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Abstract

Separable coordinate systems are introduced in complex and real four-dimensional
flat spaces. We use maximal Abelian subgroups to generate coordinate systems with
a maximal number of ignorable variables. The results are presented (also graphically)
in terms of subgroup chains. Finally the explicit solutions of the Schrödinger equation
in the separable coordinate systems are computed.

1 Introduction

The bicentennial of both Carl Gustav Jacob Jacobi and William Rowan Hamilton provides
us with an excellent opportunity to take a new look at the equation associated with both
of their names, as well as its twentieth-century descendant, the Schrödinger equation. The
integrability, or superintegrability [11, 14, 15, 16, 18, 31, 33], of these equations, i.e. the
existence of n, respectively k (with n + 1 ≤ k ≤ 2n − 1) integrals of motion, belongs to
the fundamental problems concerning any classical, or quantal, Hamiltonian system. Of
course much has transpired since the days of Hamilton and Jacobi. In particular Lie group
theory has been created and its power applied to classical and quantum mechanics.

Among Hamiltonian systems that are integrable a special class consists of those that
allow the separation of variables in the Hamilton-Jacobi and Schrödinger equations. This
occurs typically when the integrals of motion are polynomials quadratic in the momenta
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in classical mechanics or second-order differential operators in quantum mechanics. Su-
perintegrable systems with more than n second-order integrals of motion are typically
multiseparable, i.e. separable in more than one coordinate system.

An extensive literature exists on Lie theory and the separation of variables [1, 3, 5, 6, 9,
10, 11, 12, 13, 14, 15, 22, 26, 27, 30]. Experts on the separation of variables immediately
think of ellipsoidal coordinates and degenerate cases thereof. Most “practitioners” think
of the simplest types of coordinates in Euclidean three-space, cartesian, cylindrical and
spherical coordinates. These coordinates have been called “subgroup type coordinates”
because they are related to different subgroup chains of the Lie group G, the isometry
group of the space under consideration [15, 19, 22, 30, 31].

The purpose of this article is to analyze further these subgroup type coordinates. They
exist in any space with a nontrivial isometry group. We consider complex and real Eu-
clidean spaces, as well as pseudo-Euclidean real spaces and their isometry groups E(n, C),
E(n) and E(p, q), respectively. We see that a much greater variety of such coordinates
exists for the E(n, C) and E(p, q) groups than for real Euclidean ones. Moreover some of
them have new and interesting properties. The coordinates are not necessarily orthogo-
nal. The separated ordinary differential equations are not necessarily of second order; quite
often they are first-order equations and the solutions then involve elementary functions
rather than special ones.

Here we consider free motion only, that is, there is no potential in the Hamiltonian.
Once separable coordinates and the corresponding integrals are established, it is an easy
task to add a potential to the Hamiltonian and modify the integrals of motion in such a
manner as to preserve separability [5, 6, 11, 15].

From the mathematical point of view this article is an application of a research pro-
gramme, the aim of which is to classify the maximal Abelian subalgebras (MASAs) of all
classical Lie algebras. In particular in earlier articles [17, 24, 25] we presented a classifi-
cation of MASAs of the e(n, C) and e(p, q) algebras. Here we apply this classification to
the problem at hand.

The problem we are considering can be posed as follows. Consider a complex, or real,
n-dimensional Riemannian or pseudo-Riemannian space S with metric

ds2 =

n
∑

i,k=1

gik(x)dxidxk (1.1)

and an isometry group G of dimension N ≥ n. We wish to construct all coordinate systems
that satisfy the following requirements.

1. They allow the separation of variables in the time-independent free Schrödinger
equation

HΨ = EΨ, H = −1

2

1√
g

n
∑

i,k=1

∂

∂xi

√
ggik ∂

∂xk
, gikgkl = δil, g = det(gik) (1.2)

and also in the Hamilton-Jacobi equation

n
∑

i,k=1

gik ∂W

∂xi

∂W

∂xk
= E. (1.3)
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Thus for the Schrödinger equation (1.2) and Hamilton-Jacobi equation (1.3) we
require

Ψ =

n
∏

i=1

Ψi(x
i, λ1, . . . , λn), (1.4)

W =

n
∑

i=1

Wi(x
i, λ1, . . . , λn), (1.5)

respectively, where λ1, . . . , λn are constants of separation.

2. All coordinates xi are coordinates of subgroup type. By this we mean that a general
element of the isometry group G is written as a product of one-dimensional subgroups
g = g1g2 . . . gN , N = dim G and the coordinates xi are generated by the action of
G on some chosen origin |o〉

|x〉 = g|o〉. (1.6)

3. Each coordinate system contains a maximal number of ignorable coordinates (i.e.
variables not figuring in the metric tensor gik(x)) generated by a maximal Abelian
subgroup GM ⊂ G.

The above conditions are satisfied by parametrizing the group element g ∈ G as follows

g = gM (a1, . . . , ak)h(s1, . . . , sl)g0(u1, . . . , um) (1.7)

k + l + m = dimG, k + l = dimM.

In eq (1.7) gM is a maximal Abelian subgroup, h is a product of one-parameter sub-
groups (not necessarily a subgroup itself) and g0 is the isotropy group of the origin |0〉. The
group parameters ai provide ignorable variables while the parameters si are the “essential”
variables (that do figure in gik(x) ≡ gik(s1, . . . , sl)).

Not every maximal Abelian subgroup is suitable for this purpose. The requirement is
that gM , when acting on a generic point in space S, should sweep out orbits of dimension
k (not lower-dimensional ones).

In the process we also solve a more general problem, namely that of constructing all
coordinates of subgroup type, also those not involving a maximal number of ignorable
variables.

We actually work with the Schrödinger equation (1.2) only and obtain separable coordi-
nates (x1, . . . , xn) in the sense of eq (1.4). The additive separation (1.5) for the Hamilton-
Jacobi equation in the same coordinate system follows automatically. The separated wave
functions (1.4) are eigenfunctions of a complete set of commuting operators

{X1,X2, . . . ,Xn}. (1.8)

Among them k operators are basis elements of a maximal Abelian subalgebra (MASA) of
the Lie algebra of the isometry group. One operator is the Hamiltonian H and the others
are all second-order Casimir operators of subgroups in a subgroup chain

G ⊃ G1 ⊃ G2 ⊃ . . . ⊃ GM , (1.9)



Separation of Variables in Hamilton-Jacobi and Schrödinger Equations 181

where GM is a maximal Abelian subgroup of G.
More specifically we consider a flat space M with a complex Euclidean, real Euclidean

or pseudo-Euclidean isometry group. We realize its Lie algebra, e(n, C), e(n) or e(p, q),
by matrices

E =

(

X α
0 0

)

, X ∈ Fn×n, α ∈ Fn×1, (1.10)

XK + KXT = 0, K = KT , detK 6= 0,

where we have F = R or F = C. For F = R the matrix K determining the metric has a
signature

sgnK = (p, q), p ≥ q ≥ 0, (1.11)

(i.e. p positive and q negative eigenvalues).
We use several different choices of the matrix K. Different choices of K and X are

related by the transformation

GK1G
T = K2, GX1G

−1 = X2, G ⊂ GL(N,F ). (1.12)

Coordinates in the space S have the form

|y〉 =

(

|x〉
1

)

, x ∈ Fn×1, |0〉 =

(

|o〉
1

)

, (1.13)

where |o〉 is chosen to be the origin of the space M . The isotropy group of the origin is
G0 ∼ O(n, C) for F = C, G0 ∼ O(p, q), p + q = n for F = R.

We give some decomposition theorems in Section 2 for arbitrary n and then concentrate
on the case n = 4. This is the most interesting case from the point of view of physical
applications, mainly in the context of special and general relativity [3, 29, 30] but also in
that of integrable and superintegrable systems [16, 18, 21]. Separation of variables also
plays a role in the study of Huygens’ principle [2], where dimension 4 is again the one of
physical importance.

From the mathematical point of view dimM = 4 is sufficiently simple that it can
be treated in a complete and detailed manner. On the other hand it is rich enough to
demonstrate most of the phenomena that occur for any value of n.

