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Abstract

We determine the solutions of a nonlinear Hamilton-Jacobi-Bellman equation which
arises in the modelling of mean-variance hedging subject to a terminal condition.
Firstly we establish those forms of the equation which admit the maximal number of
Lie point symmetries and then examine each in turn. We show that the Lie method
is only suitable for an equation of maximal symmetry. We indicate the applicability
of the method to cases in which the parametric function depends also upon the time.

1 Introduction

In the early seventies a revolution pioneered by the ideas of Samuelson, Mogdigliani,
Merton, Black and Scholes occurred in economic modelling. The major step was the
formal introduction of the concepts of stochastic calculus into Econometrics. Although
the original conception was Samuelson’s, the initially controversial paper by Black and
Scholes [3] firmly embedded this work into financial economics. Subsequently there has
been a veritable explosion of work on the subject to an extent that the field has separated
to become Financial Mathematics.

The Black-Scholes equation is an evolution equation of the same equivalence class as
the Schrodinger equation and the diffusion equation. This is unsurprising as all three
are archetypal models dealing with random phenomena in a specific context, finance,
particle-motion and dispersion. In each of these cases during the course of the modelling

Copyright © 2005 by V Naicker, K Andriopoulos and PGL Leach

Lpermanent address: School of Mathematical Sciences, Howard College, University of KwaZulu-Natal,
Durban 4041, Republic of South Africa



Hamilton-Jacobi-Bellman 269

procedure the randomness incorporated into the model is made deterministic. The averag-
ing ‘method’ in the original Black-Scholes paper was to form a risk-free portfolio and thus
eliminate the random component of the governing It6 equations. The classical derivation
of the heat equation defines a temperature relating to interactive particle dynamics within
a physical medium while the Schrodinger equation defines deterministically the nonrela-
tivistic quantum mechanical description of the probability distribution of a particle.

To every It6 equation one associates a corresponding Fokker-Planck or Feynman-Kac
partial differential equation®. For example the Ité equation describing the motion of a free
particle in one spatial dimension under the effect of constant noise is

dXy = o*dW;.
This corresponds to the diffusion equation

ou 10%u

Gu 1o
ot 2922

in the case that 02 = 1. In general an It6 equation governing a one point process,
dX; = p(x, t)dt + o(z, t)dWy,

has the deterministic counterpart

ou ou 1 4 0u
e +M($,t)% +t350 (Cﬂat)@ =0
or
ou ou 1 4 0%u
o + u(ﬂc,t)% +50 (w,t)w =r(z,t)u

in the Fokker-Planck and Feynman-Kac versions respectively.

The Girsanov Theorem in stochastic calculus implies that under a change of measure
and thereby an induced change in the Brownian motion W one can modify the drift term
wu(x,t) of an Ité equation arbitrarily. In the case that one eliminates the drift completely
the free particle Itd6 equation is recovered. The natural generalization would be that
one can map classes of Fokker-Planck and Feynmann-Kac partial differential equations to
variants of the diffusion equation. Furthermore the relationship to evolution equations in
general is placed into context by an interpretation of the generator of an It6 process,

. o f(Xt—i—ha t) - f(Xta t) _ _
%IL%_E 5 Xi=2z| =Lxf,
where
0 0 9 0?2
Lo =gyt t)g + o (@ )55,

as an expected rate of change of a function of a random variable. Typically these ideas
are exemplified in the Black-Scholes equation.

2In this context we note that a recent paper [10] has reported the development of reverse Feynman-Kac
formulee for the same purpose.
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The Black-Scholes equation can be derived in three ways, each of which individually is
a rich source of partial differential equations in economics and finance, the original hedging
approach, the martingale approach and another [11][p 601] which derives the equation as
an Hamilton-Jacobi-Bellman solution to a stochastic control problem in an interest-rate
model. For Black-Scholes there is a myriad of connections between these approaches, the
Feynmann-Kac theorem, the persistence of the It6 generator since the option is a function
of the share price and the share price follows geometric Brownian motion, the no arbitrage
argument, which is similar to a conservation law in that it says that on average the option
value behaves in the same way as a risk-free instrument, and obviously the equation itself.

