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Abstract

We describe Jacobi’s method for integrating the Hamilton-Jacobi equation and his
discovery of elliptic coordinates, the generic separable coordinate systems for real
and complex constant curvature spaces. This work was an essential precursor for
the modern theory of second-order superintegrable systems to which we then turn.
A Schrodinger operator with potential on a Riemannian space is second-order su-
perintegrable if there are 2n — 1 (classically) functionally independent second-order
symmetry operators. (The 2n — 1 is the maximum possible number of such symme-
tries.) These systems are of considerable interest in the theory of special functions
because they are multiseparable, i.e., variables separate in several coordinate sets and
are explicitly solvable in terms of special functions. The interrelationships between
separable solutions provides much additional information about the systems. We give
an example of a superintegrable system and then present very recent results exhibiting
the general structure of superintegrable systems in all real or complex two-dimensional
spaces and three-dimensional conformally flat spaces and a complete list of such spaces
and potentials in two dimensions.

1 Introduction

During Carl Gustav Jacob Jacobi’s brief life he contributed much to number theory, the
theory of both ordinary and partial differential equations, the calculus of variations, the
three-body problem and the development of classical mechanics and elliptic functions. His
most celebrated researches relate to the study of elliptic functions which he and Abel
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established independently. Our work builds on Jacobi’s researches in mechanics and over-
laps with the notion of Jacobi elliptic functions. In 1842 Jacobi invented the method of
generating functions for solving the Hamiltonian equations of classical mechanics [23],

dq OH dp  OH

_ - - 1.1
dt Op’ dt oq’ (1L.1)

where {g;,p;} = 0;; and {-,-} is the Poisson Bracket. (Jacobi also allowed for ex-
plicitly time-dependent Hamiltonians. We do not discuss this extension here, although
such systems can also be treated by the methods of separation of variables. Treat-
ment of the appropriate type of separation, the so-called R-separation, would take us
too far afield.) This method consists of finding a generating function, S(q, «), such that
p = VqS(aq,a),8 = VoS5(q,«) and the Hamiltonian is transformed to c;. The trans-
formed equations have the form

a8 9H do  OH

=—=(10,...,0 =
dt Oa (1,0,...,0),

@ oY

where H = H(q(a, 3), p(a, 3)). The solutions have the particularly simple form
ﬂ(f) = (t + b1,b9, ..., bn), Oé(t) = (al, a9,y ...., an).

The generating function that enables this transformation can be calculated using the
relation p = V4S5(q, @) which results from S(q, &) being a generating function. The other
relation is § = V,S5(q,a). The resulting equation for S(q,«) is the (time-independent)
Hamilton-Jacobi equation

H(qa VS(q, Oé)) = a1, (12)

where it is usual to set a1 = E. If this equation can be solved for S(q,a) in such a way

that 825( )
q,«
det ( dgda, > 70,

then a complete integral for the Hamiltonian system has been obtained, depending on n
constants of the motion «. The key connection with separation of variables techniques
comes from the ansatz of additive separation, S(q,a) = >, Si(gi, @).

Hamiltonians that correspond to the usual H = Kinetic Energy + Potential Energy
and are of the form H = %p -p + V(q) can be solved by this ansatz in many physically
interesting cases. The most notable case is that of the motion of a single planet under the
influence of the gravity of the Sun. Written in spherical coordinates the Hamilton-Jacobi
equation has the form

1/, 1(, 1 G
- — —a —_——— pu— 0
2 (pr + r2 <p9 * sin? Hp“")) r M

and can be solved via the substitution

S(r,0,0,a) = Sp(r,a) + Sp(0,a) + Sy(p, ),
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where r = (rsinf cos p,rsinfsin g, rcosf). In order to solve other nontrivial problems
in mechanics, Jacobi introduced his “remarkable change of variables”, the generalized
elliptical coordinates x; in n dimensions, [23]. These can be defined by the relations

1+Zz_ek _] 1( xj)’ (13)

Z 1(Z —ex)

where the ¢ are Cartesian coordinates and the e are distinct constants. An equivalent
definition is
o, I (ex — )
T ey —en)
where e < 1 < ey < - <e, < xpand k = 1,---,n. In the case that n = 3,4 the
elliptic coordinates admit expression in terms of Jacobi elliptic functions [57, 1]. Forn =3
we have

1
i deadnﬂdn%

where we write 1 = sna, x5 = snf and x3 = sny with normalized choice of e; according
toe; =0, ea =1 and e3 = k~2 with k? < 1, and the k dependence of the Jacobi elliptic

functions has been suppressed, i.e., snd = sn(d, k). Typically the Jacobi elliptic function
sn(d, k) is defined by

g1 = ksnasnfsny, ¢ = Icnacnﬂcn% qs =

sn(s,k) 1
0= / dt
o V-2 -RP)
These functions have properties analogous to trigonometric functions. The variables «,
(3 and v vary in the ranges « € [-K, K], € [K —iK', K+iK'] and v € [iK' — K,iK'+ K].
In addition to elliptic coordinates in Euclidean space there are also elliptic coordinates on
the n-dimensional sphere. These are defined by

