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Abstract

A huge family of separable potential perturbations of integrable billiard systems and
the Jacobi problem for geodesics on an ellipsoid is given through the Appell hyper-
geometric functions F4 of two variables, leading to an interesting connection between
two classical theories: separability in Hamilton–Jacobi sense on the one hand and the
theory of hypergeometric functions on the other.

1 Introduction

We start with a famous thought of Jacobi [13]:
“The main difficulty in integrating a given differential equation lies in introducing

convenient variables, which there is no rule for finding. Therefore, we must travel the
reverse path and after finding some notable substitution, look for problems to which it
can be successfully applied” (see [3]).

Elliptic coordinates, as the most notable substitution, were, of course, found by Jacobi
himself and presented in Lecture 26 of [13]. Then they were immediately applied to
separation of variables in the so-called Jacobi problem of geodesics on an ellipsoid and to
the problem of attraction by two fixed centers in Lectures 28 and 29 [13]. Therein the
problem of study of separable potential perturbations of a given separable system was
initiated.

The basic goal of the present paper is to present our recent observation that there exists
a huge family of separable potential perturbations of separable systems with two degrees
of freedom, which can be simply expressed through the Appell hypergeometric functions.

Appell introduced four families of hypergeometric functions of two variables in THE
1880s. He applied them solving the Tisserand problem in Celestial Mechanics. The Ap-
pell functions have also several other applications, for example in the theory of algebraic
equations, algebraic surfaces etc. Nevertheless the relationship between the Appell func-
tions F4 and separability of variables in the Hamilton-Jacobi equations, to the best our
knowledge, remained unknown until very recently, see [9].
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The equation:

λVxy + 3 (yVx − xVy) + (y2 − x2)Vxy + xy (Vxx − Vyy) = 0 (1.1)

is the Bertrand-Darboux equation, which represents the necessary and sufficient condition
for a natural mechanical system with two degrees of freedom

H =
1

2
(p2

x + p2
y) + V (x, y)

to be separable in elliptical coordinates or some of their degenerations ([4, 5]).
Solutions of the equation (1.1) in the form of Laurent polynomials in x and y were

described in [8]. A much more general family of solutions of equation (1.1), which are
simply related to the well-known hypergeometric functions of Appell type, is presented
in Section 2, see [9], but what is more important this family shows the existence of a
connection between separability of classical systems on the one hand and the theory of
hypergeometric functions on the other one. Furthermore in Section 2 similar formulæ for
potential perturbations for the Jacobi problem for geodesics on an ellipsoid from [7] and
for billiard systems on surfaces with constant curvature from [14] are given.

Some deeper explanation of the connection between the separability in elliptic coordi-
nates and the Appell hypergeometric functions is still unknown.

We start with some basic notations concerning the Appell hypergeometric functions.
The function F4 is one of the four hypergeometric functions in two variables introduced
by Appell [1, 2] and is defined as a series:

F4(a, b, c, d;x, y) =
∑ (a)m+n(b)m+n

(c)m(d)n

xm

m!

yn

n!
,

where (a)n is the standard Pochhammer symbol:

(a)n =
Γ(a + n)

Γ(a)
= a(a + 1) . . . (a + n − 1),

(a)0 = 1.

(For example m! = (1)m.)
The series F4 is convergent for

√
x +

√
y ≤ 1. The functions F4 can be analytically

continued to the solutions of the equations:

x(1 − x)
∂2F

∂x2
− y2 ∂2F

∂y2
− 2xy

∂2F

∂x∂y

+ [c − (a + b + 1)x]
∂F

∂x
− (a + b + 1)y

∂F

∂y
− abF = 0

y(1 − y)
∂2F

∂y2
− x2 ∂2F

∂x2
− 2xy

∂2F

∂x∂y

+ [c′ − (a + b + 1)y]
∂F

∂y
− (a + b + 1)x

∂F

∂x
− abF = 0.

Basic references for the Appell functions are [1, 2, 18].
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2 The separable mechanical systems with two degrees of

freedom

2.1 Billiards inside an ellipse

A billiard system usually describes a particle moving freely within an ellipse:

x2

A
+

y2

B
= 1.

At the boundary elastic reflections with equal impact and reflection angles are assumed.
It is well known that the system is completely integrable and it has an additional integral:

K1 =
ẋ2

A
+

ẏ2

B
− (ẋy − ẏx)2

AB
.

The search for potential perturbations, V = V (x, y), such that the perturbed system
has an integral, K̃1, of the form

K̃1 = K1 + k1(x, y),

where k1 = k1(x, y) depends only on coordinates, leads to the equation (1.1) on V with
λ = A − B (see [15]).

