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Abstract

In [18] Jacobi introduced a third-order nonlinear ordinary differential equation which
links two different moduli of an elliptic integral. In the present paper Lie group
analysis is applied to that equation named Jacobi’s modular differential equation. A
six-dimensional Lie symmetry algebra is obtained and its symmetry generators are
found to be given in terms of elliptic integrals. As a consequence the transforma-
tion between Jacobi’s modular differential equation and the well-known Schwarzian
differential equation is derived.

1 Introduction

In 1829 Carl Gustav Jacob Jacobi (1804-1851) published Fundamenta Nova Theoriae

Functionum Ellipticarum through the Borntrager Brothers in Koenigsberg. In this book
[18] – which we have translated into Italian with the addition of explanatory notes and
comments [27] – he presents part of his studies on the elliptic functions that he began in
1826.
The theory of elliptic functions originated with Adrien-Marie Legendre (1752-1838) as was
acknowledged by Jacobi in § 1 of Fundamenta Nova. Legendre demonstrated that elliptic
integrals can be expressed by elementary functions and also reduced to three different
kinds. Actually Legendre called them elliptic functions and in a letter dated August 19,
1829, to Legendre [17] Jacobi proposed naming them elliptic integrals. The complete
elliptic integral of first kind is defined as

K(k) =

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

, (1.1)

while the complementary complete elliptic integral of first kind is

K ′(k) =

∫ 1

0

dx√
(1 − x2)(1 − (1 − k2)x2)

. (1.2)
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The quantity k is called the modulus and k′ =
√

1 − k2 is the complementary modulus. A
different modulus, say λ, generates completely different elliptic integrals of the first kind,
i.e.:

Λ(λ) =

∫ 1

0

dx√
(1 − x2)(1 − λ2x2)

and (1.3)

Λ′(λ) =

∫ 1

0

dx√
(1 − x2)(1 − (1 − λ2)x2)

, (1.4)

respectively. There exist many systems of different moduli which reduce to each other.
These systems are as many as the prime numbers, namely infinite [21].
Count Giulio Carlo (di) Fagnano (1682-1766) made the discovery that the integral that
yields the length of the arc of a lemniscate has properties similar to those of the integral
that yields the arc of a circle [10]. Leonhard Euler (1707-1783) generalized Fagnano’s
result and found that the sum of two complete elliptic integrals of first kind is an integral
and its upper limit depends algebraically on the upper limits of the addends. This is the
famous addition theorem of Euler [9].
Niels Henrik Abel (1802-1829) was studying elliptic functions during the same time as
Jacobi [1], although Abel could dedicate to it just few years before his untimely death while
Jacobi was able to continue his own studies for another twenty years. They both followed
two main ideas: to extend the consideration of the new analytic entities to complex values
and to replace the study of the elliptic integrals with the study of the elliptic functions
which derive from the inverse of the elliptic integrals of first kind. Thus Abel and Jacobi are
recognized jointly for developing the theory of the elliptic functions in their current form
[21]. A “noble competition” between these two young men may have developed [21], but
subsequent polemics about the unquestionable priority of Abel and the alleged speculation
that Jacobi may have been unfair and not cognizant of Abel’s original contribution ([28],
[29]) may be countered if one recalls that on March 14, 1829, nearly a month before Abel’s
death, Jacobi wrote to Legendre [16]

“Quelle découverte de M. Abel que cette généralisation de l’intégrale d’Euler!
A-t-on jamais vu pareille chose! Mais comment s’est-il fait que cette découverte,
peut-être la plus importante de ce qu’a fait dans les mathématiques le siècle
dans lequel nous vivons, étant communiquée à votre académie il y a deux
ans, elle a pu échapper à l’attention de vous et de vos confrères?1”

Actually the first mathematician who studied elliptic functions as inverses of elliptic inte-
grals was Johann Carl Friedrich Gauss (1777-1855) in 1809 [12]. This was established by
Schering who posthumously edited Gauss’ papers.
It is well-known that Sophus Lie (1842-1899) was influenced by Abel’s and especially
Galois’ work on algebraic equations as well as Jacobi’s work on partial differential equations
[13], [14]. Less well-known2 may be his involvement with the republication of Abel’s work

1What a discovery that generalization of Euler’s integral – namely, Euler’s addition theorem – by Mr.
Abel! Nothing similar has ever been seen before! How could it happen that this discovery, perhaps the most
important that has been made in mathematics during the century in which we live, and communicated to
your academy more than two years ago, has escaped your own and your fellow-academicians’ attention?