= s (e -ay)

-
z—ex T (z—ex)

k=1

(1.4)

where s? + -+ s2,; = 1. The inverse relations are

§2 = 7 (e, — ;)
jzr(ej — ex)

where k = 1,--- ;n + 1 and the coordinates satisfy e; < 21 < ea < -+ < e, < xp < €pt1.
These coordinates enable the ansatz of separation of variables to be used for problems on
the sphere analogously to those solved in Euclidean space. If n = 2, the coordinates can
also be written in terms of Jacobi elliptic functions according to [1]

k
s1 = ksnasnf3, so =i—cnacnf, s3=

7 /dnadnﬂ (1.5)

k
with o and (8 varying in the same ranges as for Euclidean elliptical coordinates. The Jacobi
elliptical coordinates enabled the problem of geodesic motion on an ellipsoid to be solved.
It was on the basis of these investigations of Jacobi that subsequent investigations in the
theory of separation of variables developed. Most notable among these were the mechanism
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of separation extended by Stéckel [55] to quite general systems of orthogonal coordinates.
Subsequently Levi Civita [43] gave a set of nonlinear partial differential equations that must
be satisfied if separation of variables is possible in a particular coordinate system. The next
important results were obtained by Eisenhart [9] who gave an intrinsic characterization
of orthogonal separable coordinate systems and also discussed the product separability of
the Helmholtz or Schréodinger equation AW + A1 ¥ = 0. Included in his analysis was the
geometrical significance of the additional criterion for separation by products to occur, i.e.,
U = II?_,¥(gx, A) in some suitable coordinate system ¢. This condition was originally
determined by Robertson [52] in a formal manner. In more recent times the study of
separation of variables has advanced significantly both from the point of view of intrinsic
characterization as well as classification of the various different kinds of separation that
are possible on spaces of constant curvature. With regard to the latter problem it is in a
sense true that “all” orthogonal separable systems on real or complex spaces of constant
curvature are limiting cases of the original elliptic coordinates found by Jacobi.

Jacobi’s discovery of elliptic coordinates, followed much later by the development of
quantum mechanics, led to the interest in second-order superintegrable systems. In both
classical mechanics and in its quantum extension there are some special mechanical sys-
tems on Riemannian manifolds, expressed as kinetic energy terms plus a potential, that can
be solved via separation of variables in more than one coordinate system. Such multisep-
arable systems are not only integrable, they are multiply integrable and much additional
information about the systems can be obtained by interrelating the separate separable
solutions. These systems have a theory rich in structure .

Although our definition of second-order superintegrability does not mention multisepa-
rability, we see that, for important classes of superintegrable systems, multiseparability is
implied. We start by studying an important example of a superintegrable system in two-
dimensional Euclidean space, with separation in elliptical coordinates, that illustrates the
typical features of superintegrable systems. In the remainder of this paper we lay out the
essentials of a structure and classification theory for all these systems in two-dimensional
Riemannian spaces and important results for three-dimensional conformally flat spaces.
These results are very recent and the extensive details of the proofs will appear elsewhere.

A classical superintegrable system

H=> g"pip; + V(x) (1.6)
ij
on an n-dimensional local Riemannian manifold is one that admits 2n — 1 functionally

independent symmetries (constants of the motion) Sk, k = 1,--- ,2n — 1, where we choose
S; = H for convenience [59], that is, {H, Sk} = 0, where

n

{fag} - Z(amjfapjg_apjfaxjg) (1'7)

J=1

is the Poisson Bracket for functions f(x,p), g(x,p) on phase space [17, 13, 14, 15, 58, 44].
Comments:

1. We refer to these functions as symmetries because each leads to a conserved quantity
for the associated physical system.
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2. In general we assume that our local Riemannian manifolds are complex, e.g., the
complex sphere. The various real Riemannian manfolds are restrictions of the com-
plex case, e.g., the real sphere and real hyperbolic spaces.