2 Decompositions of spaces and algebras

2.1 Chains of subgroups and decompositions of M(n)

The role of subgroup chains in the study of coordinate separation has been emphasized
in many articles [9, 19, 22, 28]. For real Euclidean groups E(n) and their Lie algebras
e(n) the situation is quite simple. Only two types of maximal subgroup exist, namely the
following

E(n) ⊃ E(n1) ⊗ E(n2), n1 + n2 = n, n1 ≥ n2 ≥ 1 (2.1)

E(n) ⊃ O(n), n ≥ 2. (2.2)
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Maximal subgroups of O(n) can be embedded in the defining representation of O(n)
reducibly or irreducibly. The reducibly embedded ones leave a vector subspace of the
Euclidean space M(n) invariant. The corresponding maximal subgroups are one of the
following:

O(n) ⊃ O(n1) ⊗ O(n2), n1 + n2 = n, n1 ≥ n2 ≥ 2 (2.3)

O(n) ⊃ O(n − 1), n ≥ 3. (2.4)

The subgroup link (2.1) leads to the decomposition of the Euclidean space M(n) into the
direct sum of two Euclidean subspaces

M(n) = M(n1) ⊕ M(n2), n1 + n2 = n, n1 ≥ n2 ≥ n. (2.5)

Separable coordinates can then be introduced separately on M(n1) and M(n2); a lower-
dimensional task. The subgroup chain (2.2) leads to the embedding of a sphere Sn−1

into M(n). The links (2.3) and (2.4) lead to various types of spherical and polyspherical
coordinates on this sphere [9, 26, 27].

Irreducibly embedded subgroups of O(n), like U(n) ⊂ O(2n), or G2 ⊂ O(7), have not
been used to generate separable coordinates.

For complex Euclidean groups, E(n, C), and pseudo-Euclidean groups, E(p, q), the
first subgroup links are essentially the same as (2.1) and (2.2) (mutatis mutandis), e.g. for
E(p, q) we have two possibilities:

E(p, q) ⊃ E(p1, q1) ⊗ E(p2, q2), p1 + p2 = p, q1 + q2 = q (2.6)

E(p, q) ⊃ O(p, q), n = p + q ≥ 2. (2.7)

However, the subgroup links of the type (2.3) and (2.4) are not the only ones for O(n, C)
or O(p, q) with p ≥ q ≥ 1. In particular the possibilities for O(p, 1) were discussed in Ref.
[22] and are

O(p, 1) ⊃ O(p), O(p, 1) ⊃ O(p − 1, 1) (2.8)

O(p, 1) ⊃ O(p1, 1) ⊗ O(p2), p1 + p2 = p, p1 ≥ 1, p2 ≥ 2 (2.9)

and also

O(p, 1) ⊃ E(p − 1). (2.10)

For O(p, q), p ≥ q ≥ 2, the possibilities are even richer as we see below in the case of
O(2, 2).

In any case we are not interested in subgroup links of the type (2.1) or (2.6) since they
lead to a decomposition of the space M considered and we assume that the problem is
already solved in lower dimensions. In other words we are only interested in “indecom-
posable” coordinate systems in the space M.
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2.2 Decomposition of MASAs

Maximal Abelian subalgebras (MASAs) of Euclidean Lie algebras can contain generators
of translations. In the real case, e(n), these translations can only be space-like and their
presence in a subgroup chain leads to the decomposition of the space M(n). For E(n, C)
there can be up to [n2 ] lightlike (isotropic) translations in a MASA and for e(p, q), p ≥ q ≥ 1,
up to q lightlike translations. These do not lead to a decomposition of M(n), or M(p, q)
respectively and must hence be considered. The algebras o(n, C) allow three types of
MASAs [7]:

1. Orthogonally decomposable (OD) MASAs

2. MASAs that are decomposable but not orthogonally (OID but D)

3. Indecomposable MASAs (OID and ID).

The MASAs of o(n, C) have been classified elsewhere [7]. The algebras o(p, q) have up to
six types of MASAs, depending on their decomposability properties over the real numbers
and their behavior under complexification [8]. All types of MASAs occur in e(4, C) and
e(2, 2), respectively.

3 Separable coordinates in the complex space M(4, C)

3.1 MASAs of e(n, C).

The MASAs of e(n, C) have been classified into conjugacy classes under the action of the
group E(n, C) in an earlier publication [17]. Each class of MASAs is represented by one
“canonical” MASA. In any basis a MASA of e(n, C) contains k0 + k1 mutually orthogonal
translations, k0 of them isotropic, k1 anisotropic. We have

0 ≤ k0 ≤
[n

2

]

, 0 ≤ k1 ≤ n, 0 ≤ k0 + k1 ≤ n. (3.1)

We are mainly interested in MASAs with k1 = 0 since the presence of anisotropic
translations leads to a decomposition of the space into M(n, C) ≡ M(k1, C)⊕M(n−k1, C)
and hence to decomposable coordinate systems.

We now consider the four-dimensional space M(4, C). We denote the MASAs of e(4, C)
as M4,j(k0). We run through all inequivalent MASAs and construct the separable co-
ordinates. In each case we represent the MASA by a matrix X ∈ C

5×5 and also the
corresponding metric K = KT ∈ C

4×4, detK 6= 0 (see eq.(1.10)). The coordinates are
generated by a group action as in eq.(1.7). More specifically we write

|y〉 =

(

|x〉
1

)

= g

(

|o〉
1

)

, |x〉 =









x1

x2

x3

x4









, |o〉 =









0
0
0
0









. (3.2)

The group action is specified by giving g = g1g2g3g4, where each gi is a one-dimensional
subgroup of E(4, C). The MASAs are either two- or three-dimensional (for indecomposable
coordinate systems). They generate g1 and g2 for two-dimensional MASAs and g1, g2 and
g3 for three-dimensional ones.
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We also give the complete sets of commuting operators (1.8) related to each MASA. For
three-dimensional MASAs the set consists of {24,X1,X2,X4}, where 24 is the Laplace
operator and {X1,X2,X3} generates the MASA. For two-dimensional MASAs the set
consists of 24,X1,X2 and Y , where Y is a second-order Casimir operator of a subalgebra
L satisfying

{X1,X2} ⊂ L ⊂ e(4, C). (3.3)

In each case we give L and its Casimir operator.
The notation Eik denotes the matrices satisfying (Eik)ab = δiaδkb, always in a basis

corresponding to the metric K.

3.2 MASAs of e(4, C) with k0 = 0

There are two MASAs with k0 = 0.

1. The Cartan subalgebra M4,1(0) ∼ o(2, C) ⊕ o(2, C)

M4,1(0) =













0 −a 0 0 0
a 0 0 0 0
0 0 0 −b 0
0 0 b 0 0
0 0 0 0 0













, K =

(

I2 0
0 I2

)

. (3.4)

The coordinates on the complex Euclidean space M4(C) are generated by the fol-
lowing group action on the origin:

|y〉 = e−a(E12−E21)e−b(E34−E43)e−c(E13−E31)erE15 |0〉. (3.5)

The variables then are:

x1 = r cos c cos a x3 = r sin c cos b
x2 = r cos c sin a x4 = r sin c sin b.

(3.6)

Here r, c, a and b are all complex. For r constant we have a complex sphere on which
a and b provide cylindrical coordinates. The subgroup chain that provides these
coordinates and the complete set of commuting operators is

E(4, C) ⊃ O(4, C) ⊃ O(2, C) ⊗ O(2, C). (3.7)

The Laplace operator 24C in this case is

24C =
∂2

∂r2
+

3

r

∂

∂r
+

1

r2
△LB, (3.8)

where

△LB =
∂2

∂c2
+ 2cot 2c

∂

∂c
+

1

cos2 c

∂2

∂a2
+

1

sin2 c

∂2

∂b2
(3.9)
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is the Laplace-Beltrami operator on the sphere S4(C) (the Casimir operator of
O(4, C) that does not vanish on the sphere). The complete set of commuting oper-
ators in this case consists of

{24C, △LB, L12 = E12 − E21, L34 = E34 − E43}. (3.10)

The one parameter subgroups, L12, L34 and L13 = E13 − E31, figuring in the chain
(3.5) generate all of O(4, C).