2Even lesser known is that Lie’s wife was a relative of Abel, her maternal grandfather being Abel’s
uncle [28].
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[2] and unfruitful search for Abel’s original manuscript [29] that Jacobi prized so much
and went unnoticed and was subsequently lost at the Paris Academy3.

In this paper we apply Lie group analysis to Jacobi’s modular differential equation,
which he derived for linking two different moduli of an elliptic integral [18], and obtain a
six-dimensional Lie symmetry algebra isomorphic to sl(2, IR)× sl(2, IR) which transforms
it into the well-known Schwarzian differential equation [15]. To our knowledge this result
has not been previously reported. Also it is noteworthy that the symmetry generators
are in terms of elliptic integrals. This is the first instance of the appearance of special
functions in the Lie symmetry algebra admitted by a nonlinear equation.

In order to honor Jacobi’s bicentennial, in Section 2 we present the English translation
of the two relevant paragraphs of Fundamenta Nova, namely §32 and §33, in which Ja-
cobi’s modular differential equation is obtained. Note that our comments to Fundamenta

Nova are in boldface within the text while the sentences in italics are Jacobi’s. We have
also corrected any obvious misprints not all of which were listed in the Corrigenda of
Fundamenta Nova. In [18] few formulas are numbered. Therefore we have successively
numbered those addressed in our comments. Our numbering scheme follows the style
of the current journal, consecutively numbering subordinate to the section number and
appearing at the right of each formula, e.g. (2.1). We have also kept Jacobi’s original
consecutive numbering which ignores the section number, e.g., 1), and appears to the left.
The two footnotes in Section 2 are Jacobi’s and these are in their original notation.

In Section 3 we apply Lie group analysis to Jacobi’s modular differential equation and
obtain the transformation to the Schwarzian differential equation. In Section 4 some final
remarks are made.

2 Two paragraphs from Fundamenta Nova

32.

However, among the properties of modular equations, it seems to me that it is important
to point out and recall that they all satisfy the same third-order differential equation.

This research has to be carried a bit further.
It is quite known that ∗), assuming aK + bK ′ = Q, then it will be:

k(1 − k2)
d2 Q

dk2
+ (1 − 3k2)

dQ

dk
= kQ,

where a, b are two arbitrary constants.

Using Maple V is easy to show that the substitution Q = aK + bK ′

identically satisfies this second-order ordinary differential equation.

Thus assuming moreover a′K + b′K ′ = Q′, where a′, b′ are arbitrary constants, then it
will be:

k(1 − k2)
d2 Q′

d k2
+ (1 − 3k2)

dQ′

d k
= kQ′.

3It was found in Guglielmo Libri’s library, although some pages are still missing [8].
∗) Cf. Legendre Traité des F. E. Tom. I. Cap. XIII.
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By combining these equations one obtains:

k(1 − k2)

{
Q

d2 Q′

d k2
− Q′

d2 Q

dk2

}
+ (1 − 3k2)

{
Q

dQ′

d k
− Q′

dQ

dk

}
= 0

and after integrating:

k(1−k2)

{
Q

dQ′

d k
− Q′

dQ

dk

}
= (ab′−a′b)k(1−k2)

{
K

dK ′

d k
− K ′

dK

dk

}
= (ab′−a′b)C. (2.1)

In a particular case the constant C has been found by Legendre to be = −1
2π, hence

{
Q

dQ′

d k
− Q′

dQ

dk

}
=

−1
2π(ab′ − a′b)

k(1 − k2)
, or :

d
Q′

Q
=

−1
2π(ab′ − a′b)d k

k(1 − k2)QQ
.

If we put a = 1, b = 0, a′ = 0, b′ = 1, k = 1/
√

2 into (2.1), then it is easy to

obtain C = −π/2, as we have verified with Maple V.

In the same way, being λ any other modulus, and assuming αΛ + βΛ′ = L and
α′Λ + β′Λ′ = L′, one will have:

d
L′

L
=

−1
2π(αβ′ − α′β)dλ

λ(1 − λ2)LL
.

Let λ be the modulus into which k is transformed by the first transformation of nth-order.
Moreover let Q = K, Q′ = K ′, L = Λ, L′ = Λ′; one will have

L′

L
=

Λ′

Λ
=

nK ′

K
=

nQ′

Q
.

At § 25 Jacobi has already introduced the formula
Λ′

Λ
=

nK ′

K
.

It follows that:

ndk

k(1 − k2)KK
=

dλ

λ(1 − λ2)ΛΛ
. (2.2)

The relationships Q = K and Q′ = K ′ imply that a = 1, b = 0, a′ = 0, b′ =
1, while from L = Λ and L′ = Λ′, it follows α = 1, β = 0, α′ = 0, β′ = 1.
Thus

ab′ − a′b = 1 and αβ′ − α′β = 1.