Note that 2n — 1 is the maximum possible number of functionally independent symmetries
and, locally, such symmetries always exist. The main interest is in symmetries that are
polynomials in the p, and are globally defined, except for lower-dimensional singularities
such as poles and branch points. Many tools in the theory of Hamiltonian systems have
been brought to bear on superintegrable systems such as R-matrix theory, Lax pairs, exact
solvability and quasi-exact solvability, [53, 16, 56, 20, 42]. However, the most detailed and
complete results are obtained from the methods of separation of variables in those cases
for which they are applicable. Standard orthogonal separation of variables techniques are
associated with second-order symmetries, e.g., [10, 11, 48, 31, 49, 24, 50, 2, 3, 8] and mul-
tiseparable Hamiltonian systems provide numerous examples of superintegrability. Here
we concentrate on second-order superintegrable systems, that is those in which the sym-
metries take the form & = 3" a¥(x)p;p; + W(x), i.e. they are quadratic in the momenta.
Note: Many authors require that superintegrable systems be also integrable, i.e., they
admit n linearly independent commuting symmetries. We do not require this because we
prove that a second-order superintegrable system is necessarily integrable.

There is an analogous definition for second-order quantum superintegrable systems with
the Schrodinger operator

H=A+V(x), A= % Z 01 (1/597)00 (1.8)

where A is the Laplace-Beltrami operator on a complex Riemannian manifold, expressed
in local coordinates x; [11]. Here there are 2n — 1 second-order symmetry operators,
S = %ZU 8951(\/50’2(1;))3% + W(k), k=1,---,2n—1, with §; = H and [H, Sk] =
HS,— SpH = 0. Again multiseparable systems yield many examples of superintegrability.
There is also a quantization problem in extending the results for classical systems to
operator systems. This problem turns out to be very easily solved in two dimensions and
not difficult in higher dimensions for so-called nondegenerate potentials.

To illustrate the main features of superintegrable systems we give a simple example in
Euclidean space. Consider the Schrodinger eigenvalue equation HV = EV or [19, 33]

1/ 0% 0? L g 9, o  K—1 k-3

This equation admits multiplicatively separable solutions in three systems: Cartesian
coordinates (z,y); polar coordinates, z = rcosf, y = rsinf, and elliptical coordinates,

o o(u—er)(ug —en) o _ o(ur —ep)(ug —eg)

v (e1 —e2) ’ (e2 —e1)

The bound state energy levels are degenerate with energies F,, = w(2n + 2 + ky + ko) for
integer n. The corresponding wave functions are
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1. Cartesian:

1 n1!ng! 1 1
N, —9 5 (k1+ka+2) 1-702 (k1+3),,(ka+3) 1.10
ni,ng (.%', y) 2 F(?’Ll + ]{31 + 1)F(7’L2 + ]ﬁ?g + 1) . ’ y ’ ( )

X67%(12+y2)Lﬁ11 (wxz)Lfé (wy?), n = nj + no,
and the L¥(z) are Laguerre polynomials [12].

2. Polar:

2m!
U(r 0) = dkLk2) ()2 2atki+kat1) 1.11
(r,0) = @ (6)w T(m +2q+ k1 + ko + 1) (111)

% e(—wr2/2)r(2q+k1+k2+1)ng+k1+k2+1 (wrQ),

n=m+aq,

q'T'(ky + ko +q+1)
L(k2 + ¢+ (k1 +q+1)

@gkl’k2)(9) = \/2(2q + k1 + ko + 1)

x (cos 0)F171/2) (sin 9)k2+(1/2) (k1:k2) (cos 26)
and the P{¥"*?)(cos 20) are Jacobi polynomials [12] .

3. Elliptical:

2
U — —w(z2+y?) k1+1 k2+ Y 2 1.19
where ) )
z 1 Y _02:_62(711_9)(“2—9).
9—61 9—62 (9—61)(9—62)

These are ellipsoidal wave functions [57, 1].

A basis for the second-order symmetry operators is

(1K) 5,

2
(G- k) 5 — WY (1.13)

Sp =02+ 72—w2x2, 52:8§+
x )

2, y 1 2 2 1

S3 = (20y — y0z)” + (——k1)—2 (__kQ)?_i-

(Note that —2H = S; + S3.) The separable solutions are eigenfunctions of the symmetry
operators S1, 53 and S3 + €257 + €152 with corresponding eigenvalues

Ae = —w(2n1 + k1 + 1), Ap = (2 + k1 + ko +1)2+ (1 +kF +£3),

Ae = 2(1 — k?l)(l — kﬁz) — 262(4}(]{51 + 1) — 261(4}(]{52 + 1) — w2€162

q
ki +1 ko +1

—45 e +e
o [2 —e1 O —en
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respectively.
The algebra constructed by repeated commutators is

[S1,83] = [S3,S2) = R, [Si,R] =4<5;,8; >+16w?S3, i#j, i,5=1,2, (1.14)
[S3,R] =4 < 51,83 > —4 < S5,83 > +8(1 — k3)S; — 8(1 — k?)Ss,

8 64
R? = 5 < 51,8, 83 >+ < 51,8 > ~16w5F — 16(1 — k)57
128
—16(1 — k)55 — —~w?Ss — 64w’ (1~ K)(1 — K3).

