3.13) lead to nonlocal flows of the form

ut
−n

= D1
δH−n−1

δu
= D2

δH−n

δu
, n = 1, 2, · · · . (3.14)

The first few flows of the negative order have the explicit forms

ut
−1 = −9u4

(

(

∂−2u−3
)2

)

xxx
,

ut
−2 = u4

[

3

2

(

∂−2u−3
)2

∂−1
(

∂−2u−3
)2

+
(

(

∂−2u−3
)2

∂−2
(

∂−2u−3
)2

)

x

+
2

3

(

(

∂−2u−3
)

∂−2
(

∂−2u−3
)3

)

x

− 3
(

(

∂−2u−3
)

∂−1
(

∂−2u−3
)

∂−1
(

∂−2u−3
)2

)

x

]

xx
, (3.15)

and so on. We note here that if we introduce the variable vxx = u−3, then the first equation
in (3.15) can also be rewritten as

vt
−2 = 54vvx , (3.16)

which is the Riemann equation.

The reason for the existence of two hierarchies of positive flows (2.3) is now clear. As
observed earlier [11], because D2 has two Casimir functionals (as opposed to one for D1),
a single hierarchy of negative flows splits up into two branches of positive flows. This
in itself is an extremely interesting point. For, it may suggest a mechanism for a Lax
description for several negative flows associated with other models.
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4 Hodograph Transformation

In this section, we will study the behavior of the fifth order dispersive equation in (2.3)
under a hodograph transformation [12]. Let us consider the change of variables

x = p(y, τ), u = py , τ = t . (4.1)

Under such a transformation we have

∂

∂x
=

∂y

∂x

∂

∂y
=

1

py

∂

∂y
=

1

u
∂y ,

∂

∂τ
=

∂

∂t
+

pτ

py

∂

∂y
. (4.2)

Using this as well as the identification u = py, it is straightforward to see that the fifth
order equation in (2.3) goes into

pτ = p5y − 5
p4ypyy

py
+ 5

p3yp
2
yy

p2
y

. (4.3)

Introducing the variable f =
pyy

py
, we can write (4.3) as

fτ =
(

f4y + 5fyfyy − 5f2fyy − ff2
y + f5

)

y
. (4.4)

This is exactly the equation considered by Fordy and Gibbons [13] who also showed that
by a proper choice of the Miura transformation, it is possible to transform this equation
to Kaup-Kupershmidt [14, 15] or Sawada-Kotera [16] equations. Indeed, if we choose the
Miura transformation

g = fy −
1

2
f2 , (4.5)

then (4.3) takes the form

gτ =
1

6

(

6g4y + 60ggyy + 45g2
y + 40g3

)

y
, (4.6)

which is the Kaup-Kupershmidt equation. On the other hand, a slightly modified Miura
transformation of the form

g = −fy + f2 , (4.7)

takes (4.3) to

gτ = (g4y + 5ggyy +
5

3
g3)y . (4.8)

This is, in fact, the Sawada-Kotera equation. This shows that the fifth order dispersive
equation in (2.3) can be mapped into both Kaup-Kupershmidt and Sawada-Kotera equa-
tions under a hodograph transformation depending on the Miura transformation used.
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This can be partly seen at the level of the Lax operator also. For example, we note
that under the transformations (4.1), the Lax operator in (2.1) transforms to

L̂ = ∂3
y − 3f∂2

y − (fy − 2f2)∂y , (4.9)

where we have used the identification f =
pyy

py
. The transformed Lax operator generates

the following fifth order equation

∂L̂

∂t
= 9

[

(

L̂5/3
)

≥1
, L

]

=⇒ ft = (−f4y − 5fyyfy + 5fyyf
2 + 5f2

y f − f5)y . (4.10)

A gauge transformation takes us to a new Lax operator of the form

L̄ = e−
∫

f L̂e
∫

f = ∂3
y + 2g∂y + gy , (4.11)

where g = fy −
1
2f2 defines the Miura transformation and we note that this is indeed the

Lax operator considered in [15]. In terms of this transformed Lax operator, the equation

∂L̄

∂t
= 9

[

(

L5/3
)

+
, L̄

]

, (4.12)

leads to

gt =
1

6

(

6g4y + 60ggyy + 45g2
y + 40g3

)

y
. (4.13)