Finally:

L′

L
=

nQ′

Q
=⇒ d

L′

L
= n d

Q′

Q
=⇒ ndk

k(1 − k2)KK
=

dλ

λ(1 − λ2)ΛΛ
.
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For the first transformation we have also found that Λ =
K

nM
– at the end of § 24 – from

which:

MM =
1

n
· λ(1 − λ2)d k

k(1 − k2)dλ
.

This last equation is obtained from (2.2) by means of the substitution

Λ =
K

nM
.

From the second transformation we have seen that
Λ′

1

Λ1
=

1

n

K ′

K
, Λ1 =

K

M1
, – at the end

of § 25 – hence :
d k

k(1 − k2)KK
=

ndλ1

λ1(1 − λ2
1)Λ1Λ1

,

and then as before

M1M1 =
1

n
· λ1(1 − λ2

1)d k

k(1 − k2)dλ1
.

The value M1M1 is obtained in the same way as MM , the only difference

being that in this case, L = Λ1 and L′ = Λ′
1
.

In general whatever the modulus λ is, real or imaginary, to which the proposed modulus
k can be transformed by a transformation of nth-order, one will have the equation:

MM =
1

n
· k(1 − k2)dλ

λ(1 − λ2)d k
.

In order to prove it, I will write that one generally obtains equations of the form:

αΛ + iβΛ′ =
aK + ibK ′

nM

α′Λ′ + iβ′Λ =
a′K ′ + ib′K

nM
,

where a, a′, α, α′, are odd numbers, b, b′, β, β′, even numbers, and they are all either
positive or negative such that aa′ + bb′ = 1 and αα′ + ββ′ = 1 ∗).

Jacobi does not explain these two equations. In [6] one reads that the

existence of these equations can be deduced without difficulty from

the general formulas of the transformations, but the actual proof would

depend on investigations that go beyond the scope of Fundamenta Nova.

∗) A more accurate determination of the numbers a, a′, b, b′, for all the transformations of the same
order seems very difficult to obtain and, if we are not mistaken, this determination depends on the limits
which the modulus k moves in between such that for different limits we have other solutions. The intricacy
of this is well-known to an expert in the area. It is clear that the first step is to research thoroughly the
nature of the imaginary modulus, which is still an open question.
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Hence, assuming
aK + ibK ′ = Q, a′K ′ + ib′K = Q′

(2.3)
αΛ + iβΛ′ = L, α′Λ′ + iβ′Λ = L′,

and, since aa′ + bb′ = 1, αα′ + ββ′ = 1, we obtain that

d
Q′

Q
=

−nπd k

2k(1 − k2)QQ
, d

L′

L
=

−πdλ

2λ(1 − λ2)LL
.

We have seen that

if Q = ãK + b̃K ′, Q′ = ã′K + b̃′K ′ =⇒ ãb̃′ − ã′b̃ = 1

and

if L = α̃Λ + β̃Λ′, L′ = α̃′Λ + β̃′Λ′ =⇒ α̃β̃′ − α̃′β̃ = 1.

From (2.3) it follows that

ã = a, b̃ = ib, ã′ = ib′, b̃′ = a′

and

α̃ = α, β̃ = iβ, α̃′ = iβ′, β̃′ = α′

hence

1 = ãb̃′ − ã′b̃ = aa′ − ib(ib′) = aa′ + bb′

and

1 = α̃β̃′ − α̃′β̃ = αα′ − iβ(iβ′) = αα′ + ββ′.

Thus, being
Q′

Q
=

L′

L
and L =

Q

nM
, one generally obtains:

MM =
1

n
· λ(1 − λ2)d k

k(1 − k2)dλ
.

I will again notice that the equation can be also put in the following form:

MM =
1

n
· λ2(1 − λ2)d (k2)

k2(1 − k2)d (λ2)
=

1

n
· λ′2(1 − λ′2)d (k′2)

k′2(1 − k′2)d (λ′2)
. (2.4)

In fact
1

n
· λ2(1 − λ2)d (k2)

k2(1 − k2)d (λ2)
=

1

n
· λ2(1 − λ2) 2k d k

k2(1 − k2) 2λdλ

so by simplifying

1

n
· λ2(1 − λ2)d (k2)

k2(1 − k2)d (λ2)
=

1

n
· λ(1 − λ2)d k

k(1 − k2)dλ
.