Note that all except the last relation is at most quadratic in the generators. Here < A, B >
and < A, B, C > denote full symmetrization over all products of the argument operators.
The classical algebra has basis

l_k%
81:1?33—1-47—002362, 82:]9

2

2 l_kQ 2,2
y+47—wy, (1.15)

Sy = (zpy — ypz)” + (§ — k) i—z + (1 —#3) z—i —2H =81+
The classical quadratic algebra relations (with {-,-} the Poisson Bracket) are
{81,835} = {85, 8} =R, {8, R} =8858; + 16w>Ss,  i#j, i,j =12,
{S3,R} = 85183 — 85583 + (4 — 16k3)S; — (4 — 16k})S, (1.16)
R? = 168515283 — 16w>S3 + (4 — 16k3)S? — (4 — 16k3)S3 + 4w?(1 — 4kF)(1 — 4k3).
Note the following features.

e The algebra generated by Sy, S2, S3, R is closed under commutation [18, 51]. This
is remarkable but typical of superintegrable systems with so-called nondegenerate
potentials. Closure is at level six in the momenta since we have to express the square
of the third-order operator R in terms of the S; basis of second-order operators.

e The eigenfunctions of one separable system can be expanded in terms of the eigen-
functions of another and this is a source of nontrivial expansion theorems for special
function [45, 46, 47, 32].

e The quadratic algebra identities allow us to relate eigenbases and eigenvalues of
one symmetry operator to those of another. Indeed the representation theory of the
abstract quadratic algebra can be used to derive spectral properties of the generators
L; in a manner analogous to the use of Lie algebra representation theory to derive
spectral properties of quantum systems that admit Lie symmetry algebras [7, 5, 54].

e A common feature of quantum superintegrable systems is that after splitting off a
multiplicative functional factor,

x(k1+%)y(’€2+%)e—%($2+y2)

in the example, the Schrodinger and symmetry operators are acting on a space of
polynomials, [38]. There is a Hilbert space structure and the separation of variables
yields bases of multivariable orthogonal polynomials.



216 E G Kalnins, J Kress and W Miller

e There is a close relationship to the theory of exactly and quasi-exactly solvable
systems, [42]. In the example the one-dimensional ordinary differential equations
obtained by separation in the Cartesian and polar systems are exactly solvable in
terms of hypergeometric functions and the energy eigenvalues are easily obtained.
The elliptic system separated equations are quasi-exactly solvable and polynomial
solutions are obtained for only particular values of E. However, these values are just
the energy eigenvalues obtained in the Cartesian and polar systems!

In the example the potential is nondegenerate, i.e., it depends on three arbitrary pa-
rameters (or four if we include the trivial constant that we can always add to a potential).
In n > 2 dimensions the nondegenerate potentials depend on n + 2 parameters. Systems
with nondegenerate potentials have the most beautiful properties, but there are also super-
integrable systems with degenerate potentials depending on fewer than n 4+ 2 parameters.
For n = 2 we show that all of these depending on at least one nonadditive parameter are in
a certain sense specializations of the nondegenerate systems. For degenerate systems first-
order symmetries may exist. Note that in the classical case the symmetries corresponding
to a constant potential are just Killing tensors.

Many examples of such systems are known and lists of possible systems have been
determined for real and complex spaces of constant curvature in two and three dimensions
as well as a few other spaces, [19, 36, 30, 29, 51, 39]. Here rather than focus on particular
spaces and systems we employ a theoretical method based on integrability conditions to
derive structure common to all such systems. We firstly consider classical superintegrable
systems on a general two-dimensional Riemannian manifold, real or complex, and uncover
their common structure. We show that for superintegrable systems with nondegenerate
potentials there exists a standard structure based on the algebra of 2 x 2 symmetric
matrices, that such systems are necessarily multiseparable and that the quadratic algebra
closes at level six. This is all done without making use of lists of such systems so that
generalization to higher dimensions [39], where relatively few examples are known, is much
easier.

Then we study the Stéckel transform, or coupling constant metamorphosis [6, 22],
for two-dimensional classical superintegrable systems. This is a conformal transforma-
tion of a superintegrable system on one space to a superintegrable system on another
space. We prove that all nondegenerate two-dimensional superintegrable systems are
Stéckel transforms of constant curvature systems and give a complete classification of
all two-dimensional superintegrable systems. We discuss briefly how to extend these
results to three-dimensional systems and the quantum analogs of two-dimensional and
three-dimensional classical systems.

2 Maximal dimensions of the spaces of polynomial constants
in two dimensions

In the following, without loss of generality, we can assume that we have a basic set of
coordinates (x,y) = (x1,x2) with respect to which the Hamiltonian takes the diagonal
form H = (p? + p3)/\(x1,22) + V (21, 22). Thus the metric is ds? = \(dx? + dz3). From
the example in the preceding section we see that it is important to compute the dimensions
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of the spaces of symmetries of superintegrable systems that are of orders two, three, four
and six. As illustrated by the example these symmetries are necessarily of a special type.

e The highest order terms in the momenta are independent of the parameters in the
potential.

e The terms of order two less in the momenta are linear in these parameters, those of
order four less are quadratic and those of order six less are cubic.

