

A Fault-Tolerant Schema for Clock Synchronization and data aggregation in WSN

Na Wang
School of software, East China Normal University,

NO. 3663 north ZhongShan Road
Shanghai, 200062, China

School of Computer and information, Shanghai Second Polytechnic University,
 NO. 2360 Jinhai Road, Shanghai, 201209, China

E-mail: wnoffice@126.com

Haihui He
 School of Computer and information, Shanghai Second Polytechnic University,

NO. 2360 Jinhai Road, Shanghai, 201209, China
E-mail: hhhe@it.sspu.cn

DongQian Liu
School of software, East China Normal University,

NO. 3663 north ZhongShan Road,
Shanghai, 200062, China

E-mail: maggie.liudon@gmail.com

Event monitoring and determination is a popular application in WSN. Considering the special circumstance that
some nodes of the wireless sensor network are faulty, a fault tolerant schema for data aggregation based on event
clustering was proposed. Also, an improved HRTS algorithm named T-HRTS which based on Hierarchy
Referencing Clock Synchronization resolving the byzantine general problem will be introduced.

Keywords: wireless sensor network, Clock Synchronization, data aggregation, fault-tolerant, event clustering.

1. Introduction

Over the past few years distributed wireless sensor
networks (WSN) have been the focus of considerable
research for both civil and military applications.
Wireless sensor network consisting of large number of
micro sensor nodes can complement the collaborative
awareness in coverage area. Sensor network is the
bridge connecting the objective physical world and the
virtual digital world accurately monitoring remote
environment intelligently by combing the data from
individual nodes. 1

When event was detected, data from individual
sensor must be aggregated to determine abnormality
level. Control algorithm is based on the level of the
abnormality, so how to determine a relatively exact
level is crucial. When measuring the abnormality, we
should consider either the transmission route throughout
the network or the same time spot sensors gathering the
data.

Data acquisition, processing and transmission in
sensor network have the nature of timing sequence
which usually requires nodes in the network have the
same clock, thus the clock synchronization technology
is one of the important supporting technology for sensor
networks.

International Journal of Networked and Distributed Computing, Vol. 1, No. 1 (January 2013), 46-52

Published by Atlantis Press
 Copyright: the authors
 46

Administrateur
Texte tapé à la machine
Received 12 March 2012

Administrateur
Texte tapé à la machine
Accepted 11 July 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Na Wang et al.

Node in the distributed system has its own local
clock, and it’s difficult to achieve long-term time
synchronization between nodes due to some internal
factors such as crystal oscillator frequency deviation
and a number of external influences such as temperature
changes, electromagnetic interference, malicious attacks
including external and internal attacks and plant ageing.
External attacks are those in which an attacker
manipulates the communication between pairs of trusted
nodes and causes the nodes to desynchronize, or to
remain un-synchronized even after a successful run of
the synchronization protocol. Pulse delay attack is an
example of external attack. Internal attacks are those in
which internal attackers (group members) report false
clock references to their neighboring nodes. For such a
process to be fault-tolerant, the clock synchronization
algorithm must work despite faulty behavior by some
processes and clocks.14

Several clock synchronization protocols have been
proposed for sensor networks to achieve either pair-wise
clock synchronization or global clock
synchronization.9,16,17 Pair-wise clock synchronization
aims to obtain high precision clock synchronization
between pairs of neighbor nodes, while global clock
synchronization aims to provide network-wide clock
synchronization in a sensor network. Existing pair-wise
clock synchronization protocols use either receiver-
receiver synchronization,16 in which a reference node
broadcasts a reference packet to help pairs of receivers
identify the clock differences, or sender-receiver
synchronization,9 where a sender communicates with a
receiver to estimate the clock difference. Most of the
global clock synchronization protocols establish multi-
hop paths in a sensor network so that all the nodes can
synchronize their clocks to a given source based on
these paths and the pair-wise clock differences between
adjacent nodes in these paths. 18

It is natural to consider fault-tolerant clock
synchronization techniques, which have been studied
extensively in the context of distributed systems.
8,14,15,19,20 However, traditional fault-tolerant clock
synchronization techniques are not directly applicable to
sensor networks. These techniques were developed for
distributed systems that do not have the same resource
constraints as sensor networks. All of these techniques
involve heavy communication among the nodes, and
sometimes heavy computation as well. This is because
these techniques either use digital signatures or multiple
copies of messages to prevent a malicious node from
modifying or destroying clock information sent by non-
faulty nodes without being detected. Digital signature is
usually not practical in resource constrained sensor
networks. Even when digital signature is used, each
node still needs to send a message to every other node
in each synchronization round, resulting in at least O (n2)

communication complexity, where n is the number of
nodes. Some schemes require that all nodes that receive
certain messages process and forward these messages to
all the other nodes immediately, resulting in a high
probability of message collisions if used in sensor
networks. 20,21

In this paper, we develop a fault-tolerant clock
synchronization scheme for clusters of sensor nodes,
where the nodes in each cluster can communicate with
cluster-head directly. In each round of clock
synchronization within a cluster, every node broadcast
received data from other nodes in last round.