The second equality of (2.4) is obtained by the relationship existing

between the modulus and its complement that is: k2 + k′2 = 1.
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Therefore the expression MM does not change when the moduli k and λ are replaced
with their complements k′ and λ′, which is what we have demonstrated above by the
complementary transformations: the multiplier M is the same apart the sign. Moreover
changing k with λ and λ with k, namely applying the supplementary transformation, MM
becomes

1

n
· k(1 − k2)dλ

λ(1 − λ2)d k
=

1

nnMM
, and hence M becomes

1

nM
,

this is what we have proved above.

33.

In the first part of this paragraph Jacobi shows that the multiplier M ,

when considered as a function of k, satisfies the second-order differential

equation 6), while in the second part Jacobi obtains the third-order

differential equation 8) which is satisfied by the moduli λ and k.

Assuming Q = aK + bK ′, L = αΛ + βΛ′, the constants a, b, α, β, can be always
determined in such a way that L = Q

M
, Q = ML. From it one obtains the equations:

1) (k − k3)d2 Q
d k2 + (1 − 3k2)d Q

d k
− kQ = 0

2) (λ − λ3)d2 L
d λ2 + (1 − 3λ2)d L

d λ
− λL = 0,

which can be also represented as follows:

3) d
(k−k3)d Q

d k

d k
− kQ = 0

4) d
(λ−λ3)d L

d λ

dλ
− λL = 0.

By replacing Q = ML in the equation:

(k − k3)
d2 Q

dk2
+ (1 − 3k2)

dQ

dk
− kQ = 0,

one obtains:

L

{
(k − k

3)
d2 M

dk2
+ (1 − 3k

2)
d M

d k
− kM

}
+

dL

dk

{
2(k − k

3)
dM

dk
+ (1 − 3k

2)M

}
+ (k − k

3)M
d2 L

d k2
= 0,

which when multiplied by M can be written:

5) LM

{
(k − k3)

d2 M

dk2
+ (1 − 3k2)

dM

dk
− kM

}
+ d

(k−k3)M2d L

d k

d k
= 0.

One obtains equation 5) by the following procedure. Replacing Q = ML

into equation 1):

(k − k3)
d2 (ML)

d k2
+ (1 − 3k2)

d (ML)

d k
− kML = 0
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and applying the derivation formula of a product yields

(k − k3)
d

d k

(
dM

dk
L +

dL

dk
M

)
+ (1 − 3k2)

(
dM

dk
L +

dL

dk
M

)
− kML = 0

(k−k
3)

(
d2M

d k2
L +

d M

d k

dL

dk
+

d2L

d k2
M +

dL

dk

dM

dk

)
+(1−3k

2)

(
d M

d k
L +

dL

dk
M

)
−kML = 0;

then collecting the terms with L and
dL

d k
gives

L

{
(k − k

3)
d2 M

d k2
+ (1 − 3k

2)
dM

d k
− kM

}
+

d L

d k

{
2(k − k

3)
d M

d k
+ (1 − 3k

2)M

}

+(k − k
3)M

d2 L

d k2
= 0.

If one multiplies by M

LM

{
(k − k

3)
d2 M

d k2
+ (1 − 3k

2)
dM

d k
− kM

}
+ M

d L

d k

{
2(k − k

3)
d M

d k
+ (1 − 3k

2)M

}

+(k − k
3)M2 d2 L

dk2
= 0,

and notices that

M
dL

dk

{
2(k − k3)

dM

dk
+ (1 − 3k2)M

}
+ (k − k3)M2 d2 L

dk2

= (k − k3)M2 d2L

dk2
+ 2M(k − k3)

dM

dk

dL

dk
+ (1 − 3k2)M2 dL

dk

=
d

d k

(
(k − k3)M2 dL

dk

)
,

then equation 5) results.

However, from the previous paragraph one has:

M2 =
(λ − λ3)d k

n(k − k3)dλ
, hence

(k − k3)M2dL

dk
=

(λ − λ3)dL

ndλ
.

Moreover from equation 4) one has:

d

{
(λ − λ3)dL

dλ

}
= λLdλ, hence

d
(k−k3)M2d L

d k

d k
= d

(λ−λ3)d L

d λ

ndk
=

λLdλ

nd k
.

Hence equation 5) after a division by L transforms into:

6) M

{
(k − k3)

d2 M

dk2
+ (1 − 3k2)

dM

dk
− kM

}
+

λdλ

nd k
= 0.

We observe with Cayley [6] that this equation depends on the order of

the transformation since it contains n.
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When we replace M in this equation with the value obtained from the equation

M2 =
(λ − λ3)d k

n(k − k3)dλ
, then we obtain a differential equation between the moduli k, λ them-

selves, an equation which is clearly of third order. A little complicated calculation yields:

7)
3d2 λ2

d k4
− 2dλ

d k
· d3 λ

d k3
+

dλ2

d k2

{(
1 + k2

k − k3

)2

−
(

1 + λ2

λ − λ3

)2

· dλ2

d k2

}
= 0.