2. The orthogonally indecomposable but decomposable (OID but D) MASA of o(4, C)

M4,2(0) =













a b 0 0 0
0 a 0 0 0
0 0 −a 0 0
0 0 −b −a 0
0 0 0 0 0













, K =

(

0 I2

I2 0

)

. (3.11)

The coordinates on M4(C) are generated by the following group action:

|y〉 = ea(E11+E22−E33−E44)eb(E12−E43)ec(E11−E22−E33+E44)er(E15+E25+E35+E45)|0〉. (3.12)

We get

x1 = 1
2rea(ec + be−c) x3 = 1

2re−ae−c

x2 = 1
2reae−c x4 = 1

2re−a(ec − be−c).
(3.13)

The subgroup chain is

E(4, C) ⊃ O(4, C) ⊃ exp(M4,2(0)) (3.14)

and the complete set of commuting operators is

{24C, △LB, X1, X2}, (3.15)

where 24C is the operator in (3.8) and △LB is

△LB = − ∂2

∂c2
+ 2

∂

∂c
+ 4e4c ∂

∂b2
− 4e2c ∂2

∂a∂b
. (3.16)

The first three subgroups in (3.12) are all contained in a subgroup GL(2, C) ⊂
O(4, C). However, the Casimir operator of this subgroup coincides with that of
O(4, C).

The coordinates (3.13) lead to a nonorthogonal separation of variables in △LB and
hence in 24C.
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3.3 MASAs of e(4, C) with k0 = 1

All MASAs of e(4, C) containing one isotropic translation can be written in the form
[17, 25]

X =









0 α 0 z
0 0 −K0α

T BK0α
T

0 0 0 0
0 0 0 0









, K =





0 0 1
0 K0 0
1 0 0



 , (3.17)

α = (a1, a2), K0 = KT
0 ∈ C

2×2, detK0 6= 0,
BK0 = K0B

T , B ∈ C
2×2.

The pair of matrices (B,K0) can be transformed into one of the following standard forms
[4]

B1 =

(

0 0
0 0

)

, K0 = I2 (3.18)

B2 =

(

1 0
0 β

)

, β = |β|eiφ, 0 ≤ |β| < 1, 0 ≤ φ < 2π

|β| = 1, 0 ≤ φ < π, K0 = I2

(3.19)

B3 =

(

κ 0
1 κ

)

, κ =

{

0
1

, K0 =

(

0 1
1 0

)

. (3.20)

We mention that the MASAs (3.17) are maximal Abelian nilpotent subalgebras of e(4, C)
(MANS)[23, 32]. This implies that they are represented by nilpotent matrices in any
finite-dimensional representation.

The corresponding MASAs are all three-dimensional and directly provide three com-
muting operators and three ignorable variables. We continue our list of MASAs and
coordinates:

1.

M4,3(1) =













0 −a1 −a2 0 z
0 0 0 a1 0
0 0 0 a2 0
0 0 0 0 0
0 0 0 0 0













, K =





0 0 1
0 I2 0
1 0 0



 (3.21)

|y〉 = ea1(−E12+E24)ea2(−E13+E34)ezE15erE45 |0〉 (3.22)

x1 = z − 1
2r(a2

1 + a2
2) x3 = ra2

x2 = ra1 x3 = ra2.
(3.23)

The M(4, C) Laplace operator with these new variables is

24C = 2
∂2

∂z∂r
+

2

r

∂

∂z
+

1

r2

(

∂2

∂a2
1

+
∂2

∂a2
2

)

. (3.24)
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2.

M4,4(1) =













0 −a1 −a2 0 z
0 0 0 a1 a1

0 0 0 a2 a2β
0 0 0 0 0
0 0 0 0 0













, K =





0 0 1
0 I2 0
1 0 0



 (3.25)

|y〉 = ea1(−E12+E24+E25)ea2(−E13+E34+βE35)ezE15erE45 |0〉 (3.26)

x1 = z − r
2(a2

1 + a2
2) − 1

2(a2
1 + βa2

2) β = |β|eiφ

x2 = (r + 1)a1 0 ≤ |β| < 1, 0 ≤ φ < 2π
x3 = (r + β)a2 |β| = 1, 0 ≤ φ < π
x4 = r.

(3.27)

The Laplace operator is

24C = 2
∂2

∂r∂z
+

2r + β + 1

(r + 1)(r + β)

∂

∂z
+

1

(r + 1)2
∂2

∂a2
1

+
1

(r + β)2
∂2

∂a2
2

. (3.28)

3.

M4,5(1) =













0 −a1 −a2 0 z
0 0 0 a2 κa2

0 0 0 a1 κa1 + a2

0 0 0 0 0
0 0 0 0 0













, K =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









(3.29)

|y〉 = ea1(−E12+E34+κE35)ea2(−E13+E24+E35+κE25)ezE15erE45 |0〉 (3.30)

x1 = z − (r + κ)a1a2 − 1
2a2

2 x3 = (r + κ)a1 + a2

x2 = (r + κ)a2 x4 = r κ = 0 or 1.
(3.31)

The Laplace operator in these coordinates is

24C = 2
∂2

∂r∂z
+

2

(r + κ)

∂

∂z
− 2

(r + κ)3
∂2

∂a2
1

+
2

(r + κ)2
∂2

∂a1∂a2
. (3.32)
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3.4 MASAs of e(4, C) with k0 = 2

There are two mutually inequivalent MASAs of e(4, C) with two isotropic translations
[17, 25]. Both of them are three-dimensional. One of them has three-dimensional orbits in
M(4, C) and the other only two-dimensional ones. We consider the two of them separately.

M4,6(2) =













0 0 0 z a1

0 0 −z 0 a2

0 0 0 0 0
0 0 0 0 z
0 0 0 0 0













, K =

(

0 I2

I2 0

)

. (3.33)

Coordinates are generated by the action:

|y〉 = ez(E14−E23+E45)ea1E15ea2E25erE35 |0〉 (3.34)

x1 = a1 + 1
2z2 x3 = r

x2 = a2 − rz x4 = z.
(3.35)

The Laplace operator is

24C = 2

(

∂2

∂a1∂r
+ r

∂2

∂a2
2

+
∂2

∂a2∂z

)

. (3.36)

The other MASA is represented by

M4,7(2) =













0 0 0 z a1

0 0 −z 0 a2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, K =

(

0 I2

I2 0

)

. (3.37)

The orbits that the three-parameter subgroup sweeps out are only two-dimensional. This
is reflected in the fact that the generators of the subalgebra when acting on M(4, C) are
represented, in the metric considered, by the commuting operators

P1 = ∂s1
, P2 = ∂s2

, B = s4∂s1
− s3∂s2

. (3.38)

These are linearly connected, i.e., they span a two-dimensional subspace of the tangent
space rather than a three-dimensional one. The operator B can hence not be straightened,
i.e. s1 = a1 and s2 = a2 are already ignorable variables. Hence B must be dropped from
the MASA. The algebra, {P1, P2}, itself generates coordinates, equivalent to Cartesian
ones in M(4, C) in which all four translations are simultaneously diagonalized and the
space M(4, C) is decomposed.

x1 = a1 x3 = s3

x2 = a2 x4 = s4.
(3.39)

The Laplace operator is

24C = 2

(

∂2

∂a1∂s3
+

∂2

∂a2∂s4

)

. (3.40)



Separation of Variables in Hamilton-Jacobi and Schrödinger Equations 189

3.5 Decompositions of M(4, C)

Possible decompositions of M(4, C) are

M(4, C) = M(3, C) ⊕ M(1, C), M(4, C) = 2M(2, C)
M(4, C) = M(2, C) ⊕ 2M(1, C), M(4, C) = 4M(1, C).

(3.41)

In order to obtain a complete list of subgroup-type coordinates on M(4, C) we must also
take these decompositions into account and introduce indecomposable coordinate systems
on them. Each M(1, C) space corresponds to a Cartesian coordinate. Each M(2, C)
corresponds to complex polar coordinates.