We denote

Vγ = ỹ−γ ((1 − γ)x̃F4(1, 2 − γ, 2, 1 − γ, x̃, ỹ) + 1) . (2.1)

Then we have

Theorem 1. Every function Vγ given with (2.1) and γ ∈ C is a solution of the equation
(1.1).

The billiard systems perturbed with the potentials obtained have the following mechan-
ical interpretation. With γ ∈ R− and the coefficient multiplying Vγ positive a potential
barrier along the x-axis appears. We can consider billiard motion in the upper half-plane.
Then we can assume that the cut is done along the negative part of y-axis in order to get
a single-valued real function as a potential.

Example. The Laurent polynomial solutions of the equation (1.1) from [8] correspond to
the integer values of the parameter γ in Theorem 1. The basic set of Laurent solutions
consists of the functions

Vk =

k−2
∑

i=0

(−1)i
k−i−1
∑

s=1

Ukis(x, y, λ) + y−2k, k ∈ N,

Wk =

k−2
∑

i=0

k−i−1
∑

s=1

(−1)sUkis(y, x, λ) + x−2k, k ∈ N,

where

Ukis =

(

s + i − 1

i

)

[1 − (k − i)][2 − (k − i)] . . . [s − (k − i)]

λs+is!
x2sy−2k+2i.
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2.2 The Jacobi problem for geodesics on an ellipsoid

The Jacobi problem for the geodesics on an ellipsoid

x2

A
+

y2

B
+

z2

C
= 1

has an additional integral

K1 =

(

x2

A2
+

y2

B2
+

z2

C2

)(

ẋ2

A
+

ẏ2

B
+

ż2

C

)

.

Potential perturbations, V = V (x, y, z), such that the perturbed systems have integrals of
the form:

K̃1 = K1 + k(x, y, z),

satisfy the following system (see [7]):

(

x2

A2
+

y2

B2
+

z2

C2

)

Vxy
A − B

AB
− 3

y

B2

Vx

A
+ 3

x

A2

Vy

B

+

(

x2

A3
− y2

B3

)

Vxy +
xy

AB

(

Vyy

A
− Vxx

B

)

+
zx

CA2
Vzy −

zy

CB2
Vzx = 0

(

x2

A2
+

y2

B2
+

z2

C2

)

Vyz
B − C

BC
− 3

z

C2

Vy

B
+ 3

y

B2

Vz

C

+

(

y2

B3
− z2

C3

)

Vyz +
yz

BC

(

Vzz

B
− Vyy

C

)

+
xy

AB2
Vxz −

xz

AC2
Vxy = 0 (2.2)

(

x2

A2
+

y2

B2
+

z2

C2

)

Vzx
C − A

AC
− 3

x

A2

Vz

C
+ 3

z

C2

Vx

A

+

(

z2

C3
− x2

A3

)

Vzx +
xz

AC

(

Vxx

C
− Vzz

A

)

+
zy

BC2
Vxy −

yx

BA2
Vyz = 0.

The system (2.2) plays the role of equation (1.1) in this problem. Solutions of the system
in the Laurent polynomial form were found in [7].

Denote:

x2C(A − C)

z2(B − A)A
= x̂,

y2C(C − B)

z2(B − A)B
= ŷ.

Then we have

Theorem 2. For every γ ∈ C the function

Vγ = (−γ + 1)

(

z2

x2

)γ

F4(1;−γ + 2; 2,−γ + 1, x̂, ŷ)

is a solution of the system (2.2).

If in the formulæ above l0 is an integer, then from [7] the corresponding potential is a
Laurent polynomial.
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2.3 Billiard systems on surfaces of constant curvature

Following the notation of [14] let the billiard DS be a subset of the surface ΣS , of curvature
S = +1 or S = −1, bounded by the quadric QS , where

Σ+ = {r = (x, y, z) ∈ R3 | 〈r, r〉+ = 1}
Σ− = {r = (x, y, z) ∈ R3 | 〈r, r〉− = −1, z > 0, }
QS = ΣS ∩ {r ∈ R3 | 〈Qr, r〉s = 0} 6= ∅

with

〈r1, r2〉+ = x1y1+x2y2+x3y3, 〈r1, r2〉− = x1y1+x2y2−x3y3, Q = diag

(

1

A
,

1

B
,

1

C

)

.

This billiard system has the integral

K =
(ẋy − ẏx)2

AB
+ S

(ẋz − żx)2

AC
+ S

(ży − ẏz)2

BC
.

As before we are looking for potentials V = V (x, y, z) such that the perturbed system
has an integral of the form:

K̃ = K + k(x, y, z).