This paper is an extension of paper named “Time
Synchronization for Failure Tolerance in Wireless
Sensor Network” in SNPD2012.

The rest of the paper is organized as follows. In
Section II, we introduce the fault tolerant schema for
data aggregation. In Section III, we describe HRTS. In
Section IV, we put forward the approach of Clock
Synchronization with Failure Tolerance. Section V
provides the conclusion.

2. A Fault Tolerant Schema for Data
Aggregation

2.1. Abnormality determination

When detect abnormality, sensors must be clustered
into numbers of local sensor networks according to the
region they are located. Besides, each region of sensors
has their own autonomy. In other words, all sensors,
which are in the same region, can execute the proposed
protocol without the sink and other unconcerned sensors.
This can reduce the time for collecting data and
designing the final result.

The clustering process is as follows:
A reference node will be regarded as level 1 named

root. Generally, node receiving the event with the most
power is selected as reference. The reference node
broadcasts the rating information containing its level
and number. Each node receiving the rating information
sets its levels as reference node’s level plus 1 and adds
the node number and level to its neighbor list.

Then, second-level nodes broadcast rating
information. The nodes receiving the information set
their level as sender’s level plus 1 if they have still no
level, at the same time adding the node number and
level to their neighbor list. And so on, until all nodes
have their own levels, and each node knows the number
and level of all their neighbor nodes. So the nodes can
be divided into three categories as parent node, neighbor
node at the same level and child node.

After clustering, the proposed protocol can let each
sensor reach an agreement and do the corresponding
action with the following assumptions.

Published by Atlantis Press
 Copyright: the authors
 47

A Fault-Tolerant Schema For Clock Synchronization

➢ Let N be the set of all sensors in the local
autonomous WSN and| N |=n.
➢ The total number of faulty sensors and

transmission media in the local WSN is n-1)/3 .
➢ Each sensor needs to collect messages through

(n−1)/3 +1 rounds of message exchange.
➢Each sensor has its own initial value Vi.
In classic WSN, if the detected value meets some

condition, then the initial value must be set to 1,
otherwise, 0. Take the fire control system for instance, if
the sensor detects the temperature is higher than 50°C,
then its initial value is 1, otherwise, 0 as default. 23

While considering the level of abnormality in WSN,
take the water quality control system for instance, if the
sensor detects the PH is higher than 8 or lower than 6,
then its initial value is 1, if the PH is higher than 9 or
lower than 5, then its initial value is 2, if the PH is
higher than 10 or lower than 4, then its initial value is 3,
otherwise, 0 as default.

When sensors detect an event, they must decide their
own initial value for running the consensus problem
algorithm. After that, each sensor continues to execute
the protocol. The proposed protocol includes message
exchange phase and decision phase. Message in this
paper consists of node ID, node state, PH value,
sampling frequency and local clock.

In the message exchange phase, each sensor
collects and exchanges messages from other sensors
with (n−1)/3 +1 rounds of message exchange. As
shown in Fig. 1, all the received messages are used to
construct a tree called M-tree.24 In Figure 1, the message
received from each sensor in the first round will be
saved in the first level of the tree and we use Vi to
represent it. During the second to the ((n−1)/3 +1)th
rounds of message exchange phase, each sensor
exchanges the received messages, which come from

previous rounds, to other sensors. Then it stores the
received messages to the second level and we use Vj:i
(where j<>i) to represent it, continuing to the
((n−1)/3 +1)th level of the M-Tree. Each level of the
M-Tree contains a round of received messages and each
vertex is labeled with a non-repeating sequence of
sensor identifiers to avoid the repeating effect from the
sender.

2.2. Proposed protocol

After finishing (n−1)/3 +1 rounds of message
exchange, each sensor must execute the agreement
phase. The proposed protocol is shown in Fig. 2.