The system is second-order order superintegrable with nondegenerate poten-
tial if
1. it admits three functionally independent second-order symmetries and

2. the potential has three parameters (in addition to the usual additive parameter).

Viz,y) = VW (z,9) + VD (z,y) + a3V (2, y), (2.1)

that is, at each point where the potenial is defined and analytic we can prescribe the values
of the derivatives V,, V, and V,, arbitrarily. Nondegenerate potentials exhibit the most
structure and one can show that superintegrable systems with potentials depending on one
or two parameters are special cases or limits of three-parameter systems. The following
result is proved using the integrabilty conditions for the requirement that a symmetry S
of a nondegenerate superintegrable system must satisfy the condition, {H,S} = 0, and
the restrictions on the parameters listed above.

Theorem 1. Let H be the Hamiltonian of a two-dimensional superintegrable system with
nondegenerate potential.

o The space of second-order constants of the motion is exactly three-dimensional.
o The space of third-order constants of the motion is at most one-dimensional.
e The space of fourth-order constants of the motion is at most siz-dimensional.

e The space of sixth-order constants is at most ten-dimensional.

An ordered pair of complex numbers xg = (xg, o) is a regular point for a superinte-
grable system if the potential is defined and analytic and the three basis symmetries are
functionally independent in a neighborhood of xg.

Corollary 1. The quadratic terms a* = a’* of a second-order symmetry
S =Y (x)pip; + W(x)
are uniquely determined by their values a¥(xq) at a reqular point Xq.

By assumption every two-dimensional superintegrable system admits three functionally
independent second-order symmetries. Our strategy is to choose a basis of three second-
order symmetries and show that the second- and third-order polynomials in these basis
elements form a basis for the fourth- and sixth-order symmetries, reaching the maximum
dimensions given in the theorem. This implies closure of the quadratic algebra. Of course
third-order symmetries cannot be expressed in terms of polynomials of second-order sym-
metries and we have to study this case separately. Again the result is obtained through a
careful study of integrability conditions for the symmetry.
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Theorem 2. Let IC be a third-order constant of the motion for a superintegrable system
with nondegenerate potential V :

2 2
K=Y d(@y)ppipi + > b (x,y)pe. (2:2)
k,ji=1 =1
Then ,
: ov
bz(wa y) = Z f&j (1’, y)a—(xa y)
= i
with

[+ =0, 1<¢,j<2,

and the a™* and b* are uniquely determined by the number

FH% (o0, 90)
at some regular point (xo,yo).

Let
S = Z a?{)pkpj + Wy, S2= Z alfzj)pkpj + W)

be second-order constants of the the motion for a superintegrable system with nondegen-
erate potential and let A;)(z,y) = {afg) (z,y)}, i = 1,2, be 2 x 2 matrix functions. Then
the Poisson Bracket of these symmetries is given by

2

{Sly 82} = Z akji(xa y)pkpjpz + bz(xa y)pfa (23)
k,j,i=1

where
=223 (e oy — afyafy)-
j
Thus {S1, Sz} is uniquely determined by the skew-symmetric matrix
A An] = A Aa) — AnAe) (24)
hence by the constant matrix [A ) (w0, yo0), A1) (70, yo)] evaluated at a regular point.

Corollary 2. Let V' be a superintegrable nondegenerate potential. Then the space of third-
order constants of the motion is one-dimensional and is spanned by Poisson Brackets of
the second-order constants of the motion.

Corollary 3. Let V be a superintegrable nondegenerate potential and S1 and Sa be second-
order constants of the motion with matrices A1y and Ay, respectively. Then

{81782} =0« [A(l),A(Q)] =0« [.A(l)(XQ),A(Q) (Xo)] =0 (2.5)

at a reqular point Xg.
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2.1 A standard form for two-dimensional superintegrable systems

For superintegrable nondegenerate potentials we see that there is a standard structure
that allows the identification of the space of second-order constants of the motion with
the space of 2 x 2 symmetric matrices and allows identification of the space of third-order
constants of the motion with the space of 2 x 2 skew-symmetric matrices. Indeed,

e if x( is a regular point, then there is a one-to-one linear correspondence between
second-order operators S and their associated symmetric matrices A(xg). Let {S1,Sa}
= {82, 81} be the reversed Poisson Bracket. The map

{81,852} == [A(1)(x0), A2) (%0)] (2.6)
is an algebraic isomorphism.