In this case the condition is given by the system [14]:

3CyVx − 3CxVy + Vxy(C(y2 − x2) + Kz2(B − A))

+ CxyVxx − CxyVyy + AzyVzx − BzxVzy = 0,

3BzVx − K3BxVz + Vxz(B(z2 − Kx2) + Ky2(C − A))

+ BzxVxx − KBzxVzz + AzyVxy − KCyxVyz = 0, (2.3)

3AzVy − K3AyVz + Vyz(A(z2 − Ky2) + Kx2(C − B))

+ AzyVyy − KAzyVzz + BzxVxy − KCxyVxz = 0.

Starting from the solutions of [14]:

Vl0 =
1

z2l0

∑

0 ≤ k ≤ l0 − 1
0 ≤ m ≤ l0 − k − 1

am,kx
2my2l0−2−2k−2mz2k,

where

am,k = K l0−k−1

(

C − B

C − A

)m (

l0 − k − 1

m

)(

k + m − 1

k

)(

A − B

C − A

)k

,

we come to

Theorem 3. The functions

Vγ = ŷ−γ((1 − γ)x2F4(1, 2 − γ, 2, 1 − γ, x̂, ŷ) + 1),

where

x2(B − C)

y2(C − A)
= x̂, K

z2(A − B)

y2(C − A)
= ŷ,

are solutions of the system (2.3) for γ ∈ C.
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3 More than two degrees of freedom

In the previous section we have seen that integrable perturbations of separable systems
with two degrees of freedom led to hypergeometric functions of two variables. Now one
can expect that in the case of more than two degrees of freedom the integrable potentials
are connected with hypergeometric functions again but with more than two variables. We
consider the billiard system inside an ellipsoid in R3 and we see that the corresponding
potential perturbations are still related to the Appell function F4 of two variables but only
if the ellipsoid is symmetric.

3.1 Billiards inside a symmetric ellipsoid in R3

Consider the billiard system within an ellipsoid in R3

x2
1

A
+

x2
2

B
+

x2
3

C
= 1.

Potential perturbations, W = W (x1, x2, x3), of such systems in a form of Laurent polyno-
mials were calculated in [10]. They satisfy the following system:

(ai − ar)
−1

(

x2
i Vrs − xixrVis

)

= (ai − as)
−1

(

x2
i Vrs − xixsVir

)

, for i 6= r 6= s 6= i,

(ai − ar)
−1xixr (Vii − Vrr) −

∑

j 6=i,r

(ai − aj)
−1xixjVjr

+ Vir





∑

j 6=i,r

(ai − aj)
−1x2

j + (ar − ai)
−1(x2

i − x2
r)



 + Vir (3.1)

+ 3(ai − ar)
−1 (xrVi − xiVr) = 0, i 6= r,

of (n − 1)
(

n
2

)

equations for n = 3. Here we denote Vi = ∂V/∂xi and Vij = ∂2V/∂xi∂xj .

This system was formulated in [17] for an arbitrary number of degrees of freedom, n,
and a generalization of the Bertrand-Darboux theorem was proved. According to that
theorem the solutions of the last system are potentials separable in generalized elliptic
coordinates. The Laurent polynomial separable potential perturbations, obtained in [10],
are given by the formulæ:

Wl0 =
1

z2l0

∑

0≤m+n+k<l0

(l0 − k − 1)!(−1)n

m!n!(l0 − 1 − k − m − n)!

P k
m,n(β, γ)

γm+kβn+k
x2my2nz2k,

where

P k
m,n(β, γ) =

k
∑

i=0

(

m + k − 1 − i

k − i

)(

n + i − 1

i

)

(−1)iβk−iγi

and β = B − C, γ = C − A.

In the symmetric case, A = B, which corresponds to the condition γ + β = 0 one has
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Lemma 1. If γ + β = 0, we have:

P k
m,n(β,−β) =

(

k + m + n − 1

k

)

βk.

Lemma 2. Generalizations of the integrable potential perturbations from [10] in the sym-
metric case are given by:

Wl0 = (ẑ)−l0 [(−x̂ + ŷ)F4(1, 2 − l0; 2, 1 − l0;−x̂ + ŷ, ẑ) + 1] ,

where l0 ∈ C.

4 Conclusion

It seems that general separable potential perturbations in more than two degrees of free-
dom are not directly related to the Lauricella functions, which are the natural generaliza-
tions of the Appell functions in the case of more than two variables. Thus the connection
of higher-dimensional separable potentials and multivariable generalizations of the hyper-
geometric functions ([18]) and/or their deformations remains as an open problem.

From the geometric point of view it is well known that billiard systems within an
ellipse are closely related to the theorems of Poncelet and Cayley [16, 12, 11]. So the
Appell hypergeometric functions define natural deformations of these classical settings of
projective geometry. Since all separable systems in two degrees of freedom are of the
Liouville type (see [19]), this story is closely related to the study of the Liouville surfaces
performed by Darboux in [6].
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