Two types of indecomposable coordinate systems exist on M(3, C), corresponding to
two different MASAs, both of them two-dimensional. The two MASAs of e(3, C) can be
written as

X =









0 a 0 z
0 0 −a 0
0 0 0 −κa
0 0 0 0









, K =





0 0 1
0 1 0
1 0 0



 (3.42)

with κ = 0 for the first and κ = 1 for the second. We consider the two cases separately.

Case I: κ = 0
The coordinates are induced by the action

|y〉 = ea(E12−E23)ezE14erE34 |0〉 (3.43)

with |0〉 = (0 0 0 1)T . The coordinates on M(3, C) are

x1 = z − 1

2
ra2, x2 = −ar, x3 = r. (3.44)

The Laplace operator on M(3, C) is

23C = 2
∂2

∂r∂z
+

1

r2

∂2

∂a2
+

1

r

∂

∂z
. (3.45)

We mention that these coordinates are conformally equivalent to Cartesian ones on M(3, C)
[2, 24].

Case II: κ = 1
The coordinates are induced by the following action

|y〉 = ea(E12−E23−E34)ezE14erE24 |0〉 (3.46)

with |0〉 = (0 0 0 1)T . The coordinates on M(3, C) are

x1 = z + ar + 1
6a3, x2 = r + 1

2a2, x3 = −a. (3.47)

The Laplace operator on M(3, C) is

23C =
∂2

∂r2
− 2

∂2

∂a∂z
+ 2r

∂2

∂z2
. (3.48)
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3.6 Subgroup type coordinates with fewer ignorable variables

For completeness we consider indecomposable subgroup type coordinates that are not
related to maximal Abelian subgroups of E(n, C). We still parametrize a group element
as in eq. (1.7), but replace the subgroup gM by gA, where gA ⊂ gM , i.e. gA is Abelian, but
not maximal. Indecomposability requires that the subgroup chain (1.9) start as E(n, C) ⊃
O(n, C). After that links of the type O(n, C) ⊃ O(n−1, C), O(n, C) ⊃ O(n1, C)⊗O(n2, C)
and O(n, C) ⊃ E(n − 2, C) are allowed.

In the metric K = In the e(n− 2) subalgebra of o(n, C) is represented by the matrices

X =





0 α 0
−αT A −iαT

0 iα 0



 , α ∈ C
1×(n−2), K = In, (3.49)

A = −AT ∈ C
(n−2)×(n−2). (3.50)

For M(n, C) we use the metric K = In and induce the coordinates by the action

|y〉 = g1g2 . . . gn|0〉 (3.51)

with

gn = erE1,n+1 , gn−1 = ec(−E1n+En1). (3.52)

The other one-parameter subgroups depend upon the subgroup chain considered. The
action of gn takes us onto a complex sphere of radius r. The one-parameter subgroups,
g1, . . . gn−1, introduce coordinates on this sphere.

We now specialize to the case of M(4, C). We use the metric K = I4. A basis for the
algebra o(4, C) can be chosen to be

Lik = −Eik + Eki, 1 ≤ i ≤ k ≤ 4. (3.53)

An alternative basis, to be used when the e(2, C) subalgebra is important, is

L23, X1 = L12 − iL24, X2 = L13 − iL34

L14, Y1 = L12 + iL24, Y2 = L13 + iL34.
(3.54)

The complete set of commuting operators is

{24C,△LB(4), R2, R1}, (3.55)

where R2 and R1 must be specified in each case and R1 is an element of o(4, C). Similarly
g4 and g3 are as in eq (3.52), but the one-parameter subgroups g2 and g1 are specified in
each case.

Four subgroup chains and four types of separable coordinates occur.

1. E(4, C) ⊃ O(4, C) ⊃ O(3, C) ⊃ O(2, C)
We take g1 = eaL12 , g2 = ebL13 and we obtain complex spherical coordinates

x1 = r cos c cos b cos a x3 = r cos c sin b
x2 = r cos c cos b sin a x4 = r sin c.

(3.56)
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We have

R2 = △LB(3), R1 = L12 (3.57)

and

24C =
∂2

∂r2
+

3

r

∂

∂r
+

1

r2
△LB (4) (3.58)

with

△LB(4) =
∂2

∂c2
− 2 tan c

∂

∂c
+

1

cos2 c

∂2

∂b2
+

1

cos2 c cos2 b

∂2

∂a2
− tan b

cos2 c

∂

∂b
. (3.59)

2. E(4, C) ⊃ O(4, C) ⊃ O(3, C) ⊃ E(1, C)
We choose g1 = eaX1 and g2 = ebL13 . The coordinates are

x1 = r cos c(cos b − 1
2a2eib) x3 = r cos c(sin b − 1

2 ia2eib)
x2 = r cos c a eib x4 = r sin c

(3.60)

and we have

R2 = △LB(3), R1 = X1. (3.61)

The d’Alambertian 24C is as in eq. (3.58) with

△LB(4) =
∂2

∂c2
− 2 tan c

∂

∂c
+

1

cos2 c

(

∂2

∂b2
+ i

∂

∂b
+ e−2ib ∂2

∂a2

)

, (3.62)

where

△LB(3) =
∂2

∂b2
+ i

∂

∂b
+ e−2ib ∂2

∂a2
. (3.63)

3. E(4, C) ⊃ O(4, C) ⊃ E(2, C) ⊃ O(2, C)
We choose g1 = eaL23 and g2 = ebX1 . The separable coordinates are

x1 = r(cos c − 1
2b2eic) x3 = rbeic sin a

x2 = rbeic cos a x4 = r(sin c − 1
2 ib2eic).

(3.64)

We have

R2 = △LB(2), R1 = L23. (3.65)

Again 24C is as in (3.58) with

△LB(4) =
∂2

∂c2
+ 2i

∂

∂c
+ e−2ic △LB (3), (3.66)

where

△LB(3) =
∂2

∂b2
+

1

b

∂

∂b
+

1

b2

∂2

∂a2
. (3.67)
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4. Chain E(4, C) ⊃ O(4, C) ⊃ E(2, C) ⊃ E(1, C) ⊗ E(1, C)
We take g1 = ea1X1 and g2 = ea2X2. The coordinates are

x1 = r(cos c − 1
2(a2

1 + a2
2)e

ic) x3 = ra2e
ic

x2 = ra1e
ic x4 = r

(3.68)

and we have

R2 = X2, R1 = X1. (3.69)

The operator 24C is again as in eq. (3.58) with

△LB(4) =
∂2

∂c2
+ 2i

∂

∂c
+ e−2ic

(

∂2

∂a2
1

+
∂2

∂a2
2

)

. (3.70)

Both variables a1 and a2 are ignorable. However, X1,X2 is only a MASA of o(4, C)
and not of e(4, C).

3.7 A graphical formalism

All separable subgroup type coordinates on M(4, C) can be summarized using subgroup
diagrams similar to those of the real groups O(n) and O(n, 1) [9, 22, 29, 30]. They are
directly related to “tree” diagrams introduced in Reff [27, 28] and discussed in Reff [9, 22].
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Figure 1. Subgroup chains for E(4, C) ending in maximal Abelian subgroups.
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On Figs 1 and 2 we use rectangles to denote Euclidean groups E(n, C) and circles to
denote O(n, C). In both cases the value of n is indicated inside the rectangle, or circle.

Trapezia are used to denote maximal Abelian subgroups. Inside the trapezium we
indicate which MASA is involved. A rectangle with n = 1 denotes a one-dimensional
unipotent subgroup. The corresponding algebra is represented by a nilpotent matrix.

Figs (1a), . . . , (1f) correspond to the coordinate systems (3.6), (3.13), (3.23), (3.27),
(3.31) and (3.35). Similarly Figs (2a), . . . , (2d) correspond to the coordinate systems

(3.56), (3.60), (3.64) and (3.68).

2


3


4


4


(2a)


3


4


4


1


(2b)


4


4


(2c)


4


1
1


(2d)


2


4


2


2


Figure 2. Subgroup chains for E(4, C) ending in nonmaximal Abelian subgroups.