Protocol

Definitions:
n: The number of sensors in one cluster
Vi: The initial message sent by each sensor
V j:i: The message received by sensor i from sensor j
f: (n−1)/3
Major(v): majority value of each vertex
Resolve(v): A function of taking the common value

Message exchange phase:
Round 1:
1. Initiate each sensor’s value in level 0
2. store value Vi in level 1
Round 2:
1. send level 1 of your tree to all
2. store value V j:i in level 2
Continue for f + 1 rounds
Calculating the Decision:
In round f + 1, each sensor uses the values in its tree to
compute its decision.Recursively compute the "decision"
value for the root of the tree.
Function major()

Definitions:
Vi: The initial message sent by each sensor
Major(x,y): get majority when value is in {x,y}, return the
number of the majority
initiate:

if sensor’s value is 0 then vi=0;
else vi=1;

major(0,1):
if the number of 0 is more than one half
major()=0;
else if major()=1
 {
delete vertex having value 0;

 Get vertex’s true value vi;
//vi must value in {1,2,3} in this paper
 major(1,major(2,3));

Fig.1. M-TREE for V1

Published by Atlantis Press
 Copyright: the authors
 48

Na Wang et al.

}

Function decision()

Vi: The initial message sent by each sensor

decision(v):
if v a leaf
 decision(v)= vi
else
decision(v)=major(decision (v') : v' is a child of V)

Fig.2. The proposed protocol and function

3. Hierarchy Referencing Clock
Synchronization Protocol

3.1. HRTS in single-hop network

HRTS is based on the sender-receiver clock
synchronization mechanism. HRTS achieve clock
synchronization between the sender and the receiver
mainly through three data communications. 11 In the first
synchronous communication process, the reference node
(sender) broadcasts a synchronization request command
frame named f1 and record the time t1. The
synchronization request command frame contains a
response node which is randomly selected in the
reference node’s neighbor table to complete the
communication process. All nodes within the broadcast
range of the reference node record the f1’s arriving
time, but only the response node will reply to the
command frame. The reception moment of the neighbor
node i is denoted by t2i and that of answer node is
denoted by t2.
 In the second synchronous communication process,
response node reply to the reference node with a
synchronization response command frame named f2
which contains the moment t2 when response node
received the synchronization request command frame
F1 and the moment t3 when response node sends frame
f2. Reference node recorded its reception moment of f2
as t4.

The above-mentioned time is local time in each
node. It’s assumed that the message transmission time
between any two nodes is the same and is denoted by d.
The time offset between the sender and receiver is fixed
during the period of time t1 to t4 which denoted by Δ.
The local time of reference node is denoted by Tr,
response node by Tp and other nodes i by Ti. When the
reference node receives f2, we can get the following
relationship:
Δ = (t2- t1+ t3 - t4) /2

With the above relationship, the reference node will
broadcast a synchronization command frame again
named f3 which is filled with t2 and the value of Δ.
Neighbor nodes can calibrate their own local time after
receiving f3 according to the information contained in
the command frame. The specific relationship is as
follows:

Tr = Ti+ t2- t2i–Δ
The equation above can calibrate the local time of

node i and t2 - t2i –Δ is called compensation time of
node i. After the synchronization process, all neighbor
nodes can keep pace with reference node.

It can be seen that it is bidirectional synchronization
between reference node and response node, while
unidirectional broadcast synchronization between the
reference node and other neighbors.

3.2. Hierarchical cluster tree in HRTS

After clustering, child nodes having the same parent
compose a cluster. The node having the largest degrees
will be selected as the head of itself and its neighbors at
the same level in the cluster. Each node and its child
nodes constitute a connected single-hop area, and the
network is divided into a lot of single-hop areas that
nodes can communicate with each other directly.

When applying HRTS into multi-hop network, with
a hierarchical cluster tree, HRTS can be applied in
single-hop areas directly.

If the nodes are deployed as in Fig. 3, where node 1
is most powerful, the tree will be created as Fig. 4.

4. Clock Synchronization for Failure Tolerance

4.1. Node Faults

Nodes have several hardware and software
components that can produce malfunctions. For
example, the enclosure can suffer impacts and expose
the hardware of the sensor node to the extreme
conditions of the environment.

When the battery of a node reaches a certain stage,
sensor readings may become incorrect. Hardware
failures will generally lead to software failure. A Data
Acquisition application will not perform properly if the
underlying sensors are providing incorrect readings.
Nevertheless, some hardware failures do not affect all
the services in a sensor node. In the example discussed,
although the node cannot be used to provide correct
sensor readings it still can be used to route packages in
the sensor network.15

Published by Atlantis Press
 Copyright: the authors
 49

A Fault-Tolerant Schema For Clock Synchronization

Organizing a network in clusters is an approach used
in many applications, for example to extend the lifetime
of the network. A small number of nodes are selected to
become cluster heads. They are responsible for
coordinating the nodes in their clusters, for instance by
collecting data from them and forwarding it to the base
station.