The class of Hamilton-Jacobi-Bellman equations arises in the sphere of stochastic con-
trol theory [12]. A typical problem is to minimize an index,

J = min Et{ /t tf g(x(T),u(T),T)}dT,

uvelU o
with respect to the stochastic constraints,
dX = (X (t), u(t))dt + o(X(t), u(t))dW,

over the probability space (€2, F,P) and permissible controls u € U. This has the optimal
solution, f, given in the (1 4 1)-dimensional case by the partial differential equation

[ of 1 ,0%f

— —+ -0 ) =0.

ot +11}1€11’[} [’u&r * 27 Ba2 +9(@,u)

Minimization over the controls u € U implies that, if Pontryagin’s principle from standard
problems of control theory, that on the optimal control the Hamiltonian is minimized with
respect to the control variables u, can be invoked [5]|[p 300-307],

H = [,u(x,t)g + 1UQ(JU,t)ﬁ + g(x,u)} (1.1)

or 2 Ox?
has an interpretation as a Hamiltonian, at least heuristically.

In this paper we wish to investigate the properties of one of these Hamilton-Jacobi-
Bellman equations from the viewpoint of the Lie symmetry analysis. The Black-Scholes
equation was examined some years ago by Ibragimov and Gazizov [9]. In a sense the
symmetry analysis of the Black-Scholes equation may be regarded as trivial since it is
related to the standard heat equation by means of an obvious point transformation and
the symmetry properties and solutions of the heat equation are the stuff of textbooks [4].
However, one should note that the solution of the Black-Scholes equation requires the
conjunction of its terminal condition and terminal conditions do not translate well into
boundary and initial conditions under point transformations. Moreover the emphasis in
the paper of Ibragimov and Gazizov is not on the calculation of the symmetries but on the
construction of the fundamental solution which is not trivial since the calculation of the
fundamental solution by transformation of the fundamental solution of the heat equation
is not straightforward. Furthermore the paper contains a second part which deals with
the Jacobs-Jones two-factor variable model.

The challenge in treating Hamilton-Jacobi-Bellman equations by the methods of the
Lie symmetry analysis is to incorporate the conditions to be imposed upon the solutions
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to the equations which in the case of a linear partial differential equation are infinite
in number, have the property of linear superposition and so provide the prospect of a
reasonable selection. There are three ways to respond to this challenge.

One method, which is found in the literature, is to include the boundaries as part of
the problem in the determination of symmetries.

Another approach is to attempt to use the infinite sets of solutions which we can obtain
for some problems — those with a reasonable amount of symmetry — and determine whether
they can be used as a basis set.

A third approach is to compute all of the symmetries and then to see which combina-
tions of them are consistent with the boundary and initial/terminal conditions.

All three methods have their own relevance in different contexts.

In the case of the Schrodinger Equation for a confining potential such as that of the
simple harmonic oscillator one looks for the infinite sets of solutions to act as the bases
since the realisation of a state must be one of these functions. In the construction of the
solutions one selects that infinite set which is consistent with the boundary conditions.
This is not an arduous business. That is not the case in other areas of application for in
them the nature of the boundary/initial/terminal conditions intrudes rather more forcibly.

The Hamilton-Jacobi-Bellman equation we wish to address is not an obvious relative
of the Black-Scholes or heat equations. The equation is

aJ  dJ | ,7T | [(0I\® [u\%
ot +a(9x +3b or2 2\ oz + <x) =0 (1.2)

with the terminal condition J(T',z) = 0 and is presented by Heath et al [8] [p 516] as an
equation for mean-variance hedging.

Heath et al observe that y in the ultimate term of (1.2) need not be a constant. In
fact it is better to write the equation as

aJ  aJ o927 2

to allow for the possible dependence of 1 upon .

The approach which we adopt for seeking solutions of (1.3) with its terminal condition
is that of calculating the Lie point symmetries of (1.3) and then determining if there exists
a symmetry, or symmetries, compatible with the terminal condition. In the case that a
symmetry exists the similarity solution may be determined in the usual fashion as we
demonstrate below.