4 Subgroup type coordinates in the real spaces M(4) and

M(3, 1)

When one passes from the complex Euclidean space M(n, C) to the real Euclidean or
pseudo-Euclidean spaces M(p, q), p ≥ q ≥ 0, two different phenomena must be taken
into account. Firstly some subgroups, in particular Abelian ones, that exist for E(n, C)
may have counterparts only for certain signatures (p, q). Secondly in real spaces with
q ≥ 1 vectors can have positive, negative and zero length. The existence of two types of
anisotropic vectors leads to a proliferation of subgroup chains and of coordinate systems.

4.1 The real Euclidean space M(4)

Only two of the subgroup chains illustrated on Fig 1 and Fig 2 are realized in this case,
namely those of Fig (1a) and Fig (2a). The corresponding systems of separable coordinates
are (3.6) with 0 ≤ r ≤ ∞ , 0 ≤ c ≤ π

2 , 0 ≤ a ≤ 2π, 0 ≤ b ≤ 2π and (3.56) with
0 ≤ r ≤ ∞, 0 ≤ c ≤ π, 0 ≤ b ≤ π, 0 ≤ a < 2π.

All other subgroup chains lead to decomposable coordinate systems. The decomposition
patterns are 4 = 3 + 1, 4 = 2 + 2, 4 = 2 + 1 + 1 and 4 = 1 + 1 + 1 + 1.

4.2 The real Minkowski space M(3, 1)

This case is somewhat richer than the previous one. Indeed a subgroup O(n, C) ⊂ E(n, C)
can correspond to O(n) ⊂ E(n) or O(n − 1, 1) ⊂ E(n) in the real case. We denote O(n)
by a circle and O(n − 1, 1) by a semicircle (“hyperbola”) on the corresponding subgroup
diagrams.
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Among the six coordinates of subgroup type in M(4, C) related to MASAs only three
are represented on M(3, 1), see Fig. 3.

The Cartan subalgebra (3.4) goes into o(2) ⊕ (1, 1) ⊂ o(3, 1) and the corresponding
cylindrical coordinates (3.6) go into

x1 = r sinh c cos a 0 ≤ a < 2π
x2 = r sinh c sin a 0 ≤ b < ∞
x3 = r cosh c sinh b 0 ≤ c < ∞
x4 = r cosh c cosh b.

(4.1)

The MASA M4,2(0) has no analogue in o(3, 1). Among the k0 = 1 MASAs M4,3(1) and
M4,4(1) have analogs in M(3, 1) while M4,5(1) does not. Finally k0 = 2 is not allowed.
The coordinate system corresponding to M4,3(1) in the space M(3, 1) is as in (3.23) with
0 ≤ r ≤ ∞, −∞ < ai < ∞ (i = 1, 2), −∞ < z < ∞. For M4,4(1) the coordinates are as
in (3.27) with −1 ≤ β ≤ 1 and r, a1, a2, z as for the case of M4,3(1). Thus the only three
subgroup diagrams of Fig 1 that give rise to subgroup diagrams and separable coordinates
on M(3, 1) are (1a)→(3a), (1c)→(3b) and (1d)→(3c).

The four subgroup chains of Fig 2 give rise to the six chains of Fig 4. More specifically
we have (2a)→(4a), (4b) and (4c), (2b)→(4d), (2c)→(4e) and (2d)→(4f). We do not
detail the six different types of coordinates systems on the upper sheet of the two-sheeted
hyperboloid x2

1 + x2
2 + x2

3 − x2
0 = −1 here. They can be found in e.g., [29], [30] and [22].
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Figure 3. Subgroup chains for E(3, 1) ending in maximal Abelian subgroups.

5 Subgroup type coordinates in the real space M(2, 2)

5.1 Structure of MASAs of e(2, 2)

.
A complete classification of MASAs of e(p, 2), in particular e(2, 2), was performed

earlier [25]. It is somewhat more complicated than that of e(4, C) although similar. A
MASA of e(p, q) contains k = k0 + k+ + k− mutually orthogonal translations, where k0,
k+ and k− are the numbers of isotropic, positive length and negative length translations,
respectively. For p ≥ q we have

0 ≤ k0 ≤ q, 0 ≤ k+ ≤ p, 0 ≤ k− ≤ q, 0 ≤ k0 + k+ + k− ≤ p + q. (5.1)
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Figure 4. Subgroup chains for E(3, 1) ending in nonmaximal Abelian subgroups.

We are mainly interested in MASAs with k+ = k− = 0 since the presence of any anisotropic
translations leads to a decomposition of the space M(p, q) and to decomposable coordinate
systems.

We proceed as in the case of e(4, C). The algebra e(2, 2) is realized by 5 × 5 matrices
as in eq (1.10) and the metric K = KT ∈ R

4×4 has the signature (2, 2).

As in the case of e(4, C) we consider k0 = 0, 1 and 2 separately. Each subgroup chain
and the corresponding coordinate system on M(4, C) gives rise to at least one system on
M(2, 2).

5.2 MASAs of e(2, 2) with k0 = 0

We are dealing here with MASAs of o(2, 2) that are also maximal in e(2, 2). The algebra
o(2, 2) has three inequivalent Cartan subalgebras and so three different coordinate sys-
tems correspond to the cylindrical coordinates (3.6). In each case we give the subgroup
chain, the group action on the origin, the coordinates and the complete set of commuting
operators.

1. The compact Cartan subalgebra o(2) ⊕ o(2).
The subgroup chain is

E(2, 2) ⊃ O(2, 2) ⊃ O(2) ⊗ O(2). (5.2)

We use the diagonal metric K = diag(1, 1,−1,−1) and put

|y〉 = e−a(E12−E21)e−b(E34−E43)ec(E13+E31)erE15 |0〉. (5.3)

The coordinates are

x1 = r cosh c cos a 0 ≤ r < ∞
x2 = r cosh c sin a 0 ≤ a < 2π, 0 ≤ b < 2π
x3 = r sinh c cos b 0 ≤ c < ∞
x4 = r sinh c sin b.

(5.4)
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The Laplace operator and complete set of commuting operators are

22,2 =
∂2

∂r2
+

3

r

∂

∂r
+

1

r2
△LB (5.5)

△LB =
4e2c

(e2c + 1)2
∂2

∂a2
− 4e2c

(e2c − 1)2
∂2

∂b2
− ∂2

∂c2
− 2(e4c + 1)

e4c − 1

∂

∂c

{22,2,△LB(2, 2), L12 = E12 − E21, L34 = E34 − E43}. (5.6)

2. The noncompact Cartan subalgebra o(1, 1) ⊕ o(1, 1).
The subgroup chain is

E(2, 2) ⊃ O(2, 2) ⊃ O(1, 1) ⊗ O(1, 1). (5.7)

Again in the diagonal metric K = diag(1, 1,−1,−1) we have

|y〉 = ea(E13+E31)eb(E24+E42)ec(E14+E41)erE15 |0〉. (5.8)

The coordinates are

x1 = r cosh c cosh a x3 = r cosh c sinh a
x2 = r sinh c sinh b x4 = r sinh c cosh b.

(5.9)

The Laplace operator is as in eq (5.5) with

△LB(2, 2) = − 4e2c

(e2c + 1)2
∂2

∂a2
+

4e2c

(e2c − 1)2
∂2

∂b2
− ∂2

∂c2
− 2(e4c + 1)

e4c − 1

∂

∂c
(5.10)

and the commuting set is

{22,2,△LB(2, 2), L13 = E13 + E31, L24 = E24 + E42}. (5.11)

3. The “semicompact” Cartan subalgebra o(2) ⊕ o(1, 1).
The algebra o(2, 2) has a third Cartan subalgebra, with one compact and one non-
compact element. The subgroup chain is

E(2, 2) ⊃ O(2, 2) ⊃ O(2) ⊗ O(1, 1). (5.12)

We represent this cartan subalgebra by the matrices

X =













a −b 0 0 0
b a 0 0 0
0 0 0 0 0
0 0 −a −b 0
0 0 b −a 0













, K =

(

0 I2

I2 0

)

, (5.13)

where we are using a nondiagonal metric. As a MASA (5.12) is decomposable
but not absolutely orthogonally indecomposable (D but NAOID) [8, 25] (i.e., after
complexification the matrix X can be diagonalized).
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The appropriate group action is

|y〉 = ea(E11+E22−E33−E44)eb(−E21+E12−E34+E43)ec(E12+E21−E34−E43)er(E15+E35)/
√

2|0〉
(5.14)

so that we have

x1 =
r√
2
ea(cosh c cos b − sinh c sin b)

x2 =
r√
2
ea(cosh c sin b + sinh c cos b)

x3 =
r√
2
e−a(cosh c cos b + sinh c sin b) (5.15)

x4 =
r√
2
e−a(cosh c sin b − sinh c cos b).

