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Abstract

In this paper we are interested in developments of the elliptic functions of Jacobi.
In particular a trigonometric expansion of the classical theta functions introduced
by the author (Algebraic methods and q-special functions, C.R.M. Proceedings and
Lectures Notes, A.M.S., vol 22, Providence, 1999, 53-57) permits one to establish a
differential system. This system is derived from the heat equation and is satisfied by
their coefficients. Several applications may be deduced. Other types of expansions for
the Jacobi elliptic functions as well as for the Zeta function are examined.

1 Introduction

We review briefly some known facts on Jacobi elliptic functions and theta and zeta func-
tions for later use. (For details see, e.g. [1], [2].)
Let θ be the temperature at time t at any point in a solid the conducting properties of
which are uniform and isotropic. If ρ be its density, s its specific heat and k its thermal
conductivity, θ satisfies the heat equation :

κ∇2θ =
∂θ

∂t
,

where κ = k/(sρ) is the diffusivity.
Let Ouvw be a rectangular Cartesian frame. In the special case in which there is no
variation of temperature in the uw−plane, the heat flow is everywhere parallel to the
v−axis and the heat equation reduces to the form

κ
∂2y

∂v2
=
∂y

∂t
, (1.1)

where y = θ (v, t).

Consider the following boundary conditions

θ (0, t) = θ (1, t) , θ (v, 0) = πδ (v − 1/2) , 0 < v < 1,
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where δ (v) is the Dirac delta function. Then the solution of the boundary value problem
is given by

θ (v, t) = 2
∑

n≥0

(−1)n e−(2n+1)2π2κt sin ((2n+ 1) πv) . (1.2)

Consider the change

τ = 4iπ κt.

It follows that 1
κ

∂y
∂t

= 4iπ ∂y
∂τ

and Equation (1.1) becomes the partial differential equation

∂2y

∂v2
= 4iπ

∂y

∂τ
. (1.3)

When we write q = eiπτ = e−4π2κt, the solution (1.2) takes the form

θ1 (v, τ) = 2
∑

n≥0

(−1)n q(
n+1

2 )
2

sin ((2n+ 1) πv) (1.4)

which is the first of the four theta functions of Jacobi.
When the precise value of q is not important, we suppress the dependence upon q. If one
changes the boundary conditions to

∂θ

∂v
= 0 on v = 0, v = 1, θ (v, 0) = πδ (v − 1/2) , 0 < v < 1,

then the corresponding solution of the boundary value problem of the heat equation, (1.1),
is given by

θ4 (v) = θ4 (v, τ) = 1 + 2
∑

n≥1

(−1)n qn2

cos (2nπv) . (1.5)

The function, θ1 (v, τ), is periodic with period 2. If we increment v by 1/2, we obtain
the second theta function

θ2 (v) = θ2 (v, τ) = 2
∑

n≥0

q(
n+1

2 )
2

cos ((2n+ 1) πv) . (1.6)

Similarly the increment of v by 1/2 for θ4 (v, τ) yields the third theta function

θ3 (v) = θ3 (v, τ) = 1 + 2
∑

n≥1

qn2

cos (2nπv) . (1.7)

It is known that the four theta functions, θ1, θ2, θ3 and θ4, can be extended to complex
values for v and q such that | q |< 1.
Note that Jacobi’s fundamental work on the theory of elliptic functions was based on these
four theta functions. His paper “Fundamenta nova theoria functionum ellipticarum” pub-
lished in 1829, together with its later supplements, made fundamental contributions to
the theory of elliptic functions.
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We turn now to the Jacobi elliptic functions, snu, cnu and dnu. They are defined as
ratios of theta functions as

snu =
θ3 (0) θ1 (v)

θ2 (0) θ4 (v)
, cnu =

θ4 (0) θ2 (v)

θ2 (0) θ4 (v)
, dnu =

θ4 (0) θ3 (v)

θ3 (0) θ4 (v)
, (1.8)

where u = θ2
3 (0) v.