This paper is structured as follows. In the next section we examine (1.3) for Lie point
symmetries and identify those functions, v(x), for which there exists additional symmetry.
In §3 we examine those cases in turn and determine the existence or not of symmetries
compatible with the terminal condition and obtain the solutions in the case of existence.
For those cases in which we can find a solution it is of some comfort to know that the
solution is unique due to the Fokker-Planck Theorem. We conclude with some comments
in §4.

We emphasise that we are looking for solutions through the methods of the Lie group
analysis, in particular an analysis based upon the existence of Lie point symmetries. The
absence of Lie point symmetries does not imply that (1.3), or any (1 + 1)-dimensional
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evolution equation, is not integrable. However, the absence of symmetry does make the
existence of a closed-form solution unlikely.

2 Preliminary analysis

We analyse (1.3) for Lie point symmetries using Program LIE [7, 19]. For general v(z) we
find that there are the three Lie point symmetries

Iy = f(t,z) exp[—J/b%)0, (2.1a)
'y =0y (2.1b)
Fg = (9t, (216)

where f(t,x) is a solution of the linear equation

ng%b

262f of  v(x)
ot 022

in which the differential part is just the standard generator of an It6 process. The sym-
metries (2.1b) and (2.1c) are to be expected from the lack of presence of J and ¢ in (1.3).
However, the symmetry (2.1a) in conjunction with (2.1d) is unexpected and indicates that
(1.3) is linearisable by means of a point transformation.

The linear equation (2.1d) immediately provides the clue for potential candidate func-
tions, v(x), for which (1.3) can display a richer structure of symmetry.

We recall [16, 1] that there is a close connection between the Lie point symmetries
of a linear parabolic evolution equation and the Noether point symmetries of related
Lagrangian systems. The connection is made directly between the Noether point symme-
tries of the Action Integral and the additional Lie point symmetries of the corresponding
Schrodinger equation. However, once the transition to the Schrodinger Equation is made,
the connection may be extended to any evolution equation related to the Schrodinger
Equation by means of a point transformation. In particular the transformation t — it
which renders the Schrédinger Equation into a heat equation maintains the Lie point sym-
metries and once the transition is made the Black-Scholes equation and others of Financial
Mathematics are connected in a single symmetry approach.

In the case of the standard Lagrangian
L=1i*-V(tx) (2.2)
and its corresponding time-dependent Schrodinger Equation

Ou  O%*u
215 + 92 2V(t,x)u=0 (2.3)
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the Noether point symmetries of the former are characterised by the potential as

\% no sym algebra
V(t,x) 0 —
V(CC) 1 A1
h2
w?z? + — 3 sl(2, R)
x (2.4)
2, I
pne+ ) 3 sl(2,R)
w2x? 5 sl(2,R) &5 244
pwrx 5 sl(2,R) &5 2A;
u? 5 sl(2, R) ®, 24,

and the Lie point symmetries of the latter by

Vv no sym algebra
V(t,z) 0+1+400 Ay B 004,
V(x) 1+14+ 00 2A1 s 00 A
h2
w2z? + 3+1+o00 {A1®sl(2,R)} D004,

2 (2.5)
Wit = 3+l4oo {A1@sl(2 R)} @, 004

w?x? 541400 {sl(2,R)®s W} s 004,
0ty 54+14+00 {sl(2,R)®s W} Bs 004,
u? 541400 {sl(2,R)®s W} ds00A;,

where W is the Heisenberg-Weyl algebra with
(31, 50] 5 =0, [¥1,53] 5 =0, [E2,35] 5 =21

in which it is emphasised that the properties are stated up to an equivalence transformation
r — (z—at))/p(t),t — [ p~2(t)dt in the classical context and the natural related
transformation of the Schrodinger Equation [13, 14].