o Let £Y be the 2 x 2 matrix with a 1 in row 4, column j and 0 for every other matrix
element. Then the symmetric matrices

A = (€7 +&7) = AUD =12, (2.7)
form a basis for the three-dimensional space of symmetric matrices.

e Moreover

AGD, AEO) = = (B + ;B + 6,819 + 6,80 (2.8)

DO | —

where

Bl %(gij _giy = _gUd =12,

Here B = 0 and B2 forms a basis for the space of skew-symmetric matrices.
Thus (2.8) gives the commutation relations for the second-order symmetries.

e We define a standard set of basis symmetries Sg;p) = >4, aé?k) (X)pipn + Wjgy(x)
corresponding to a regular point xg by

oy all a2\ (3#) _
< 2 f2 > = A\(x0) <a21 22 ) = A(x0)AV", W(jk)(XO) =0. (2.9)
1 J2 /x, X0
Note that the symmetry S restricts to pjpy at the regular point xo, for fixed j
and k. The condition on W) is actually three conditions since W;1) depends upon
three parameters.

2.2 Multiseparability of two-dimensional systems

Necessary and sufficient conditions for variables to separate in the Hamilton-Jacobi equa-
tion for a classical system are well-known, e.g., [49, 50]. They require a second-order
symmetry S as well as an algebraic condition on the matrix of S. However, for superinte-
grable systems with nondegenerate potential the conditions simplify. Recall that a point
Xp is a regular point for our superintegrable system if the potential V'(x) is defined and
analytic in a neigborhood of this point and if the basis of symmetries is also functionally
independent at the point.
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Theorem 3. Let V be a superintegrable nondegenerate potential and S be a second-order
constant of the motion with matriz function, A(x). If at some regular point, xq, the matriz
A(x0) has two distinct eigenvalues, then H and S characterize an orthogonal separable
coordinate system.

Note: Since a generic 2 X 2 symmetric matrix has distinct roots, it follows that any
superintegrable nondegenerate potential is multiseparable.

2.3 The quadratic algebra

Theorem 4. The siz distinct monomials,

(San)? (Se2)% (Su2)? SunSwe2), SanSaz), Sa2Se2):
form a basis for the space of fourth-order symmetries. The ten distinct monomials,
(Sa)?s (Sai)?®s (Sun)*Siiy (Sun)*Sasys (Sij) Seiys SanSa2)Ses):
1,7 =1,2, 1 # j, form a basis for the space of sizth-order symmetries.

These theorems are proved by computing the values and first derivatives of the symme-
tries at a regular point to verify linear independence of the monomials. Since the number
of monomials listed is the same as the maximum possible dimension of the space of sym-
metries, they must form a basis. Note that by use of the standard form for symmetries
one can explicitly expand any fourth- or sixth-order symmetry in terms of the standard
basis.

3 The Stackel transform for two-dimensional systems

The Stéckel transform [6] or coupling constant metamorphosis [22] plays a fundamen-
tal role in relating superintegrable systems on different manifolds. Suppose we have a
superintegrable system

pi + 3

H= A2
)\(1‘1,1‘2)

+ V($1,CC2) (3.1)
in local orthogonal coordinates with nondegenerate potential V' (z,y). This four-parameter
family is uniquely characterized by a system of partial differential equations of the form

Voo = Vi1 + A2V + B2V,

Viag = A12V1 + B12V2. (3.2)

Indeed these equations are straightforward consequences of the integrability conditions
for a a basis of second-order symmetries and the requirement that the derivatives Vi, V5
and V1; can be prescribed arbitrarily at any regular point. Now suppose that U(z1, z2)
is a particular solution of equations (3.2) which is nonzero in an open set. Then the
transformed system

i+ | -

7:( = m + V(m'l,wg) (33)
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with nondegenerate potential V(zy,29):

‘:/22 = ‘711 + A22‘71+B22f/2,

o — AV, + B127, (3.4)
is also superintegrable, where

< -V
A=AU, V=—
bl U?

~ Uy~ U+ U 4 Us

A2 g2 Y2 o2 422 oUl pi2_pl2 Y1 g2 poa U2

U’ + U’ U’ U

Let S =Y a¥p;p; + W = Sy + W be a (parameter-dependent) second-order symmetry of
H and Sy = Y a¥ pipj + Wy = So + Wy be the special case of this (fixing of parameters)
that is in involution with A=!(p? + p2) + U. Then

5 Wy 1

S=5p)— U H+ UH
is the corresponding symmetry of H. Since one can always add a constant to a nondegen-
erate potential, it follows that 1/U defines an inverse Stéckel transform of H to H. See
[6, 29] for many examples of this transform. We say that two superintegrable systems are
Stackel equivalent if one can be obtained from the other by a Stéckel transform.