The Laplace operator in these coordinates is as in eq (5.5) with

△LB(2, 2) = − ∂2

∂c2
− 2 tanh 2c

∂

∂c
+ 2

sinh 2c

(cosh 2c)2
∂2

∂a∂b
+

1

(cosh 2c)2

(

∂2

∂a2
− ∂2

∂b2

)

(5.16)

and the complete set of commuting operators is

{22,2,△LB(2, 2), E11 + E22 − E33 − E44,−E21 + E12 − E34 + E43}. (5.17)

The relation between the real coordinates (5.15) and the complex cylindrical coordinates
(3.6) is best seen if we transform (3.4), (3.5) and (3.6) to the antidiagonal metric K of
(5.13). The transformation gKDgT = K and gXDg−1 = X, where KD = I4, is realized by

g =
1

2









1 i 1 i
−i 1 i −1
1 −i 1 −i
i 1 −i −1









. (5.18)

Putting |x〉 = g|xD〉 with |yD〉 as in eq (3.6) we obtain

x1 =
1

2
rei ã+b̃

2

(

(cos c̃ + sin c̃) cos
ã − b̃

2
+ i((cos c̃ − sin c̃) sin

ã − b̃

2
)

)

x2 =
1

2
rei ã+b̃

2

(

(cos c̃ + sin c̃) sin
ã − b̃

2
− i((cos c̃ − sin c̃) cos

ã − b̃

2
)

)

x3 =
1

2
re−i ã+b̃

2

(

(cos c̃ + sin c̃) cos
ã − b̃

2
− i((cos c̃ − sin c̃) sin

ã − b̃

2
)

)

(5.19)

x4 =
1

2
re−i ã+b̃

2

(

(cos c̃ + sin c̃) sin
ã − b̃

2
+ i((cos c̃ − sin c̃) cos

ã − b̃

2
)

)

.
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Putting

i
ã + b̃

2
= a,

ã − b̃

2
= b, cos c̃ + sin c̃ =

√
2 cosh c, cos c̃ − sin c̃ = i

√
2 sinh c

and restricting to a, b, c ∈ R, we obtain the coordinates (5.15).

The complex algebra e(4, C) has only one further MASA with k0 = 0, namely that
of eq (3.11). It, however, has two distinct real forms. One of them, M1(0), coincides
with that of eq (3.11) with a and b ∈ R. In e(2, 2) this MASA is absolutely orthogonally
indecomposable but decomposable (AOID but D). The subgroup chain is

E(2, 2) ⊃ O(2, 2) ⊃ exp(M1(0)). (5.20)

The coordinates, the Laplace operator and commuting operators are as in (3.13), (3.15)
and (3.16) with all entries real.

The other MASA of e(2, 2), M2(0), is absolutely orthogonally indecomposable, indecom-
posable but not absolutely indecomposable (AOID, ID but NAID). We represent M2(0)
by the matrices:

M2(0) =













0 a 0 b 0
−a 0 −b 0 0
0 0 0 a 0
0 0 −a 0 0
0 0 0 0 0













, K =

(

0 I2

I2 0

)

. (5.21)

The subgroup chain is

E(2, 2) ⊃ O(2, 2) ⊃ expM2(0). (5.22)

The MASA M4,2(0) ⊂ e(4) (see eq (3.11)) can be transformed into the form of (5.21)
by a similarity transformation with

G =
1√
2









1 0 0 1
i 0 0 −i
0 1 1 0
0 i −i 0









(5.23)

which preserves the metric K. To obtain the real space M(2, 2) we put

a → −ia, b → ib, a, b ∈ R. (5.24)

The corresponding coordinates in M(2, 2) are obtained from (3.13) by the transformation
|x〉 → G|x〉 and we obtain

x1 = 1√
2
r(ec cos a + be−c sin a) x3 = 1√

2
re−c cos a

x2 = 1√
2
r(ec sin a − be−c cos a) x4 = 1√

2
re−c sin a

(5.25)

with 0 ≤ r < ∞, 0 ≤ a < 2π,−∞ < c < ∞ and 0 ≤ b < ∞. These coordinates correspond
to the group action

ea(−E12+E21−E34+E34)eb(E14−E23)ec(−E11−E22+E33+E44)er(E15+E35). (5.26)
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The Laplace operator is

22,2 =
∂2

∂r2
+

3

r

∂

∂r
+

1

r2

(

− ∂2

∂c2
+

∂

∂c
− 4e4c ∂2

∂b2
− 4e2c ∂2

∂a∂b

)

. (5.27)

This corresponds to the case (3.8) plus (3.16) for E(4, C). The commuting operators are

{22,2,△LB(2, 2), E12 − E21 + E34 − E43, E14 − E23}. (5.28)

5.3 MASAs of e(2, 2) with k0 = 1

The maximal Abelian subalgebras of e(2, 2) with k0 = 1 can be written exactly in the
same form as those of e(4, C) (see Section 3.3). All parameters and variables are real. As
for e(4, C) there are three different cases to consider. All can be written as in eq (3.17).
In eq (3.19) the parameter β is real and satisfies −1 ≤ β ≤ 1, β 6= 0.

The three separable coordinate systems are (3.23), (3.27) and (3.31). The Laplace
operators and commuting operators are the same as in the complex case with all variables
restricted to being real.

5.4 MASAs of e(2, 2) with k0 = 2

For k0 = 2 the MASAs of e(2, 2) have the same form as those of e(4, C). There are just two
of them. The first leads to the coordinates (3.35) with a1, a2, z and r real. The Laplace
operator is (3.36). The second MASA has the form (3.37) with real entries and, like (3.37),
does not provide a coordinate system.

5.5 Decompositions of the space M(2, 2)

In view of the existence of a signature in M(p, q) spaces, the four decompositions of
M(4, C) of eq (3.41) give rise to six inequivalent decompositions of M(2, 2). They are:

1. M(2, 2) = M(2, 1) ⊕ M(0, 1), or M(1, 2) ⊕ M(1, 0)

2. M(2, 2) = M(2, 0) ⊕ M(0, 2)

3. M(2, 2) = M(1, 1) ⊕ M(1, 1)

4. M(2, 2) = M(2, 0) ⊕ 2M(0, 1), or M(0, 2) ⊕ 2M(1, 0)

5. M(2, 2) = M(1, 1) ⊕ M(1, 0) ⊕ M(0, 1)

6. M(2, 2) = 2M(1, 0) ⊕ 2M(0, 1).

Each one-dimensional space corresponds to a Cartesian coordinate. The spaces M(2, 0)
and M(0, 2) correspond to polar coordinates (trigonometric ones), the space M(1, 1) to
“hyperbolic polar coordinates”, e.g. x1 = cosh α and x2 = sinh α. All subgroup type
coordinates with a maximal number of ignorable variables on M(2, 1) (or M(1, 2)) spaces
were given earlier [24].
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5.6 Subgroup type coordinates on M(2, 2) with fewer ignorable variables

Each of the subgroup chains in Section 3.6 has at least one analog for the group E(2, 2).
Altogether that leads to five types of subgroup coordinates. Here we just give the subgroup
chains and the corresponding coordinates. The Laplacians and complete sets of commuting
operators are easy to calculate. In all case we take the metric to be K = diag(1, 1,−1,−1).
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Figure 5. Subgroup diagrams for E(2, 2) ending in maximal Abelian subgroups.

i) E(2, 2) ⊃ O(2, 2) ⊃ O(2, 1) ⊃ O(2)

x1 = r cosh c cosh b cos a x3 = r cosh c sinh b
x2 = r cosh c cosh b sin a x4 = r sinh c.

(5.29)

ii) E(2, 2) ⊃ O(2, 2) ⊃ O(2, 1) ⊃ O(1, 1)

x1 = r cosh c cos b cosh a x3 = r cosh c sin b
x2 = r cosh c cos b sinh a x4 = r sinh c.