In (1.3), due to (2.1d), v(z) plays the role of a potential. Consequently from (2.5)
we realise that there are several cases for which the additional symmetry could lead to a
similarity solution of (1.3) compatible with the terminal condition. Naturally we should
initially consider the most general case in which the Lie point symmetries are those of
(2.1). The terminal condition J(7,z) = 0 is in fact a double condition for, as one recalls,
all variables are regarded as independent in the Lie analysis for the purposes of partial
differentiation. Thus we have the dual conditions

t=T and J=0 (2.6)
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to be satisfied. In the case of the latter the former also applies. If we take the general
symmetry (which really is the Lie point symmetry of the equation; in an analysis we
separate an n-parameter symmetry into n one-parameter symmetries since this gives the
opening to the consideration of the algebraic structure of the symmetries; if one considers
the symmetry as an n-parameter differential operator, it is difficult to construct an algebra
of a symmetry with itself),

I'=a10; + a0, (27)
the requirements of (2.6) insist that
ap=0 and a3 =0. (2.8)

This is not a recipe for symmetrical progress!

We take cognisance of the particular ‘potentials’ of (2.4) and (2.5). In turn we put
v(x) to be a particular function of the classes listed in (2.4) and (2.5) to determine the
symmetries. Then we investigate the possibility that the particular representations are
compatible with the terminal condition. In the cases that is be so, we determine the
similarity solution.

3 Symmetries and solutions
We commence with the ‘potentials’ which allow the greatest amount of symmetry.

3.1 The case v(z) = p?

The symmetries are

1 = f(t,x) exp[J/b*)0;

I'y =0y

I's =0

Ty =0 + 3(x + at)0, + p?td, (3.1)
I's = 20, + tzd, + % (th — 2utte — (x — at)2) 0y

I's =0,

'y =t0, — (x — at)0y,
where f(t,z) is a solution of

L )
5 T H gy rag o G f=0. (3.2)

The general Lie point symmetry of (1.3) with v(z) = u? is

T=> alj, (3.3)

where the a;, 1 = 2,7, are constants to be determined.
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The application of I' to the terminal, ie t =T, gives
a3 +asT +asT? =0 (3.4)
and to the terminal condition itself gives
az + ayp®T + Sas (VT — 2p* Tz — (x — aT)?) — ag(x — aT') = 0. (3.5)
From (3.5) we obtain three relationships, videlicet

z? as =0

r a;=0

—  ay +a4,u2T =0

and from (3.4) we have

az+asT'=0
whence
as = —agp*T, a3z = —asT (3.6)

so that we find the system of equation and terminal condition are invariant under the two
Lie point symmetries

Alzazv
Ay = (T — )0 + p*(T — t)0;. (3.7)

We can now seek a similarity solution of (1.3) with v(x) = p? which is compatible with
the given terminal condition.
Invariance under A; means that J = J(¢) only. The associated Lagrange’s system of

A2 is

dt dJ

T—t p2(T—t)

ie the characteristic is w = J — p?t. From (1.3) with v(z) = u? we obtain the similarity
solution

J =K — %t
so that the solution which is consistent with the terminal condition is

J = p*(T —t). (3.8)
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3.2 The case v(z) = p’z

The same number of symmetries is obtained. They have the expressions

1 = f(t,x) exp[J/b*)0;

Iy =0y
I3 =0
F4 = 3x — MQta] (3.9)

Ts =t0, + (at — 34t — 2) 05

¢ = 2t0, + (at + x4+ %MZtZ) Oy + 12 (at2 — 3tx — %;ﬂt?’) dy

I'7 = 2t%0, + (2tx + ,u2t3) Or + (b2t + plat® — 3pPt?z — (z — at)? — i,u‘lt‘l) dy,
where f(t,z) is a solution of

Of L yp@f | of 42 o
;A tags = raf =0, (3.10)

We take the general combination of symmetries of (3.3) and apply it to the terminal
condition (2.6). The first of (2.6) gives
az + 2Tag + 2T%a7; = 0 (3.11)
and the second
as — p*Tay + (aT — %u2T2 — x) as + (u2aT2 —31°Tx — %/flT?’) ag
+ (2aTz + paT? — 3p>T?x — a®T% + V*T — 2% — %M4T4) a7 = 0. (3.12)
In (3.12) z is a variable, coefficients of powers of x are separately zero and we obtain

the three conditions

2 ay =0

z : as=—3u*Tag (3.13)
- ay = pTas + (2,u2aT2 — M4T3) ag
so that we have a two-parameter (a4 and ag are the parameters) symmetry which is

consistent with the terminal condition (2.6). We write this symmetry as the two one-
parameter symmetries