We have verified equation 7) in the following way. From M2 =
(λ − λ3)d k

n(k − k3)d λ

we have obtained
1

M2
=

n(k − k3)d λ

(λ − λ3)d k
= e1 and consequently

dM

dk
= −M3

2

d e1

d k

d2M

dk2
= −3

2
M2

dM

dk

d e1

d k
− M3

2

d2e1

d k2
.

Substitution of those values into 6) and use of REDUCE 3.7 give rise

to the differential equation 7).

In this equation d k is a constant differential.

This means that k is the independent variable [6]. We rewrite equation

7) in modern notation as

3

(
d2 λ

d k2

)2

−2
dλ

d k

d3 λ

d k3
+

(
dλ

d k

)2
{(

1 + k2

k − k3

)2

−
(

1 + λ2

λ − λ3

)2(
dλ

d k

)2
}

= 0. (2.5)

If one wishes to transform 7) into another equation with no constant differentials, then
one has to assume:

d2 λ

d k2
=

d2 λ

d k2
− dλd2 k

d k3

d3 λ

d k3
=

d3 λ

d k3
− 3

d2 λd2 k

d k4
− dλd3 k

d k4
+ 3

dλd2 k2

d k5

hence:
3d2 λ2

d k4
− 2dλ

d k
· d3 λ

d k3
=

3d2 λ2

d k4
− 3dλ2d2 k2

d k6
+

2dλ2d3 k

d k5
− 2dλd3 λ

d k4
.

Thus equation 7) when multiplied by d k6 can be transformed into the following equation,
where no differential is assumed constant, and such that any differential can be considered
constant:

8) 3{d k2d2λ2 − dλ2d2k2} − 2d kdλ{d kd3λ − dλd3k}+

+d k2dλ2

{(
1 + k2

k − k3

)2

d k2 −
(

1 + λ2

λ − λ3

)2

dλ2

}
= 0.

It seems clear that this equation remains the same if we mutually replaced the elements
k and λ: this we have proved above for the modular equations.
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Now it is necessary to study this third-order differential equation with another method.
For this purpose we introduce the equation we started with, namely

(k − k3)
d2 Q

dk2
+ (1 − 3k2)

dQ

dk
− kQ = 0,

and the quantity (k − k3)QQ = s. We have:

d s

d k
= (1 − 3k2)QQ + 2(k − k3)Q

dQ

dk

d2 s

d k2
= −6kQQ + 4(1 − 3k2)Q

dQ

dk
+ 2(k − k3)

(
dQ

dk

)2

+ 2(k − k3)Q
d2 Q

dk2
.

In the Latin text 4(1 − 3k2)Q
dQ

dk
is written as 4(1 − 3k2)QdQ, a misprint

which is not listed in the Corrigenda.

If in this equation one considers that

(k − k3)
d2 Q

dk2
= kQ − (1 − 3k2)

dQ

dk
, then one gets :

d2 s

d k2
= −4kQQ + 2(1 − 3k2)Q

dQ

dk
+ 2(k − k3)

(
dQ

dk

)2

= 2
dQ

dk

{
(1 − 3k2)Q + (k − k3)

dQ

dk

}
− 4kQQ.

If it is multiplied by 2s = 2(k − k3)QQ, then it becomes:

2sd2 s

d k2
= 2(k − k3)Q

dQ

dk

{
2(1 − 3k2)QQ + 2(k − k3)Q

dQ

dk

}
− 8k2(1 − k2)Q4,

or also being

2(k − k3)Q
dQ

dk
=

d s

d k
− (1 − 3k2)QQ,

2(1 − 3k2)QQ + 2(k − k3)Q
dQ

dk
=

d s

d k
+ (1 − 3k2)QQ,

we will have:

2sd2 s

d k2
=

(
d s

d k

)2

− (1 − 3k2)2Q4 − 8k2(1 − k2)Q4 =

(
d s

d k

)2

− (1 + k2)2Q4, or :

9)
2sd2 s

d k2
−
(

d s

d k

)2

+

(
1 + k2

k − k3

)2

ss = 0.