In case that a cluster head fails, no messages of its
cluster will be forwarded to the base station any longer.
The cluster head can also intentionally or due to
software bugs forward incorrect information. Depending
on the application case, the impact of such a failure can
vary from quality degradation of measurements to alarm
messages not being delivered to a back-end system.

While forwarding messages, nodes can aggregate
data from multiple other nodes in order to reduce the
amount of data sent to the base station. One common
simple approach is to calculate the average of correlated
measured values such as temperature, humidity and
pressure, sending only one message to the back-end.

If a node generates incorrect data, the data
aggregation results can suffer deviations from the real
value. Also, if a node responsible for generating the
aggregated data is subject to a value failure, the base
station will receive incorrect information of an entire
region of the network.

In case of synchronization, a cluster head can suffer
power failure and stop responding to requests of
synchronization, or it can start sending arbitrary clock
either intentionally or due to a malfunction.

4.2. Major clock in T-HRTS

In practical applications, it can be considered the
same clock when clock error between two sensor nodes
is relatively smaller compared with the synchronization
precision.

Definition 1: In a cluster, if there are multiple
neighbor nodes that have the same clock with the head
node, the clock of the head node is called the major
clock.

Definition 2: In a cluster, let θ=t2 - t2i, when θ is
small enough to be omitted, it is regarded that the clock
of cluster head and node i is the same.

4.3. Fault Detection and recovery

Generally, if a node is non-faulty, the clock may not
shift much in a cycle. There is special case that the
intended reference node is attacker and sends error in
the third process in HRTS. In this case, the
synchronization will fail. Thus, the root of the sub-tree
must be changed to deal with the attacker.

After initializing, when synchronization is required,
the root node will broadcast its own clock Tr and Δ to
its child. The cluster head which is response node
decides the major clock. If the root’s clock is not in the
majority, it may be fault.

Applying the assumption in multi-hop network,
when the root of sub-tree is fault, it sends faulty clock to
the children. It may be that the clock in the third process
is earlier than that in the first process. So the
synchronization result will be an unreasonable clock.

In order to detect all the faulty, detection procedure
must execute from top to bottom all through the tree. If
the root is fault, mobile node can be used instead of it. If
the cluster head if fault, we use Byzantine algorithm for
each sub-tree.

Exponential Tree Algorithm for Byzantine [2] is as
follows:

Each tree node is labeled with a sequence of unique
processor indices. Root's level is 0 and root has n
children, labeled 0 through n – 1 where n is the number
of nodes in the sub-tree.

Child node labeled i has n - 1 children, labeled i : 0

Fig.3. Deployment of nodes

Fig.4. Hierarchical cluster tree

Published by Atlantis Press
 Copyright: the authors
 50

Na Wang et al.

through i : n-1 (skipping i : i).
Node at level d labeled v has n - d children, labeled

v : 0 through v : n-1 (skipping any index appearing in v).
Nodes at level f + 1 are leaves and f is the number of
fault nodes that must meet with the inequality as
3f+1<=n. The process continues for f+1 rounds.

For example, in Fig. 4, the sub-tree (4, 10, 11, 12)
may build a tree like Fig. 5.

In the exponential tree, node 4 is proposed as a
common node. At the third level, there are three nodes
indicating that node 4 receives local clock from node 10,
11 and 12. With the limitation that 3f+1<=n, the
majority clock of the three nodes must be the non-fault
clock. Even though the root of sub-tree is fault, the
common clock could not be impacted by using the
major clock.

4.4. Synchronization process in T-HRTS

After recreating the hierarchical cluster tree, the
child synchronizes with the root in every sub-tree
according to T-HRTS algorithm. As a result, the clock
throughout the network will be the same at a moment.

If the major clock has been decided as the cluster
head’s clock, the clock will be sent to its root and then
to the base. If this is not the case, the sub-tree will be
synchronized with the root.

In our model, when the root is fault, it may send
fake clock to its sub-tree. With using HRTS, the fake
clock will spread to the cluster head, then to all the tree
nodes. Therefore, fault-tolerant can’t be implemented
which is a crucial requirement in distributed system. In
our algorithm, although root is fault, its children may
have the approximate clock that can serve as the major
clock to ensure the right clock throughout the network.

We assume four faulty nodes and test the model as
the outcome bellow.

Table 1 shows the worst condition that even if all the
roots of sub-trees are fault, the clock in the network can
be synchronized correctly.

