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Abstract

We prove that smooth solutions of the Degasperis-Procesi equation have infinite prop-
agation speed: they loose instantly the property of having compact support.

1 Introduction
The Degasperis-Procesi equation [13]
Ut — Upgr + dUUy = SUzglUpy + Ulggy, reR, t>0, (1.1)

was derived recently as a shallow water approximation to the Euler equation [14]. The
equation (1.1) presents some similarities to the Camassa-Holm equation [1, 17]

Up — Uppg + SUUL = 2UzUpy + Ulprs, reR,t>0. (1.2)

Indeed [1, 13, 15], both equations are bi-Hamiltonian and have an associated isospectral
problem. Therefore they are both formally integrable (the integrability of (1.2) by means of
the scattering/inverse scattering approach is discussed in [5, 9, 19]). Also, both equations
admit exact peaked solitary wave solutions which have to be understood as weak solutions
[10, 8, 22]. Moreover, using Kato’s semigroup theory for quasilinear equations of evolution
[18], the local existence of solutions to (1.1) in H*(R), with s > 3 can be established
provided the initial data is in H*(R) (see [23]), and finite-time blowup is possible only if
the slope of the solution becomes unbounded in finite time [22]. The last feature parallels
the fact that for (1.2) an initial data with the same regularity will either develop into a
wave that exists for all times or wave breaking ocurs [2, 3, 4, 12].

Despite these similarities, the equations (1.1) and (1.2) are truly different. For example,
for (1.1) the isospectral problem is of third order, whereas in the case of (1.2) we encounter
a second order isospectral problem [22]. Moreover, (1.2) is a re-expression of geodesic flow
on the group of diffeomorphisms of the line [20] (see also [4, 6, 7]) whereas (1.1) does not
have a geometric derivation of this type.
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A different inquiry is the aim of the present letter. We will prove that the infinite
propagation speed of smooth solutions, observed in [11] for the Camassa-Holm equation,
is also a feature of the model (1.1).

2 Main results
Denoting m = u — ugy, we can write (1.1) in the form
my + umg + 3uzm = 0, reR,t>0. (2.1)

Theorem 1. Let mg : R — R be a smooth function with compact support. If the solution
m(z,t) of equation (1.1) has [0,T) as mazimal interval of existence in the future, then, at
every moment t € [0,T), the smooth function m(.,t) has compact support.

Proof. We shall employ a device from [4]. Let us introduce the initial value problem

L — u(yp,t), t €[0,T),
LT -

Since ug = p*my, where u(z,0) = ug(z) for z € R, the local regularity theory developed in
[23, 22] for (1.1) implies that u(t, -) is smooth on [0,7"). Therefore, via standard qualitative
theory for ordinary differential equations [16], the existence in [0,7"), uniqueness and
smooth dependence of the data x for the solution ¢ = ¥ (t;x) of (2.2) is ensured. By
integration in [0,¢), with ¢t < T, we get

viti) =+ [ u(wisia), s

which yields

V() =1 —|—/O uz(Y(s;x), 8),(s;7)ds, tel0,7), (2.3)

and respectively

dn _

where we have denoted by 7 the left-hand member of (2.3). Finally, since 7(0) = 1, we
obtain

altia) =) = x| t wblsa.9ds). te 0.1, (2.4

By introducing the function o(x,t) = (t;z), we have obtained an element of C*(R x
[0,7),R). Furthermore, since, due to the Sobolev imbeddings, u.(-,t) is bounded in R for
all t € [0,T"), we deduce that

0< Ci(t) < tu(t;x) < Cy(t) < +o00, x€R, t€0,T), (2.5)
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which allows us to conclude that ¢(.,t), t € [0,T), are all diffecomorphisms of R. Also, from
(2.2) we get @z = uyp,. Further, let us multiply the equation (2.1) by 3. Then, if we
take p(z,t) and t as arguments of u, m instead of the usual z, ¢, the result of multiplication
reads as

0 = (me+umy+ 3usm)@s =mupl + 3m (ugpy) 05 + umgps

d
=l + 3Ma 2 + prmaps = - (me3) .

Via an integration,

m(ap(m,t),t)api(x,t) = m(@(xv 0)7 0)‘10%(1'7 0) = m(x,O) = mo(x)

Finally, due to (2.5), if the support of mg is included in [a,b] then the support of m(.,t)
will be included in [¢(a,t), (b, t)]. The proof is complete. [

Theorem 2. Let ug : R — R is a smooth function with compact support. If the solution
u(zx,t) with initial data ug(z) of (1.1) exists on some time interval [0,€) with € > 0 and,
at every instant t € [0,€), the function u(.,t) has compact support, then wu is identically
zero.

Proof. According to the preceding theorem, m(.,t) has compact support at every moment
t € [0,¢). We recall that, by the Paley-Wiener theorem [21], an entire (analytic) function
g(&), where £ = n+i¢ and n, ( € R, is the Fourier transform of a smooth function
f R — R with compact support in [—a,a] (for a > 0), namely

9(€) = F4(€) = /R f(g)eié4dg,

if and only if for every integer n > 0 there exists ¢, > 0 such that

al¢|
19(6)] < (c"e cec.

L+ [¢")’
Since
fm(.,t) (5) = (1 + 52)]:11(,1?)(5), §eC, te [0’ E)a

it is obvious that the analiticity of 7, ), if assumed, will imply the analiticity of 7. ¢ (&)
In such a case, the function F,,( ;) has value zero at i, —i for all £ € [0,¢€), yielding

/ e“m(z,t)dr = / e “m(z,t)dx = 0, te0,e).
R

R
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Since both u and m have compact support, we deduce that

d
— [ e*m(x,t)dx :/exmtdx: —3/emuxmdx—/exmxudx
dt Jr R R R
= —3/ ewuwmdx—i-/egﬁuxmdx—i—/egﬁmudx = —2/ ewuwmdx—i-/egﬁmudx
R R R R R
= —2/ e”Cumudac—i—Z/ exuxumdx—i—/ exu2dx—/exumudm
R R R R
1
= (—/exumudac—l——/emﬁdx) —/exuidx+/exu2dx
R 2 Jr R R
x, 2 T 3 x, 2
+ e'urdr + | e'ugudr ) = - [ e'udx =0,
R R 2 Jr
which implies that u(.,¢) = 0 for all ¢. The proof is complete. |
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