In fact, being s = Q2(k − k3), one obtains Q2 =
s

(k − k3)
. Then

(1 + k2)2Q4 = (1 + k2)2
s2

(k − k3)2
=

(
1 + k2

k − k3

)2

s2.
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Assuming a′K + b′K ′ = Q′,
Q′

Q
= t, we have seen that

d t

d k
=

m

(k − k3)QQ
=

m

s
, where

m is a constant: hence s =
mdk

d t
. Let us transform equation 9) into another one in which

d t is assumed constant. It will be
d s

d k
=

md2 k

d td k
,

d2 s

d k2
=

md3 k

d td k2
− md2 k2

d td k3
; by means of

these substitutions from equation 9) derives:

2d3 k

d t2d k
− 3d2 k2

d t2d k2
+

(
1 + k2

k − k3

)2
d k2

d t2
= 0, or also : (2.6)

10) 2d3 kd k − 3d2 k2 +

(
1 + k2

k − k3

)2

d k4 = 0;

where we have to derive with respect to t as one deduces from the equation.

In order to understand better equation (2.6) it is enough to multiply it

by

(
d k

d t

)2

. Thus we obtain

2
d3k

d t3
d k

d t
− 3

(
d2k

d t2

)2

+

(
1 + k2

k(1 − k2)

)2(
d k

d t

)4

= 0. (2.7)

Assuming
α′Λ + β′Λ′

αΛ + βΛ′
= ω, – In the same way it was assumed above that t =

Q′

Q
, now

we have ω =
L′

L
, in accordance with the notation used by Jacobi at the beginning of

§32. – each time that λ becomes a transformed modulus then the constants α, β, α′, β′,
could be determined in such a way that t = ω; and we similarly obtain:

11) 2d3 λdλ − 3d2 λ2 +

(
1 + λ2

λ − λ3

)2

dλ4 = 0,

and in this equation one will have to derive with respect to ω = t. Let us multiply equation
10) by dλ2, equation 11) by d k2, and subtracting 11) from 10) yields:

12) 2d kdλ{dλd3 k − d kd3 λ} − 3{dλ2d2 k2 − d k2d2 λ2}

+d k2dλ2

{(
1 + k2

k − k3

)2

d k2 −
(

1 + λ2

λ − λ3

)2

dλ2

}
= 0.

But this equation coincides with 8) where we know that any differential can be considered
constant; thus having proven all of this with the assumption that d t is a constant differ-
ential, then it follows that it is true for any other differential considered as such.
Here it is then a third-order equation with infinite, although particular, algebraic solu-
tions, namely the equations that we have called modular. However, the general integral

depends on the elliptic functions; since t = ω, or
a′K + b′K ′

aK + bK ′
=

α′Λ + β′Λ′

αΛ + βΛ′
, which can be

represented with the following equations:

mKΛ + m′K ′Λ′ + m′′KΛ′ + m′′′K ′Λ = 0,
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where m, m′, m′′, m′′′, are arbitrary constants. We consider this integration would be
a fertile field for further research.
We can enquire if the modular equations for the transformations of third and fifth order
satisfy our third-order differential equation, as they should. In order to avoid too lengthy
calculation, it is enough to demonstrate it in the case of the transformation of second

order where λ =
1 − k′

1 + k′
.

Assuming d k′ as constant one has:

λ =
1 − k′

1 + k′
= −1 +

2

1 + k′
kk + k′k′ = 1

dλ

d k′
=

−2

(1 + k′)2
d k

d k′
=

−k′

k
d2 λ

d k′2
=

4

(1 + k′)3
d2 k

d k′2
=

−1

k
− k′k′

k3
=

−1

k3

d3 λ

d k′3
=

−12

(1 + k′)4
d3 k

d k′3
=

−3k′

k5
.

Hence:
d k2d2 λ2 − dλ2d2 k2

d k′6
=

16k′k′

k2(1 + k′)6
− 4

k6(1 + k′)4
=

=
4{4k4k′2 − (1 + k′)2}

k6(1 + k′)6
=

4{4k′2(1 − k′)2 − 1}
k6(1 + k′)4

.

The expression
d k2d2 λ2 − d λ2d2 k2

d k′6

can also be written as:

(
d k

d k′

)2(
d2λ

d k′2

)2

−
(

d λ

d k′

)2 (
d2k

d k′2

)2

.

The values of these four derivatives have been found above. Then,

substituting these values and performing the appropriate calculations,

one obtains the previous equalities.

Moreover one gets:

d kd3 λ − dλd3 k

d k′4
=

12k′

k(1 + k′)4
− 6k′

k5(1 + k′)2
=

6k′{2(1 − k′)2 − 1}
k5(1 + k′)2

(2.8)

d kdλ{d kd3 λ − dλd3 k}
d k′6

=
12k′2{2(1 − k′)2 − 1}

k6(1 + k′)4

from which

3{d k2d2 λ2 − dλ2d2 k2} − 2d kdλ{d kd3 λ − dλd3 k}
d k′6

=
12(2k′2 − 1)

k6(1 + k′)4
.
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In the Latin text formula (2.8) is written as:

d kd3 λ − d λd3 k

d k′4
=

12k′

k(1 + k′)4
+

6k′

k5(1 + k′)2
=

6k′{2(1 − k′)2 + 1}
k5(1 − k′)2

.

