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Abstract

We prove that smooth solutions of the Degasperis-Procesi equation have infinite prop-
agation speed: they loose instantly the property of having compact support.

1 Introduction

The Degasperis-Procesi equation [13]

ut − utxx + 4uux = 3uxuxx + uuxxx, x ∈ R, t ≥ 0, (1.1)

was derived recently as a shallow water approximation to the Euler equation [14]. The
equation (1.1) presents some similarities to the Camassa-Holm equation [1, 17]

ut − utxx + 3uux = 2uxuxx + uuxxx, x ∈ R, t ≥ 0. (1.2)

Indeed [1, 13, 15], both equations are bi-Hamiltonian and have an associated isospectral
problem. Therefore they are both formally integrable (the integrability of (1.2) by means of
the scattering/inverse scattering approach is discussed in [5, 9, 19]). Also, both equations
admit exact peaked solitary wave solutions which have to be understood as weak solutions
[10, 8, 22]. Moreover, using Kato’s semigroup theory for quasilinear equations of evolution
[18], the local existence of solutions to (1.1) in Hs(R), with s > 3

2 can be established
provided the initial data is in Hs(R) (see [23]), and finite-time blowup is possible only if
the slope of the solution becomes unbounded in finite time [22]. The last feature parallels
the fact that for (1.2) an initial data with the same regularity will either develop into a
wave that exists for all times or wave breaking ocurs [2, 3, 4, 12].

Despite these similarities, the equations (1.1) and (1.2) are truly different. For example,
for (1.1) the isospectral problem is of third order, whereas in the case of (1.2) we encounter
a second order isospectral problem [22]. Moreover, (1.2) is a re-expression of geodesic flow
on the group of diffeomorphisms of the line [20] (see also [4, 6, 7]) whereas (1.1) does not
have a geometric derivation of this type.

Copyright c© 2005 by O G Mustafa



A note on the Degasperis-Procesi equation 11

A different inquiry is the aim of the present letter. We will prove that the infinite
propagation speed of smooth solutions, observed in [11] for the Camassa-Holm equation,
is also a feature of the model (1.1).

2 Main results

Denoting m = u− uxx, we can write (1.1) in the form

mt + umx + 3uxm = 0, x ∈ R, t ≥ 0. (2.1)

Theorem 1. Let m0 : R → R be a smooth function with compact support. If the solution
m(x, t) of equation (1.1) has [0, T ) as maximal interval of existence in the future, then, at
every moment t ∈ [0, T ), the smooth function m(., t) has compact support.

Proof. We shall employ a device from [4]. Let us introduce the initial value problem

{

dψ
dt

= u(ψ, t), t ∈ [0, T ),
ψ(0) = x.

(2.2)

Since u0 = p∗m0, where u(x, 0) = u0(x) for x ∈ R, the local regularity theory developed in
[23, 22] for (1.1) implies that u(t, ·) is smooth on [0, T ). Therefore, via standard qualitative
theory for ordinary differential equations [16], the existence in [0, T ), uniqueness and
smooth dependence of the data x for the solution ψ = ψ(t;x) of (2.2) is ensured. By
integration in [0, t), with t < T , we get

ψ(t;x) = x+

∫ t

0
u(ψ(s;x), s)ds,

which yields

ψx(t;x) = 1 +

∫ t

0
ux(ψ(s;x), s)ψx(s;x)ds, t ∈ [0, T ), (2.3)

and respectively

dη

dt
= ux(ψ(t;x), t)η,

where we have denoted by η the left-hand member of (2.3). Finally, since η(0) = 1, we
obtain

ψx(t;x) = η(t) = exp

(
∫ t

0
ux(ψ(s;x), s)ds

)

, t ∈ [0, T ). (2.4)

By introducing the function ϕ(x, t) = ψ(t;x), we have obtained an element of C1(R ×
[0, T ),R). Furthermore, since, due to the Sobolev imbeddings, ux(·, t) is bounded in R for
all t ∈ [0, T ), we deduce that

0 < C1(t) ≤ ψx(t;x) ≤ C2(t) < +∞, x ∈ R, t ∈ [0, T ), (2.5)
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which allows us to conclude that ϕ(., t), t ∈ [0, T ), are all diffeomorphisms of R. Also, from
(2.2) we get ϕxt = uxϕx. Further, let us multiply the equation (2.1) by ϕ3

x. Then, if we
take ϕ(x, t) and t as arguments of u, m instead of the usual x, t, the result of multiplication
reads as

0 = (mt + umx + 3uxm)ϕ3
x = mtϕ

3
x + 3m (uxϕx)ϕ

2
x + umxϕ

3
x

= mtϕ
3
x + 3mϕxtϕ

2
x + ϕtmxϕ

3
x =

d

dt

(

mϕ3
x

)

.

Via an integration,

m(ϕ(x, t), t)ϕ3
x(x, t) = m(ϕ(x, 0), 0)ϕ3

x(x, 0) = m(x, 0) = m0(x).

Finally, due to (2.5), if the support of m0 is included in [a, b] then the support of m(., t)
will be included in [ϕ(a, t), ϕ(b, t)]. The proof is complete. �

Theorem 2. Let u0 : R → R is a smooth function with compact support. If the solution
u(x, t) with initial data u0(x) of (1.1) exists on some time interval [0, ǫ) with ǫ > 0 and,
at every instant t ∈ [0, ǫ), the function u(., t) has compact support, then u is identically
zero.

Proof. According to the preceding theorem, m(., t) has compact support at every moment
t ∈ [0, ǫ). We recall that, by the Paley-Wiener theorem [21], an entire (analytic) function
g(ξ), where ξ = η + iζ and η, ζ ∈ R, is the Fourier transform of a smooth function
f : R → R with compact support in [−a, a] (for a > 0), namely

g(ξ) = Ff (ξ) =

∫

R

f(q)e−iξqdq,

if and only if for every integer n ≥ 0 there exists cn > 0 such that

|g(ξ)| ≤
cne

a|ζ|

(1 + |ξ|n)
, ξ ∈ C.

Since

Fm(.,t)(ξ) = (1 + ξ2)Fu(.,t)(ξ), ξ ∈ C, t ∈ [0, ǫ),

it is obvious that the analiticity of Fu(.,t), if assumed, will imply the analiticity of Fm(.,t)(ξ).
In such a case, the function Fm(.,t) has value zero at i, −i for all t ∈ [0, ǫ), yielding

∫

R

exm(x, t)dx =

∫

R

e−xm(x, t)dx = 0, t ∈ [0, ǫ).
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Since both u and m have compact support, we deduce that

d

dt

∫

R

exm(x, t)dx =

∫

R

exmtdx = −3

∫

R

exuxmdx−

∫

R

exmxudx

= −3

∫

R

exuxmdx+

∫

R

exuxmdx+

∫

R

exmudx = −2

∫

R

exuxmdx+

∫

R

exmudx

= −2

∫

R

exuxudx+ 2

∫

R

exuxuxxdx+

∫

R

exu2dx−

∫

R

exuxxudx

=

(

−

∫

R

exuxudx+
1

2

∫

R

exu2dx

)

−

∫

R

exu2
xdx+

∫

R

exu2dx

+

(
∫

R

exu2
xdx+

∫

R

exuxudx

)

=
3

2

∫

R

exu2dx = 0,

which implies that u(., t) ≡ 0 for all t. The proof is complete. �
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