We recognize this to be the Kaup-Kupershmidt equation (4.6). However, starting from
(2.1), we have been unable to obtain the Lax operator for the Sawada-Kotera equation
using the hodograph transformation. We would like to point out that a Lax representation
for the Sawada-Kotera equation is already known [15] and has the form

L = ∂3 + g∂ . (4.14)

Interestingly enough, under a hodograph transformation the seventh order equation
in (2.3) goes over to the next higher equation of the Kaup-Kupershmidt or the Sawada-
Kotera equation (depending on the Miura transformation used). This is interesting in that
two distinct hierarchies associated with the system of equations (2.3) map onto a single
hierarchy of equations under a hodograph transformation. Finally, to end this section, we
note that one can carry out the hodograph transformation for the negative order flows in
(3.15) as well and we simply point out that the first of these transforms under a hodograph
transformation to the Liouville equation while ythe second has the form

pτ = 6v∂−1py∂
−1pyv

2 + 2∂−1py∂
−1pyv

3 − 9∂−1pyv∂−1pyv
2 , (4.15)

where v = ∂−1py∂
−1p−2

y .
Finally let us mention that Kawamoto [17] has considered quite different fifth order

equation then our equation

rt = r5rxxxxx + 5r4rxrxxxx +
5

2
r4rxxrxxx +

15

4
r3r2

xrxxx (4.16)
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and used different transformation of dependent and nodependent variables

∂

∂x
→

1

r

∂

∂y
,

∂

∂t
→

∂

∂τ
− rx

∂

∂y
, (4.17)

in order to put forward the connection of the equation (4.16) with the Kaup-Kupershmidt
or Sawada-Kotera equation. However his transformation cannot be used to our equations
(2.3) because the Kawamoto transformation breaks the time transformation. Indeed notice
that our function r is zero dimensional and our time transformation (4.2) preserve weight
in contrast to the Kawamoto transformation.

5 Generalization of the Lax Operator

We have already commented in section 2 on the fact that the second order Lax operator
for the system of equations in (1.1) can be generalized and leads to a new third order
equation (2.6). Under a hodograph transformation (4.1), it can be shown that this new
equation (2.6) maps into a linear equation of the form

pτ = pyyy . (5.1)

In this section, we will study further generalizations of such Lax operators. First,
let us consider the most general Lax operator of third order parametrized by only one
zero-dimensional function u of the form

L = u3∂3
x + k1u

2ux∂
2
x + (k2u

2uxx + k3uu2
x)∂x + (k4u

2uxxx + k5uuxuxx + k6u
3
x) , (5.2)

where ki, i = 1..6 are arbitrary constant coefficients. It can be checked that, at the level
of fifth order equations, the Lax equation

∂L

∂t
=

[

(

L5/3
)

≥2
, L

]

, (5.3)

leads to consistent equations only for four choices of the coefficients ki. For the two cases
where k1 = 0 or k1 = 3

2 and all other coefficients vanishing, we obtain the same fifth order
equation as in (2.3), as we have already pointed out in section 2. On the other hand, the
Lax operator with k1 = 3 with all other coefficients vanishing,

L = u3∂3
x + 3u2ux∂2

x , (5.4)

leads to the equation

ut = u5u5x + 5uuxu4x +
5

2
u4uxxuxxx +

15

4
u3u2

xuxxx . (5.5)

(Parenthetically we remark here that under a hodograph transformation this Lax operator
goes over to the one for the Sawada-Kotera equation.) Finally, for k1 = 3, k2 = k3 = 1,
with all other coefficients vanishing, the Lax operator

L = u3∂3
x + 3u2ux∂2

x + (u2uxx + uu2
x)∂x = (u∂)3 , (5.6)
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yields the equation

ut =
(

u5u4x + 5u4uxu3x + 5u4u2
xx + 5u3u2

xuxx

)

x
.