Define parameters k and k′ by

k =
θ2
2 (0)

θ2
3 (0)

, k′ =
θ2
4 (0)

θ2
3 (0)

.

They are called the modulus and the complementary modulus of the elliptic functions.
When it is required to state the modulus explicitly, the elliptic functions of Jacobi are
written as sn (u, k), cn (u, k) and dn (u, k) .
Moreover as for the theta functions the three Jacobi elliptic functions are related. In
particular they satisfy the following relations

sn2 u+ cn2 u = 1, dn2 u+ k2sn2 u = 1, k2cn2 u+ k′2 = dn2 u. (1.9)

sn′ u = (cnu) (dnu) , cn′ u = − (snu) (dnu) , dn′ u = −k2 (snu) (cnu) . (1.10)

The functions sn (u, k), cn (u, k) and dn (u, k) are doubly periodic with periods
(

4K (k) , i2K ′ (k)
)

,
(

4K (k) , 2K (k) + i2K ′ (k)
)

,
(

2K (k) , i4K ′ (k)
)

respectively. Here K (k) denotes the complete elliptic integral of the first kind

K = 2

∫ π

2

0

dx
√

1 − k2 sin2 x

and K ′ (k) = K (1 − k). The modulus is such that 0 < k < 1.
The limiting case k = 0 yields K (0) = π

2 and trigonometric functions:

sn (u, 0) = sinu, cn (u, 0) = cos u, dn (u, 0) = 1.

The limiting case k = 1 yields K (1) = ∞ and hyperbolic functions:

sn (u, 1) = tanhu, cn (u, 1) = sech u, dn (u, 1) = sech u.

The Zeta function of Jacobi is defined by

Z (u) =
d

du
[Ln (θ4 (v))] , u = θ2

3 (0) v,

and satisfies the following identity

Z (u+ w) = Z (u) + Z (w) − k2 (snu) (snw) (sn (u+ w)) .

One demonstrated in [1] a new type of trigonometric development for theta functions.
This one is of course connected to the developments of classic type.
Thanks to the heat equation we deduced modular and arithmetical properties of its coef-
ficients that seem to be of interest.
Firstly we briefly recall significant results of [1] and [3]. The proofs are omitted. In light
of these results one examines thereafter properties of the elliptic and Zeta functions of
Jacobi .
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2 Theta functions

We proved the next result

Theorem 1. The theta function, θ4 (v, τ), may be expressed under the form

θ4 (v, τ) = θ4 (0, τ) exp
[

∑

p≥1

c2p (τ) (sinπv)2p
]

,

where the coefficients, c2p, satisfy the recurrence relation for p ≥ 1

(A)

{

4!
(

2p+4
4

)

c2p+4 = (2p+ 1) (2p+ 2)
[

(2p + 2) (2p+ 3) + 4p2 − c0
]

c2p+2

+ (2p)2
[

c0 − (2p)2
]

c2p − 6
[

(2p+ 1) (2p + 2) c2p+2 − 2c2 −
∑p

k=1 2kc2k

]2

and

c0 = −4
[

θ4
2 (0, τ) + θ4

3 (0, τ)
]

, c2 =
1

2π2

θ′′4 (0, τ)

θ4 (0, τ)
and c4 =

1

3
θ4
2 (0, τ) θ4

3 (0, τ) +
1

3
c2.

Moreover the expression above for θ4 is valid in the strip | Im, v |< 1
2Im, τ .