The last denominator on the right contains a misprinted sign which is

listed in the Corrigenda. After suitable checking, we found two other

misprinted signs.

Moreover one has (
1 + k2

k − k3

)2
d k2

d k′2
=

(1 + k2)2

k4k′2

(
1 + λ2

λ − λ3

)2
dλ2

d k′2
=

4

(1 + k′)4

{
1 + k′

1 − k′

}2{1 + k′2

2k′

}2

=
(1 + k′2)2

k′2k4

from which:

{
1 + k2

k − k3

}2
d k2

d k′2
−
{

1 + λ2

λ − λ3

}2
dλ2

d k′2
=

3(1 − 2k′2)

k4k′2
(2.9)

d k2dλ2

d k′4

{(
1 + k2

k − k3

)2
d k2

d k′2
−
(

1 + λ2

λ − λ3

)2
dλ2

d k′2

}
=

12(1 − 2k′2)

k6(1 + k′)4
. (2.10)

In the Latin text (2.9) contains
d λ2

d λ′2
instead of

d λ2

d k′2
. The same misprint

is in formula (2.10). Both of them are not listed in the Corrigenda.

Finally one obtains:

3{d k2 d2λ2 − dλ2 d2k2} − 2d k dλ{d k d3λ − dλ d3k}
d k′6

+
d k2 d λ2

d k′4

{(
1 + k2

k − k3

)2
d k2

d k′2
−
(

1 + λ2

λ − λ3

)2
d λ2

d k′2

}
=

12(2k′2 − 1)

k6(1 + k′)4
+

12(1 − 2k′2)

k6(1 + k′4)
= 0.

If there was a method for finding algebraic solutions of a differential equation, then it
would be possible to obtain the modular equation for the transformation of any order n
by using only the differential equation given above.

In [6] Cayley adds “but, the mere verification being so difficult, it does

not appear that anything can be done in this manner in regard to the

modular equations.”

Apart from Condorcet I do not know any analyst who had paid adequate attention to
such an hard matter.
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3 Application of Lie group analysis

Using ad hoc interactive REDUCE programs ([22, 23]) we have applied Lie group analysis
to the differential equation (2.5), which we call Jacobi’s modular differential equation, and
found that it admits a six-dimensional Lie symmetry algebra isomorphic to sl(2, IR) ×
sl(2, IR) generated by the following operators

Γ1 = kk′2K2(k)∂k Γ2 = kk′2K ′2(k)∂k Γ3 = kk′2K(k)K ′(k)∂k (3.1)

Γ4 = λλ′2Λ2(λ)∂λ Γ5 = λλ′2Λ′2(λ)∂λ Γ6 = λλ′2Λ(λ)Λ′(λ)∂λ (3.2)

which come from solving two determining equations of the following type:

d3s

dk3
+

1 + k2

k3(1 − k2)3

(
ds

dk
k(1 − k4) + s(1 − k4 − 4k2)

)
= 0 (3.3)

with s a function of k. Therefore a change of variable of the following type

t = f(k) (3.4)

y = g(λ) (3.5)

transforms equation (2.5) into the third-order ordinary differential equation [11]:

y′′′ =
3

2

y′′2

y′
(3.6)

which admits a six-dimensional Lie symmetry algebra generated by the following operators

X1 = ∂t, X2 = t∂t, X3 = t2∂t, (3.7)

X4 = ∂y, X5 = y∂y, X6 = y2∂y. (3.8)

Equation (3.6) is called the Schwarzian differential equation because it can be written as

{y, t} = 0

where {., .} stands for the Schwarzian derivative [15]. It is well-known [15] that the fol-
lowing change of dependent variable

v =
y′′

y′

transforms (3.6) into a Riccati equation

v′ =
v2

2

and after few quadratures the general solution of equation (3.6) is given by

y =
c2

t + c1
+ c3 (3.9)

with ci (i = 1, 3) arbitrary constants. In (2.5) one can exchange λ with k and still obtain
the same equation, therefore function g in (3.5) coincides with function f in (3.4).
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Using ad hoc interactive REDUCE programs [22, 23] we have applied Lie group analysis
to the differential equation (2.7) and found that it admits a six-dimensional Lie symmetry
algebra generated by the operators (3.7) and (3.1). This means that, when Jacobi trans-
formed λ into t, he actually found the function f , namely the transformation (3.4) and
(3.5), i.e.

t =
K ′

K
(3.10)

y =
Λ′

Λ
. (3.11)

Finally substitution of (3.10)-(3.11) into (3.9) yields the general solution of Jacobi’s mod-
ular differential equation (2.5), i.e.