Y =0, — pP(t —T)0y (3.14a)
N9 =2(t = T)¢ + (at + x + 3p°t° — 3p°tT) O,
+p?(t = T) {a(t — 2T) — +p® (* — 24T — 2T?) — 32} 9. (3.14b)

We note that [, 3], 5 = X1, ie X is the normal subgroup which reinforces the attraction
of the simplicity of 3 for use to determine the similarity solution.
The invariants of (3.14a) are determined by the solution of the associated Lagrange’s
system
dt  dz dT

0 -1 2t-1) (3.15)
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and are t and J + p?(t — T)x so that we see a similarity solution of the form
J(t,x) = f(t) — p2(t — T)z. (3.16)

We substitute this into

oJ  aJ 9% 0T\ ?

E—i—a%—i-%lﬂw_% <%> +pr =0 (3.17)
to find that

Ft) =K+ Sap®(t —T)* + Lt — 1)°, (3.18)

where K is a constant of integration which is zero when the terminal condition is applied.
Thus the similarity solution corresponding to X is

J(t,x) = tap?(t = T)* + Lp'(t = T)° — i (t — T)a. (3.19)

The application of X5 to (3.19) is an identity, ie (3.19) is a similarity solution common to
both symmetries which satisfy the terminal condition (2.6).

3.3 The case v(z) = tw?z?

LIE returns the symmetries

1 = f(t,x) exp[J/b*)0;

Iy =0y
I's = 0
I'y = explwt] [0r + (a — wz)0y] (3.20)

2wt] [0, + wady + (awz — 3a® + Fwb?® — w?2?) 0]

[
I's = exp[—wt] [0; + (a + wz)0y]
[
[—2wt] [0 — wady — (awz + 30 + 2wb® + w?a?) 9],

where f(t,z) is a solution of

af 2f  af W

When we examine (1.3) with v(z) = $w?z?, we realise that the first case (v(z) = p?)

considered was somewhat specific for the analysis of the present case resembles Case 2 in
its structure if not its details. Consequently we can simply highlight the main steps. The
application of the general symmetry (3.3) to the terminal condition (2.6) leads to the two
symmetries

¥ =coshw(t — T)0, + [a(coshw(t —T) — 1) — wrsinhw(t —T)] ;s (3.22a)
Yo =sinh2w(t — T)0; + [aexp[w(t — T')] + wx cosh 2w(t — T')] O,

+ [a(a — wz) explw(t — T)] — a* — Lwb?

+ (awr + swb?) cosh 2w(t — T) — (2a® + w?2?) sinh 2w(t — T)]

S (3.22b)
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Again we are favoured by fortune in that the Lie Bracket of 31 and Yo gives w3, and we
use Y to determine the similarity solution which is

J(t,z) = ax [1 — sechw(t — T)] + o= (a® — w?a?) tanhw(t — T)
+3b%logcoshw(t — T) — 3a®(t — T). (3.23)

After not a little calculation one finds that X9 annihilates the solution (3.23) and again
we have just the single solution.

In all three cases the single solution is the unique solution as predicted by the Fokker-
Planck Theorem. It is interesting how two disparate approaches to the same problem lead
to the same uniqueness.

We now turn to the functions v(z) which give lesser symmetry.

2
i
22

3.4 The case v(z) = 3
This ‘potential’ has a rich history dating back to the time of Newton and his young
colleague Cotes and occurring in more recent aspects as the Ermakov system [6] and the
Ermakov-Pinney equation [18]. The relationship of the latter to the former was recently
highlighted [15].