(5.30)

iii) E(2, 2) ⊃ O(2, 2) ⊃ O(2, 1) ⊃ E(1)

x1 = r cosh c(cosh b − 1
2a2eb) x3 = r cosh c(sinh b + 1

2a2eb)
x2 = r cosh c a eb x4 = r sinh c.

(5.31)
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iv) E(2, 2) ⊃ O(2, 2) ⊃ E(1, 1) ⊃ O(1, 1)

x1 = r(cosh a − 1
2b2ec) x3 = rbec sinh a

x2 = rbec cosh a x4 = r(sinh c + 1
2b2)ec.

(5.32)

v) E(2, 2) ⊃ O(2, 2) ⊃ E(1, 1) ⊃ E(1) ⊗ E(1)

x1 = r(cosh c − 1
2 (a2 + b2)ec) x3 = rbec

x2 = raec x4 = r(sinh c + 1
2(a2 + b2)ec).

(5.33)

All indecomposable coordinate systems on M(2, 2) and the corresponding subgroups chains
are illustrated on Fig 5 and Fig 6.
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1
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1,1
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Figure 6. Subgroup diagrams for E(2, 2) ending in nonmaximal Abelian subgroups.

We see that Fig (1a), corresponding to the Cartan subalgebra of O(4, C), gives rise
to Figs (5a), (5b) and (5c) and thus to the coordinate systems (5.4), (5.9) and (5.15),
respectively. Fig (1b) gives rise to Figs (5d) and (5e). The corresponding coordinates on
the space M(2, 2) are (3.13) (with real entries) and (5.25). Figs (1c), (1d), (1e) and (1f)
give rise to Figs (5f), (5g), (5h) and (5i), respectively. The coordinates on M(2, 2) are the
same as on M(4, C) with real entries, i.e., (3.23), (3.27), (3.31) and (3.35), respectively.
Similarly Fig (2a) gives rise to Figs (6a) and (6b) and to the coordinates (5.29) and (5.30),
respectively. Figs (2b), (2c) and (2d) go to Figs (6c), (6d) and (6e) and coordinates are
(5.31), (5.32) and (5.33), respectively.

6 Solutions of the separated Schrődinger equations in com-

plex spaces

In this Section we give the explicit solutions of the Schrődinger equation (1.2) in the
separable coordinate systems introduced above. We do this for the complex spaces M(4, C)
and M(3, C). The results for the real spaces M(n) [20] and M(n, 1) are known [24]. Those
for M(2, 2) can be obtained from the results of this section by imposing suitable reality
conditions.

We follow the diagrams on Figs 1 and 2.



202 E G Kalnins, Z Thomova and P Winternitz

6.1 Subgroup chains involving link E(4, C) ⊃ O(4, C)

The subgroup chains of Figs (1a), (1b) and Figs (2a), . . . , (2d) all involve the subgroup
link E(4, C) ⊃ O(4, C). The corresponding coordinate systems contain a four-dimensional
(complex) radius r. This is a nonignorable variable. The coordinate systems corresponding
to Figs (1a), (1b) and (2d) contain one more nonignorable variable denoted c. Those
corresponding to Figs (2a), (2b) and (2c) contain three nonignorable variables, r, c and b.

We write the separated wave function for the cases illustrated in Figs. (1a), (1b) and
(2d) as

Ψ(r, c, a, b) = R(r)C(c)ei(αa+βb), (6.1)

where α and β are (complex) constants of separation. The function R(r) is always the
same. It satisfies the equation

R′′ +
3

r
R′ +

(

λ

r2
− E

)

R = 0 (6.2)

and is hence expressed in terms of cylindrical functions

R(r) =
1

r
Jν

(√
−Er

)

ν = −5 − λ. (6.3)

The function C(c) in eq (6.1) is different in each case.
For Fig (1a), i.e. coordinates (3.6), we have

C ′′ + 2cot 2cC ′ −
(

α2

cos2 c
+

β2

sin2 c
+ λ

)

C = 0. (6.4)

Eq (6.4) can be solved in terms of Jacobi functions as

C(c) = (cos c)α(sin c)βP (α,β)
n (− cos 2c), n = −1

2
(α + β + 1 ±

√
1 − λ). (6.5)

P
(α,β)
n (z) is a polynomial for n ∈ Z+

0 .
For Fig (1b), i.e. coordinates (3.13), the equation for C(c) is

C ′′ − 2C ′ − (4e4cβ2 − 4e2cαβ + λ)C = 0. (6.6)

Eq (6.6) is solved in terms of Whittaker functions and we have

C(c) = W iα
2

, 1
2

√
1−λ(2iβe2c). (6.7)

For Fig (2d), i.e. coordinates (3.68), the equation for C(c) is

C ′′ + 2iC ′ − (k2e−2ic + λ)C = 0 (6.8)

and is solved in terms of cylindrical functions

C(c) = e−icZν(ke−ic), ν = ±
√

1 − λ. (6.9)

Solutions corresponding to the subgroup chains on Figs (2a), (2b) and (2c) have the
form

Ψ(r, c, b, a) = R(r)C(c)B(b)eiαa, (6.10)



Separation of Variables in Hamilton-Jacobi and Schrödinger Equations 203

where α is a constant of separation. In all cases we have R(r) as in eqs (6.2) and (6.3).
In both Fig (2a) and Fig (2b) we have an O(4, C) ⊃ O(3, C) link corresponding to the

variable c (in eqs (3.56) and (3.60)). The function C(c) in both cases satisfies

C ′′ − 2 tan cC ′ +

(

k

cos2 c
− λ

)

C = 0 (6.11)

and hence

C(c) =
1

cos c
Pµ

ν (i tan c), ν = 1
2(−1 ±

√
1 − 4k), µ =

√
1 − λ, (6.12)

where Pµ
ν (z) is an associated Legendre function.

The function B(b) is different in the two cases.
For Fig (2a) we have an O(3, C) ⊃ O(2, C) link and correspondingly

B′′ − tan bB′ −
(

α2

cos2 b
+ k

)

B = 0 (6.13)

B(b) =
1√
cos b

Pµ
ν (i tan b), ν = −1

2 ± α, µ =
√

1
4 − k. (6.14)

The corresponding subgroup link on Fig (2b) is O(3, C) ⊃ E(1, C) and we have

B′′ + iB′ − (α2e−2ib + k)B = 0 (6.15)

B(b) = exp(−1
2 ib)Zν(±αe−ib), ν =

√

1
4 − k, (6.16)

where Zν(z) is a cylindrical function.
The subgroup chain on Fig (2c) involves the link O(4, C) ⊃ E(2, C) which also figures

on Fig (2d). Correspondingly the function C(c) satisfies eq. (6.8) and is given by eq (6.9).
The final link on Fig (2c) corresponds to E(2, C) ⊃ O(2, C) and the function B(b) satisfies

B′′ +
1

b
B −

(

α2

b2
+ k

)

B = 0 (6.17)

B(b) = Zν(
√
−kb), ν = ±α, (6.18)

where Zν(z) is a cylindrical function.

6.2 Subgroup chains leading directly to maximal Abelian subgroups of

E(4, C)

The coordinate systems corresponding to Fig (1c), . . . , Fig (1f) all have three ignorable
variables and so we can write the corresponding wave functions as

Ψ = R(r)eζzeα1a1eα2a2 , (6.19)

where ζ, α1 and α2 are constants.
The coordinates are all nonorthogonal and the differential equations for R(r) are all

linear first-order equations. The functions R(r) are in all cases elementary ones. We do
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not give the equations satisfied by the functions R(r), but only give the corresponding
four solutions.