(5.7)

Under a hodograph transformation, it can be shown that with appropriate Miura trans-
formations, equation (5.5) can be mapped to either Kaup-Kupershmidt or Sawada-Kotera
equations, much like the earlier case discussed. However, under a hodograph transforma-
tion, interestingly enough, the highly nonlinear equation (5.7) maps into a linear equation
of the form,

pτ = p5y . (5.8)

In a similar manner, one can carry out the general analysis of the fourth order Lax
operator parameterized by only one variable. It is, of course, much more involved and we
simply quote the results here. There are four such Lax operators that lead to consistent
seventh order equations following from

∂L

∂t
=

[

(

L7/4
)

≥2
, L

]

. (5.9)

Three of these with

L1 = u4∂4
x + 6u3ux∂3

x +
(

6u2u2
x + 2u3uxx

)

∂xx ,

L2 = u4∂4
x + 4u3ux∂3

x + 2
(

u2u2
x + u3uxx

)

∂2
x =

(

u2∂2
x

)2
,

L3 = u4∂4
x + 2u3ux∂3

x , (5.10)

lead to the same dynamical equation (whose form is complicated and we do not write it
here). On the other hand,

L4 = u4∂4
x + 6u3ux∂3

x +
(

4u3uxx + 7u2u2
x

)

∂2
x

+
(

u3uxxx + 4u2uxuxx + uu3
x

)

∂x = (u∂)4 , (5.11)

leads to a very different equation that is highly nonlinear

ut =
(

u6xu7 + 14u5xuxu6 + 28u4xuxxu6 + 56u4xu2
xu5

+ 14u2
3xu6 + 168u3xuxxuxu5 + 70u3xu3

xu4 + 42u3
xxu5

+ 126u2
xxu2

xu
4 + 21uxxu4

xu
3
)

x
v . (5.12)

However, under a hodograph transformation (4.1), this equation goes over to a seventh
order linear equation of the form

pτ = p7y . (5.13)

Equations (5.1), (5.8) and (5.13) are quite puzzling and even more so because of the fact
that under the hodograph transformation, the Lax operators go over respectively to

L(2) → ∂2
y , L

(3)
4 → ∂3

y , L
(4)
4 → ∂4

y . (5.14)
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All these equations interestingly follows from the same Lax operator L = u∂. Indeed this
Lax operator constitute the following hierarchy of equations

∂L

∂tn
= [Ln+1

≥2 , L] , (5.15)

where L = u∂ and n = 1, 2, 3, ... For n = 1 we obtain

ut1 = u2uxx , (5.16)

while for n=2 we obtain the equation (2.6). For n = 4 and for n = 6 we have equations
(5.7) and (5.12) respectively. Interestingly all these equations belongs to the lineralizable
hierarchy of nonlinear partial differential equations considered by M. Euler, N. Euler and
N. Petersson [18, 19]. It is possible to write these equations in terms of the following
recursion operator [18]

utn = Rn−1ut1 , (5.17)

where n = 1, 2, 3, ... and

R = u∂ + u2uxx∂−1u−2 . (5.18)

In order to prove that this recursion operator generates the whole hierarchy of equations
(5.15) we extract this operator directly from the Lax operator using a generalization of
the method by Gurses, Karasu and Sokolov [20]. Let us note that

Ln+1
≥2 = (L(L(n−1)+1)≥2)≥2 + (L(Ln)<2)≥2 = L(L(n−1)+1)≥2 + S , (5.19)

where L = u∂ in the present case and it follows that S = a∂2 with a an arbitray function
to be determined. Substituting this into (5.15) we obtain

∂L

∂tn
= L

∂L

∂tn−1
+ auxx∂ + (2aux − uax)∂2 , (5.20)

which determines

a = u2∂−1 utn−1

u2
. (5.21)

With this equation (5.20) leads to

utn = Rutn−1 , (5.22)

where R coincides with (5.18) for n > 1.

6 Conclusion

In this paper, we have studied the properties of a nonlinearly dispersive integrable system
of fifth order and its associated hierarchy. We have described a Lax representation for
such a system which leads to two infinite series of conserved charges and two hierarchies
of equations that share the same conserved charges. We have constructed two compatible
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Hamiltonian structures as well as their Casimir functionals. One of the structures has a
single Casimir functional while the other has two. This allows us to extend the flows into
negative order and clarifies the meaning of two different hierarchies of positive flows. We
have studied the behavior of these systems under a hodograph transformation and have
shown that they are related to the Kaup-Kupershmidt and the Sawada-Kotera equations
under appropriate Miura transformations. We have also discussed briefly some properties
associated with the generalization of second, third and fourth order Lax operators.
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