The equation

oJ  8J | ,0%0 | [(dI\® |u?
— — + b= -3 =— s = .24
8t+a(9:6+2 0r?2 2\ 0z +2£U2 0 (3.24)
possesses the Lie point symmetries
Ty = f(t,z) exp[~J/b]0;
Ly =0y
Ty =0, (3.25)
'y =2t0; + 20, + (am — a2t) Oy
5 = 26°0; + 2txd, + (bt — (z — at)?) 0y,
where f(t,x) is a solution of
0 0? 0 2
—f+%b2—f+a—f—l”—f:0. (3.26)

ot 0z2 Oox  2b2x2

The terminal condition (2.6) produces the two conditions

a3+ 2Tay + 2T%a5 = 0 (3.27a)
az + (ax — a*T)ays + (2aTx — a®T* + b°T — 2°) a5 = 0 (3.27Db)

and (3.27b) separates into three separate conditions so that the four parameters as —
as satisfy a four-dimensional homogeneous system based on four linearly independent
symmetries. Not surprisingly only the trivial solution exists so that there is no similarity
solution for (1.2) when p is a constant.
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w

3.5 The case v(z) = twz? + -
x

2

In Mechanics this is the classic Ermakov potential in which the w is w(t) and about which
there is a very rich literature. In the present context we find the Lie point symmetries

Ty = f(t,x) exp[J/b*|0,

Ly =0y

s =6 (3.28)
I'y = exp|2wt] [(925 + wxdy + (awx — %QQ + %wa — w2x2) aJ]

I's = exp[—2wt] [0y — wzdy — (awz + 1a? + wb? + w2:c2) ds],

where f(t,x) is a solution of

af 282f of 4 w? 2 s
ot T e Ty T\t T ) /=0 (3:29)

As in the previous case there is no symmetry which is compatible with the terminal
condition, (2.6).

2
3.6 The case v(z) =w? + %”_2
T
The Lie point symmetries are
Iy = f(t,z) exp[—J /b0,
'y =0y
T's = 0 (3.30)

'y =2t0; + 20, + (am — a2t2w2t) Oy
T5 = 220, + 2tx0d, + (bt — (x — at)?) 0.

It is perhaps unsurprising that the symmetries are also not compatible with the terminal
condition (2.6).
3.7 The case v(z) = w?r + :—

This case is even worse than the previous three as only the three general symmetries of
(2.1) are obtained and we have already seen that those symmetries are incompatible with
the terminal condition (2.6).

4 Discussion

We have examined the equation for mean-variance hedging proposed by Heath et al for the
existence of similarity solutions based on symmetries of the nonlinear evolution equation
of Hamilton-Jacobi-Bellman type modelling the process which are consistent with the
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terminal condition for the model. There are three cases for which we can obtain a unique
solution to the problem of

oJ  0J  .,0%0 | [0J\? B
J(T,z)=0 (4.1)

by means of the techniques of Lie symmetry analysis and they are when v(z) has one of
the forms p?, %z or %w%z. In the standard representation of (4.1) v(x) is written as
u?/xz% and we have seen that for constant p # 0 in this form there cannot be a similarity
solution since the existing Lie point symmetries of the equation cannot fit with the terminal
condition.

The forms of (1.3) with (2.6) which were amenable to solution by means of technique
of Lie’s symmetry analysis were all of maximal point symmetry for a (1 + 1) evolution
equation. Although something akin to chaos has been speculated for (1+several) evolution
equations [1], one does not expect to find such irregularity in the (1 4+ 1) equation, ie
one expects the equation to be integrable even if it be not possible to find a solution
in something approaching closed-form simply due to the absence of sufficient symmetry.
This then returns us to the whole question of what symmetries — potential, nonclassical,
what have you — should be considered. Here we have restricted our attention to Lie
point symmetries for this enables one to make ready connection with the traditional areas
of Classical Mechanics and Quantum Mechanics. Evidently there is room for further
exploration of this topic through more general forms of symmetry.

The Lie symmetry analysis of (1.3) for general v(x) was quite revealing for it showed
that there exists an infinite number of ‘solution’ symmetries and this is indicative of a
linearising transformation. Indeed in this case, if we look at the infinite class of Lie point
symmetries, we find the clue to the linearising transformation since

'y =exp [J(t,x)/bQ] f(t,z)0y

= —bf(t,x)ﬁ[exp [—J(t,x)/b2]] (4.2)
and so one can see that the transformation u = exp [—J(¢,z)/b*] brings I'y into the stan-
dard form of a solution symmetry. In the process it makes I's the homogeneity symmetry
characteristic of linear equations of all provenances.