Λ′

Λ
=

c2K

K ′ + c1K
+ c3. (3.12)

Lie proved that the dimension of the Lie algebra of contact symmetries for an equation of
third order cannot exceed ten [20]. Using ad hoc interactive REDUCE programs [22, 23]
it is easy to show that Jacobi’s modular differential equation (2.5), i.e.

{λ, k} = −1

2

(
1 + λ2

λ(1 − λ2)

)2(
dλ

d k

)2

+
1

2

(
1 + k2

k(1 − k2)

)2

, (3.13)

admits ten contact symmetries of the type

−∂Ωj

∂λ
∂λ +

(
Ωj −

dk

dλ

∂Ωj

∂ dk
dλ

)
∂k (j = 1, 10) (3.14)

with

Ωj = sj(λ)
dk

dλ
+ Gj(λ, k)

√
dk

dλ
+ αj(k), (3.15)

and

sn = 0 (n = 1, 2, 3, 4, 5, 6, 7), s8 = −λ(1 − λ2)Λ2(λ),

s9 = −λ(1 − λ2)Λ′2(λ), s10 = −λ(1 − λ2)Λ(λ)Λ′(λ),

G1 =
√

λk(1 − λ2)(1 − k2)Λ(y)K(k), G2 =
√

λk(1 − λ2)(1 − k2)Λ′(y)K(k),

G3 =
√

λk(1 − λ2)(1 − k2)Λ(y)K ′(k), G4 =
√

λk(1 − λ2)(1 − k2)Λ′(y)K ′(k),

Gm = 0 (m = 5, 6, 7, 8, 9, 10), αp = 0 (p = 1, 2, 3, 4, 8, 9, 10),

α5 = −k(1 − k2)K2(k), α6 = −k(1 − k2)K ′2(k), α7 = −k(1 − k2)K(k)K ′(k).

4 Final remarks

To our knowledge this is the first report of special functions in the generators of Lie
symmetries admitted by a nonlinear differential equation. Another example involving
Bessel functions can be found in [24].
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Equation (2.7) belongs to a class of equations which were studied by Chazy in his thesis
[7] in order to find if they possess the Painlevé property. Equation (2.7), i.e.

{k, t} = −1

2

(
1 + k2

k(1 − k2)

)2(
d k

d t

)2

, (4.1)

is not to be confused with the modular elliptic equation of Hermite [5, 25], i.e.:

{y, x} =
1

2

(
1 − λ2

y2
+

1 − µ2

(1 − y)2
+

1 − λ2 − µ2 + ν2

y(1 − y)

)(
d y

dx

)2

. (4.2)

It seems that Cayley’s remark about Jacobi’s modular differential equation (2.5) was
echoed in the mathematical literature because we were unable to find any reference to such
a differential equation. Everyone who is involved with elliptic integrals deals with modular
equations which are the algebraic solutions of Jacobi’s modular differential equation. In
[3] it was stated that Srinivasa Ramanujan (1887-1920) in his famous paper [26] used
modular equations to calculate a couple of simple invariants but “it seems unlikely that
Ramanujan used only modular equations”. However, we notice that on page 302 in [26]
Ramanujan writes

“If

n
K ′

K
=

L

L′
,

we have
ndk

kk′2K2
=

dl

ll′2L2
.

But, by means of the modular equation connecting k and l, we can ex-
press dk/dl as an algebraic function of k, a function moreover in which all
coefficients which occur are algebraic numbers.”

Did Ramanujan know how to find algebraic solutions of Jacobi’s modular differential
equation? In [4] it was established that he owned a copy of Cayley’s book [6]. We hope
to address this issue in a future paper.

Acknowledgements

Useful discussions with R Conte are gratefully acknowledged.

References

[1] Abel N H, Recherches sur les fonctions elliptiques, J. Reine Angew. Math. 2 (1827), 101–197.
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Paris, 1973.

[26] Ramanujan S, Modular equations and approximation to π, Quart. J. Indian Math. Soc. 45
(1914), 350–372.

[27] Rosati L, Nucci M C and Mezzanotte F, Edizione italiana e rilettura dei FUNDAMENTA
NOVA di K. G. J. Jacobi a 150 anni dalla morte (18 Febbraio 1851 - 18 Febbraio 2001),
Preprint Dpartimento di Matematica, Università di Perugia, RT 2001-4, 2001.
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