If X is the metric of a space that admits a nondegenerate superintegrable system, then

it is always possible to choose coordinates z,y such that A1 = 0 [41]. In [25] we prove the
following basic result.

Theorem 5. If ds?> = \(dx?+dy?) is the metric of a nondegenerate superintegrable system
(expressed in coordinates (x,y) such that A2 = 0), then A = u is a solution of the system

—0 _ — 30 (Ina'?). — 340 (In a'2 aif — a3 3.5
2 =0, pop = =3 (Ina); =3z (na®), + == | (3.5)

where either

I) a?=X@)Y(y), X'=d’X, Y'=-aY (3.6)
or
2X'(2)Y'(y)
II) o' = , 3.7
) = O @) + Y )P (37
1 1
(X')?=FX), X'= S F(X), Y2 =a(), Y'= 50
and
FX) = SoX 4+ x4 X2 4 X 4, (3.8)
24 6 2
o M3 7252
V)= ——Y'4 V3 - 2y Y — . :
GY) =5 Y+ 5 Y 7Y —m (3.9)

Conversely every solution A of one of these systems defines a nondegenerate superintegrable
system. If X be a solution, then the remaining solutions, u, are exactly the nondegenerate
superintegrable systems that are Stackel equivalent to A.
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Corollary 4. Every nondegenerate superintegrable (real or complex) two-dimensional sys-
tem is Stdckel equivalent to a nondegenerate superintegrable system on a space of constant
curvature.

The nondegenerate superintegrable potentials on complex two-dimensional spaces of
constant curvature have already been classified [34, 35].

There is an extensive literature on what amount to superintegrable systems with con-
stant (essentially zero) potential. In this case the second-order symmetries are called
Killing tensors [40, 21]. In a tour de force Koenigs [41] classified all two-dimensional man-
ifolds with only isolated singularites that admit exactly three second-order Killing tensors
and listed them in two tables: Tableau VI and Tableau VII from his original paper. Note:
Koenigs wrote his metrics in the Langrangian form ds? = Adz dz = \(dx? — dy?) where
z = x + 1y, whereas we are using the Riemannian form for the metric. Since all of the
variables are complex, it is trivial to transform from one form to the other.

TABLEAU VI
[ + +
1] ds? = ¢l C()'Sg' c2 | 3 co'sg; 04] (dz? — dy?)
| sinz sin” y
o [cicoshz4ca  c3e¥ +cy 9 9
[2] ds® = lZ + 2 ] (dx* — dy*)
[c1e® +co  c3e¥ +cu
3] ds* = o + 2y ] (da? — dy?)
[4] ds?* = |ci(2? —y)+ ] (dz? — dy?)
5] ds?* = |ei(z? —9?) + —5 + c3y + 04}

6] ds* = [e1(2® —y° )+02x+03y+04] da? —dy)
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TABLEAU VII

(1] ds®* = |ec ! ! +c ! — !

=T \sn2(x, k) sn(y, k) \en2(z, k) cen2(y, k)

1 1
+ + k) —sn?(y, k) | (dz? — dy?
o (G~ agm) (o ) i - )
1 1

2] ds* = -— 2z — cos 2
2] ds [01 (sm x sm2y> e <C082 0082y> + 3 (cos 22 — cos 2y)

+ ¢4 (cosdx — cosdy ] )| (dz? —
3] ds? = [ei(sindax — sin4y) + co(cos 4a — cos 4y) + ¢3(sin 2z — sin 2y)

+  cy4(cos 2z — cos 2y)] (dz? — dy?)

1 1

a5 = o (5= 05) + e 7+ ela® o)+ eala® - )] (@a? - )
5] ds? = [e1(z —y) + co(x? —y?) + es(a® — y®) +ea(2? — y4)] (dz? — dy?)

Our theorem above shows easily that these are exactly the spaces that admit superin-
tegrable systems with nondegenerate potentials. (We do not list the potentials here due
to space requirements. One space may correspond to several distinct superintegrable sys-
tems.) Our derivation is very straightforward and simpler than that of Koenigs. From our
point of view Koenigs’ impressive contribution shows that every two-dimensional mani-
fold that admits three second-order Killing tensors also admits at least one nondegenerate
potential.

4 Nondegenerate quantum superintegrable systems in two
dimensions

Now we consider the operator version of superintegrable systems. For a manifold with
metric ds? = A\(x,y)(dz? + dy?) the Hamiltonian system

_pi+p3
Az, y)

+V(z,y)
is replaced by the Hamiltonian (Schrédinger) operator with potential

H= @(an + n) + V(z,y). (@.1)

A second-order symmetry of the Hamiltonian system

2

= > d¥ (@, y)pep; + Wz, y),
k,j=1
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with a* = a7*, corresponds to the operator

2
S =St 2 @ @yN@y)9) + Weyy), o = (4.2)
’ k,j=1

(H,8} =0 < [H,S]=0.