Fig (1c) and coordinates (3.23):

R(r) =
1

r
exp

(

1

2ζ

(

α2
1 + α2

2

r
− Er

))

. (6.20)

Fig (1d) and coordinates (3.27):

R(r) = ((r + 1)(r + β))−
1

2 exp

(

1

2ζ

(

α2
1

r + 1
+

α2
2

r + β
+ Er

))

. (6.21)

Fig (1e) and coordinates (3.31):

R(r) =
1

r + κ
exp

(

1

2ζ

(

− α2
1

(r + κ)2
+

2α1α2

(r + κ)
+ Er

))

. (6.22)

Fig (1f) and coordinates (3.35):

R(r) = exp

(

1

2α1

(

−α2
2r

2 + (E − 2α2ζ)r
)

)

. (6.23)

6.3 Indecomposable coordinate systems in the space M(3, C)

As we have seen in Section 3.5, two indecomposable separable coordinate systems of sub-
group type exist in M(3, C), namely (3.44) and (3.47).

In both cases we write the separated wave function as

Ψ(r, a, z) = R(r)eαa+ζz. (6.24)

The two cases are quite different.

In coordinates (3.44) the equation for R(r) is of first order:

2ζR′ +

(

1

r2
α2 +

1

r
ζ − E

)

R = 0 (6.25)

and its solution is

R(r) =
1√
r
exp

(

1

2ζ

(

α2

r
+ Er

))

. (6.26)

In the system (3.47) we obtain a second-order equation for R(r), namely

R′′ + (2rζ2 − 2αζ − E)R = 0. (6.27)

Equation (6.27) can be solved in terms of Airy functions (related to Bessel functions with
index ν = 1/3)

R(r) = Ai(x), x =

(

r − α

ζ
− E

2ζ2

)

(

2ζ2
)

1

3 . (6.28)
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7 Conclusions

We have provided a complete classification of all subgroup-type coordinates in complex
and real four-dimensional flat spaces in which the free Schrödinger and Hamilton-Jacobi
equations allow separation of variables. The results are best summarised in terms of the
subgroup diagrams that are presented in this article.

For the complex Euclidean group E(4, C) and the corresponding complex space M(4, C)
there are six subgroup chains on Fig 1 leading to maximal Abelian subgroups. In four
cases these Abelian subgroups are three-dimensional. The corresponding maximal Abelian
subalgebras, M4,3(1), M4,4(1), M4,5(1) and M4,6(2), each provides three first-order op-
erators in the Lie algebra e(4, C) which together with the Laplace operator 24C form
complete sets of commuting operators. The subgroup chains in these four cases lead di-
rectly from E(4, C) to a maximal Abelian subgroup. Other subgroups could be included
between E(4, C) and the Abelian subgroups. However, they do not have second-order
Casimir operators and play no role in the problem of separating variables. The remaining
two MASAs, the Cartan subalgebra M4,1(0) and the orthogonally indecomposable MASA
M4,2(0), are two-dimensional. The missing operator in the complete set is provided by
a Casimir operator of O(4, C), i.e. the Laplace-Beltrami operator on the complex sphere
S4(C).

Four more subgroup diagrams are given on Fig 2. The corresponding subgroup chains
end in Abelian subgroups that are not maximal. In three cases they are just one-
dimensional (Figs (2a), (2b) and (2c)). Two missing commuting operators are provided
by the Casimir operators of the intermediate groups in the chains. Fig (2d) corresponds
to a two-dimensional Abelian subgroup at the end of the chain. It again is not a maximal
Abelian subgroup.

For the real Euclidean group E(4, R) and the corresponding Euclidean space M(4, R)
the situation is much simpler. Only two subgroups chains leading to indecomposable sep-
arable coordinate systems exist, namely those of Fig (1a) and Fig (2a). The corresponding
separable coordinates are cylindrical and spherical, respectively.

For the inhomogeneous Lorentz group E(3, 1) and the corresponding Minkowski space
M(3, 1) the situation is much richer and is illustrated on Fig 3 and Fig 4.

The full richness of the problem manifests itself in the case of a balanced signature,
i.e. the group E(2, 2) and the space M(2, 2). As shown in Fig 5, five subgroup chains
lead through O(2, 2) to two-dimensional maximal Abelian subgroups. Those on Figs (5a),
(5b) and (5c) correspond to three different Cartan subalgebras. Figs (5f), (5g), (5h) and
(5i) correspond to different three-dimensional maximal Abelian subgroups. Finally the
five diagrams of Fig 6 correspond to chains ending in Abelian subgroups that are not
maximal. The corresponding coordinate systems have less than the maximal possible
number of ignorable coordinates.

The results presented above for the complex space, M(4, C), and the corresponding
complex Euclidean group, E(4, C), are in complete agreement with the algebraic theory of
separation of variables in four-dimensional Riemannian spaces presented elsewhere [3, 12,
13]. Here we have added a group theoretical background to the theory. Moreover we have
shown how coordinates of subgroup type on a homogeneous space are directly generated
by the action of the isometry group G of the space. To do this we needed a classification
of the subgroups of G, in particular the Abelian ones.
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More specifically for M(4, C) the coordinates (3.6) corresponding to the Cartan subalge-
bra are orthogonal. All other MASAs lead to nonorthogonal coordinates. The orthogonally
indecomposable but decomposable MASA, M4,2(0), contains both semisimple and nilpo-
tent elements. It leads to a nonorthogonal separation; the ignorable coordinates a and b
are the nonorthogonal ones (see eq.(3.16)). The remaining MASAs, M4,3(1), . . . ,M4,6(2),
are all maximal Abelian nilpotent subalgebras (MANS). They all lead to nonorthogonal
coordinate systems with three ignorable variables. Moreover the nonignorable variable r
is of “first order”. Only first-order derivatives with respect to r figure in all corresponding
Laplace operators and hence the separated solutions are expressed in terms of elementary
functions.

All the coordinates of subgroup type of Section 3.6, involving nonmaximal Abelian
subalgebras, are orthogonal.

In the case of the M(2, 2) space the situation is similar. Two of the Cartan subalgebras,
namely the one isomorphic to o(2) ⊕ o(2) and the one isomorphic to o(1, 1) ⊕ o(2), are
orthogonally decomposable and lead to orthogonal coordinates. The third Cartan subal-
gebra, isomorphic to o(2) ⊕ o(1, 1), is decomposable but orthogonally indecomposable. It
is, however, not absolutely orthogonally indecomposable. It leads to nonorthogonal coor-
dinates; the nonorthogonality concerns the ignorable variables only (see eq (5.16)). For
all other coordinate systems the situation is the same as in the complex case.

The subgroup diagrams of Fig 1, . . . , Fig 6 introduced in this article are closely related
to the tree diagrams used for compact groups [26, 27, 28] and O(n, 1) [22, 30]. We have
used the subgroup diagrams for O(n, C) in Section 6 when constructing the separated
wave functions in the different coordinate systems. Very briefly the rules are as follows.

i) A link from a rectangle to a circle, i.e. E(n, C) ⊃ O(n, C), corresponds to a cylin-
drical function (as in eq (6.3)).

ii) A link from a circle to a rectangle, i.e. O(n, C) ⊃ E(n−2, C), also leads to cylindrical
functions (as in eqs (6.16) and (6.18)).

iii) Links from circles to circles, i.e. O(n, C) ⊃ O(n − 1, C) or O(n, C) ⊃ O(n1, C) ⊗
O(n2, C), lead to Jacobi and Legendre functions.

iv) Diagrams involving trapezia, i.e. subgroup chains including only Abelian subgroups,
lead to a wave-function expressed in terms of elementary functions.

These rules can be further elaborated and specified, but we leave this for a future study.
One of the possible applications of the present results is to study integrable and super-

integrable systems in the spaces considered. Indeed for each separable coordinate system
in M(4, C), M(3, 1), M(2, 2) or M(4, R) we can find a potential, V (x1, . . . , x4), to be
added to the kinetic energy term in eq (1.2) such that the Schrödinger equation still
allows the separation of variables. The obtained Hamiltonians are integrable by construc-
tion: the Hamiltonian commutes with three linearly independent second-order differential
operators. The separable potentials involve four arbitrary functions of one variable each.
Among the integrable and separable systems obtained we can search for superintegrable
and multiseparable systems. This, however, goes beyond the scope of the present article.

A generalization of the present results to M(n, C) and M(p, q) spaces is under con-
sideration. The tools are available since MASAs of e(n, C) and e(p, q) have already been
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studied [17, 24, 25]. Separable coordinate systems for the real Euclidean space M(n) are
already known (not only the subgroup type ones) [10].
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