The type of ‘potential’, v(x), which we have considered in the various cases has been
autonomous. In Classical Mechanics it is well-known that some nonautonomous potentials
may be equally treated without loss of generality. The successful ‘potentials’ of §3 were 2,
p’x and %wQ:UQ. Classically the first has no impact as a constant added to a Lagrangian
makes no difference to the Euler-Lagrange equations of motion. The second represents
motion under the influence of an uniform gravitational field a la Galileo and the third is
the simple harmonic oscillator. One would not expect a replacement of p by u(t) or w by
w(t) to make a theoretical difference to the degree of difficulty of the solution of the system
although one knows that the practical complications have produced a generous literature.
However, would such a generalisation impact upon the terminal condition?

We consider the case v(t,r) = p?(t) to give a flavour of the situation. The Lie point
symmetries are

'y = f(t,x)exp[J/b*]0;
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Lo =09,
I's =0,
Iy =0, — /ﬂ(t)&] (4.3)

I's =t0, + (at — x)0y
D¢ = 2t0; + (at + )0, — 2tu*(t)d;
Iz = 2620, 4 2twd, + (b*t — 2t°p*(t) — (z — at)?) 9y,

where f(t,z) is a solution of

Of | 1,20°f of  wA(t) ,
or T g T, Tz /0

(4.4)

We note that (4.4) is essentially the same as (3.2), but that there have been some changes
in the symmetries from those given in (3.1).
The terminal condition imposes the constraints

a4 + 2Ta6 + 2Ta7 =0 (45&)
ag — p2(T)ay + (aT — z)as — 2T % (T)ag
+(2aTx — a®T? + V*T — 2% — 2T 1%(T))ar = 0 (4.5b)

on the coefficients of the general symmetry (3.3). In (4.5b) the z? in the coefficient of
a7 imposes that a; = 0. It then follows that a5 = 0. When we substitute for ay from
(4.5a) into what is left of (4.5b), we find that ag = 0. However, we still have two arbitrary
constants and the two symmetries compatible with the terminal condition are

21 = 6m (46&)
Yo =2(t—T) (9 — p*(t)s) - (4.6b)

From (4.6a) it is evident that J = f(t) and the integration of (1.3) with v(t) = u?(t) is
trivial. We have

J=K— [ p(s)?ds

to

:/T,u(s)st—/t,u(s)QdS (4.7)

to to

when the constant is evaluated using the terminal condition. The action of the second
symmetry gives an identity. It is amusing to note that >y vanishes at the terminal time.

Thus we see that the analysis can be successfully extended to an explicitly time-
dependent situation.

In this paper we have examined from the viewpoint of the Lie point symmetry analysis
an equation for mean-variance hedging containing a parametric function depending upon
the price of the underlying object. For three versions of the parametric function we were
able to obtain the unique solution to the equation plus terminal condition. The three
functions which admitted a solution were those which provided the maximal set of Lie
point symmetries for the nonlinear evolution equation used to model the phenomenon.
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In the process the Lie analysis revealed that the equation was linearisable due to the
existence of an infinite number of ‘solution’ symmetries, so-called because the coefficient
functions of the symmetries are solutions of a differential equation. In the case of linear
equations the solution symmetries come from solutions of a related linear equation, often
the equation itself. In this case of a nonlinear evolution equation the solution symmetries
come from a linear evolution equation to which the nonlinear equation can be transformed
by means of a point transformation. In the case of the Hamilton-Jacobi-Bellman equations
of less than maximal symmetry considered here the number of Lie point symmetries was
insufficient to be compatible with the terminal condition. One would expect that this
would generally be the case. To our knowledge the first application of Lie symmetry
analysis to an Hamilton-Jacobi-Bellman equation in Financial Mathematics was the study
made by Ibragimov and Gazizov of the Black-Scholes equation [9] which happens to be
an equation of maximal symmetry in the usual cases for which the variance and risk-free
interest rate are independent of the price of the stock. Had the equation contained a
symmetry-destroying term, such as we have seen in several of the cases considered in this
paper, there probably would never have been an history of the interaction between Lie
symmetry analysis and the Hamilton-Jacobi-Bellman equations of Financial Mathematics.
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