(This lemma is not generally true for higher-dimensional manifolds, where the quan-
tization problem requires a modification of the potential.) It follows from Lemma 1 that
the classical results for the space of second-order symmetries corresponding to a nonde-
generate potential can be adopted without change. Thus the maximal dimensions of the
spaces of formally self-adjoint symmetry operators of orders two, three, four and six are
the same as for the classical case. Also we can construct a basis of second-order symmetry
operators S;;) in the neighborhood of a regular point x¢ in exact analogy with the classical
symmetries S;j).

Recall that the fully symmetrized quadratic and cubic products of linear operators A, B
and C are denoted < A, B > and < A, B,C >, respectively.

Theorem 6. The siz distinct monomials,
< Sy, Sy >, < S@2),5@22) >, < Sa2),5012) >,
< Sa11),S22) >, < Sa1),S12) >, < Sa2)S@22) >,
form a basis for the space of fourth-order symmetry operators.
Theorem 7. The ten distinct monomials,
< Siys Sy Stiiy > < S5 Sty Stig) > < Staiys Sty Sty =5 < Staiys Sty Stig) >
< Sy St Sy > < SanSa2) Sz >,

fori,7 =1,2, 1 # j, form a basis for the space of sizth-order symmetries.

These theorems establish the closure of the quadratic algebra for two-dimensional quan-
tum superintegrable potentials: All fourth-order and sixth-order symmetry operators can
be expressed as symmetric polynomials in the second-order symmetry operators.

4.1 The Stackel transform for two-dimensional quantum systems

The quantum analog of the Stackel transform or coupling constant metamorphosis for
Hamilton-Jacobi systems is straightforward in the two-dimensional case. Suppose that we
have a superintegrable system

Ney) (011 + O22) + V(x,y) = Hy+V (4.3)
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in local orthogonal coordinates with nondegenerate potential V(x,y) and suppose that
U(z,y) is a particular case of the three-parameter potential V', nonzero in an open set.
Then the transformed system

H= 5\(% 2 (011 + Oa2) + V(m, Y) (4.4)

is also superintegrable, where

A=\U, V=

>
ST

Theorem 8. 1. o
[H,S] =0 < [H,S]=0.

— — ij 4 §i . _ 2.
S Zj: 0 [(a + N )AU)} 9; + (W o+ U>
Corollary 5. If S(1) and S(y) are second-order symmetry operators for H, then
1Sy, S2)] =0 <= [Sq1),S(9)] = 0.

Theorem 9. FEvery nondegenerate second-order quantum superintegrable system in two
variables (real or complex) is Stickel equivalent to a superintegrable system on a space of
constant curvature.

5 Conclusions and further results

In this paper we have described the classification of all two-dimensional superintegrable
systems with nondegenerate potential. (In [26, 25] the details of the proofs are given and
the results are extended to systems with degenerate potentials.) We have shown that
all these systems are Stackel equivalent to superintegrable systems on spaces of constant
curvature, the potentials of which have already been classified in detail [36, 30, 29]. We
have proved the closure of the quadratic algebra and have shown in principle how to
compute the structure of the algebra in individual cases.

The integrability condition approach of §2 that works for superintegrable systems on
two-dimensional complex Riemannian manifolds extends to three-dimensional complex
conformally flat spaces (2n-1=5 functionally independent constants of the motion) with
some complications. In two dimensions the quadratic form a* has three independent
components and there are three functionally independent second-order symmetries. Thus
the value of the quadratic form at any regular point can be prescribed and this uniquely
defines a symmetry. For n = 3 there are five functionally independent second-order sym-
metries, but the quadratic form a* has six independent components. This is a major
complication. In [27] we overcome this problem by proving a 5 = 6 Theorem, that
is, five functionally independent second-order symmetries for a nondegenerate superinte-
grable three-dimensional system imply six linearly independent second-order symmetries.
Then we demonstrate that for three-dimensional conformally flat superintegrable systems
with nondegenerate potential the maximum possible dimensions of the spaces of second-,
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third-, fourth- and sixth-order symmetries are six, four, 26 and 56, respectively, and these
dimensions are achieved. Again the three-dimensional quadratic algebra generated by the
second-order symmetries always closes at level six and there is a standard structure for
the algebra.

The passage from the three-dimensional conformally flat classical superintegrable sys-
tems to quantum superintegrable systems is still straightforward, but requires modifying
the quantum potential by an additive term proportional to the scalar curvature [28]. Work
is in progress to determine all three-dimensional superintegrable systems.

Jacobi’s contribution remains central to this program. Indeed all orthogonal separable
coordinates for n dimensional superintegrable systems on conformally flat manifolds are
generalized Jacobi elliptic coordinates and their limiting cases [37].
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