For the other theta functions we obtain the following

Theorem 2. Under the hypotheses of Theorem 1 we get the following expressions

θ1 (v, τ) = θ4 (0, τ) exp



iπ
(

v + 1
4τ

)

+
∑

p≥1

c2p (τ) sin2p π
(

v + 1
2τ

)





θ2 (v, τ) = θ4 (0, τ) exp



iπ
(

v + 1
4τ

)

+
∑

p≥1

c2p (τ) cos2p π
(

v + 1
2τ

)





θ3 (v, τ) = θ4 (0, τ) exp





∑

p≥1

c2p (τ) (cos πv)2p



 ,

where the coefficients c2p satisfy relation (A).
Moreover the expressions above for θ1 and θ3 are valid in the strip | Im v |< Im τ and
θ2 is valid in the strip | Im v |< 1

2Im τ .

Under the same hypotheses the product formula of theta functions holds, namely

θ2 (v, τ) θ3 (v, τ) θ4 (v, τ)

θ3
4 (0, τ)

= ev+ τ

4 exp





∑

p≥1

c2p (τ)
[

sin2p πv + cos2p πv + cos2p π
(

v + 1
2τ

)]



 .

In particular we get

θ′1 (0, τ) = πθ3
4 (0, τ) q

1

4 exp





∑

p≥1

c2p (τ)
[

1 + cos2p π
τ

2

]



 .
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The heat equation permits one to state a differential system satisfied by the coefficients
c2p (τ)

(S)















4

π
c′2p = (2p+ 2) (2p + 1) c2p+2 − 4p2 c2p

−4

p−1
∑

m=0

m c2m [(p−m) c2p−2m − (p−m+ 1) c2p−2m+2] ,
(2.1)

where c′2p =
dc2p

dτ
. More precisely this system is obtained by identification after replacing

the expression for θ4 (v, τ) = θ4 (0, τ) exp
[

∑

p≥1 c2p (τ) (sinπv)2p
]

in Equation (1.3).

The next theorem solves System (S) and thus an expansion of the theta function is
derived.

Theorem 3. The coefficients c2p (τ) may be expressed as

c2p (τ) = −
1

p

∑

k≥0

1
(

sin
(

k + 1
2

)

πτ
)2p

= −
1

p

∑

k≥0

[

(−4) q2k+1

(1 − q2k+1)
2

]p

.

The function θ4 has the following expansion

θ4 (v, τ) = θ4 (0, τ) exp



−
∑

p≥1

∑

k≥0

1

p

(

sinπv
(

sin
(

k + 1
2

)

πτ
)

)2p



 .

Moreover the expression above of θ4 is valid in the strip | Im, v |< 1
2Im, τ.

Of course the other theta functions θ1 (v, τ), θ2 (v, τ) and θ3 (v, τ) have similar trigono-
metric expansions.

3 Elliptic functions of Jacobi

In this Section we introduce new trigonometric developments for Jacobi elliptic functions
constructed from the theta functions.

Theorem 4. Let u = θ2
3 (0) v be such that | Im v |< 1

2Im τ . Then the following expansions
for elliptic functions hold

snu = eiπv exp



−
∑

p≥1

1

p

∑

k≥0

1
(

sin
(

k + 1
2

)

πτ
)2p

[

sin2p π
(

v +
τ

2

)

+ sin2p πv − cos2p π
τ

2
+ 1

]



 ,

cnu = e−iπv exp



−
∑

p≥1

1

p

∑

k≥0

1
(

sin
(

k + 1
2

)

πτ
)2p

[

sin2p πv − cos2p π
(

v +
τ

2

)

− cos2p π
τ

2

]



 ,

dnu = exp



−
∑

p≥1

1

p

∑

k≥0

1
(

sin
(

k + 1
2

)

πτ
)2p

[

cos2p πv − sin2p πv − 1
]



 .
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Proof. By Theorem 2 we get also the following expressions for ratios of theta functions

θ1 (v, τ)

θ2 (v, τ)
= exp





∑

p≥1

c2p (τ)
[

sin2p π
(

v +
τ

2

)

− cos2p π
(

v +
τ

2

)]





θ3 (v, τ)

θ4 (v, τ)
= exp





∑

p≥1

c2p (τ)
[

cos2p πv − sin2p πv
]



 .

The result follows by Theorem 3 since c2p (τ) = −1
p

∑

k≥0

(

sin
(

k + 1
2

)

πτ
)−2p

.

Moreover by definition one has
snu

cnu
=
θ3 (0) θ1 (v, τ)

θ4 (0) θ2 (v, τ)
and snu =

θ3 (0) θ1 (v)

θ2 (0) θ4 (v)
,

cnu =
θ4 (0) θ2 (v)

θ2 (0) θ4 (v)
and dnu =

θ4 (0) θ3 (v)

θ3 (0) θ4 (v)
. �

Starting from Theorem 4 we may deduce other various relations.

Theorem 5. Under the hypotheses of Theorem 4 the following relations hold

snu

cnu
= exp



−
∑

p≥1

1

p

∑

k≥0

1
(

sin
(

k + 1
2

)

πτ
)2p

[

1 + sin2p π

(

v +
1

2
τ

)

− cos2p π

(

v +
1

2
τ

)]



 .

∂snu

∂u
= e−iπv exp



−
∑

p≥1

1

p

∑

k≥0

1
(

sin
(

k + 1
2

)

πτ
)2p

[

cos2p πv − cos2p π
(

v +
τ

2

)

− cos2p π
τ

2
− 1

] ]

.

By the same way one obtains expansions for partial derivatives of cn u and dnvu.

4 Zeta function

Consider the zeta function of Jacobi. It is defined by

Zn (z, k) =
1

2K

d

dz
log θ4 (v, τ) ,

where v = z/(2K) and K = 2
∫

π

2

0 dx/
√

1 − k2 sin2 x is the complete elliptic integral of
the first kind and the modulus is such that 0 < k < 1. Note that the zeta function has
also a Fourier expansion

Zn (z, k) =
2π

K

∑

n≥1

qn

1 − q2n
sin

nπz

K

which may be rewritten as

Zn (z, k) =
π

2K
sin (2πv)

∑

k≥0

1

sin2 (πv) − sin2
(

k + 1
2πτ

) ,

where v = z/(2K).
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Theorem 6. Let K = 2
∫

π

2

0 dx/
√

1 − k2 sin2 x be the complete elliptic integral of the first
kind.
The zeta function of Jacobi has the following form

Zn (z, k) =
π

2K
sin

(

π
z

K

)

∑

k≥0

∑

p≥1

( sin
πz

2K
(

sin
(

k + 1
2

)

πτ
)

)2p

which is valid in the strip | Im
z

2K
|<

1

2
Im τ .

5 Concluding remarks

The Jacobi elliptic functions and in particular dn (u, k) play an important role in the the-
ory of elliptic functions as well as in many physical problems.
The previous calculations particularly indicate to us that the theory of the Jacobi elliptic
functions seems not to be exhausted completely and new characterizations involving Ja-
cobi theta functions may be found. So we may expect always to discover other properties
having interesting applications, as in the works of Khare, Lakshminarayan and Sukhatme
[5].

We recall some quantum mechanical facts using the function dn (u, k).
The wave functions ψ±

0 = [dn (u, k)]∓ are the zero modes of the periodic supersymmetric
partner potentials :

V+ (u) =
2 − k + 2 (k − 1)

dn2 (u, k)
and V− (u) = 2 − k + 2dn2 (u, k).

This function also allows a resolution of a nonlinear Schrödinger equation. Indeed the
nonlinear Schrödinger equation

∂ψ

∂t
+
∂2ψ

∂x2
+ 2ψ2ψ̄ = 0

has the following as its general periodic solutions

ψ (x, t) = r exp
[

i
(

px− p2 −
(

2 − k2
)

r2
)

t
]

dn
(

rx− 2prt, k2
)

,

where r, p and k are parameters. The cyclic identities as well as their generalized Landen
formulas play an important role in showing that a kind of linear superposition of periodic
solutions is valid in physically interesting nonlinear differential equations. See [5] for
additional details.
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