4.5. Performance Analysis

This algorithm is based on the HRTS algorithm with
adding the concept of major clock. In HRTS, the
optimization of selecting synchronous reference node is

not considered although it would be fault. In T-HRTS,
reference node is not necessarily the parent node, but
probably the cluster head node having major clock. It
can tolerant some failures with executing byzantine
algorithm. The sub-tree at all levels need to decide
which clock is the common right one, then update local
clock for at most n-m times where n is the total number
of the sub-tree and m is the number of the nodes having
major clock. Although the overhead of the packet is not
reduced, the frequency of clock updating is dramatically
reduced especially when the scale of the network is
large and the required clock synchronization precision is
low. In addition, there is a crucial parameter θ that need
to be researched especially.

5. Conclusion

When detecting an event, data form sensors in a
network must be aggregated to determine a common
value which will be used as a crucial parameter of
certain execution. It is crucial to get a correct decision
with considering transmission route and the same time
spot sensors gathering the data. Practically, some
sensors may get faulty and the transmission media
between sensors may get disturbed by the environment
noise. These facts may conduct the fault detected result
and then cause an erroneous reaction. In the past, many
solutions are proposed to detect faulty sensors.
However, we must take the level of abnormality for
granted. In this study, we propose a control algorithm
solution to raise the correctness of detected result even
when some sensors are faulty and some of the
transmission media between sensors are disturbed.
Under our scheme, sensors can take certain action with
informing other nodes to change synchronously so that
the local WSN application can take the corresponding

Fig.5. Exponential Tree

Table1. The faulty nodes and Testing

level

Faulty
nodes

Major
clock

Most Clock
update

fault-
tolerant

1 1 mobile NULL

YES
2 2 7 {6、8、9}
2 4 11 {10、12}
3 NULL NULL NULL
2 3 1 {2、4、5}

YES 3 7 2 {6、8、9}
3 11 4 {10、12}

Published by Atlantis Press
 Copyright: the authors
 51

A Fault-Tolerant Schema For Clock Synchronization

actions more accurately and save storage space and
electrical power.

Acknowledgements

This work is is supported by the National Basic
Research Program of China (Grant No. 2011CB302802),
and Shanghai Municipal Natural Science Foundation
(No. 11ZR1413700). And thanks for the discussing and
instruction of professor Yixiang Chen.

References

1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E.
Cayirci, Wireless sensor networks: a survey, Computer
Networks 38 (2002) 393-422

2. Ryszard Klempous, Jan Nikodem, Byzantine Algorithms
in Wireless Sensors Network, ICIA 2006

3. Leslie Lamport, P. M. Melliar-Smith, Byzantine Clock
Synchronization, 1984 ACM

4. DOLEV, D. The Byzantine generals strike again. J.
Algorithms 3, 1,Jan. 1982.

5. Arun Kumar Tripathi and Ajay Agarwal, An Approach
towards Time Synchronization Based Secure Protocol for
Wireless Sensor Network, NDT 2010, Part II, CCIS 88,
pp. 321-332, 2010.

6. Kun Sun, Peng Ning, Cliff Wang, An Liu, Yuzheng
Zhou, TinySeRSync: Secure and Resilient Time
Synchronization in Wireless Sensor Networks, CCS'06,
October 30-November 3, 2006.

7. LESLIE LAMPORT, ROBERT SHOSTAK,
MARSHALL PEASE, The Byzantine Generals Problem,
ACM 0164-0925/82/0700-0382, 1982

8. L. Lamport. Using Time Instead of Timeout for Fault-
tolerant Distributed Systems. ACM Trans. onProg. Lang.
and Sys. 6, 2 (April 1984), 254-280.

9. Ganeriwal S, Kumar R, Srivastava M B. Timing-sync
Protocol for Sensor Networks[C]//Proc. of the 1st ACM
Conf. on Embedded Network Sensor Systems. Los
Angeles, CA, USA: [s. n.], 2003.

10. Jeremy E, Lewis G, Deborah E. Fine-grained Network
Time Synch- ronization Using Reference
Broadcasts[C]//Proc. of OSDI'02. Boston, MA, USA: [s.
n.], 2002.

11. Dai Hui, Han R. TSync: A Lightweight Bi-directional
Time Synchronization Service for Wireless Sensor
Networks[J]. ACM Mobile Computing and
Communications Review, 2004, 18(1): 125-139.

12. Xu Chaonong, Zhao Lei, Xu Yongjun. Broadcast Time
Synchroni- zation Algorithm for Wireless Sensor
Networks[C]//Proc. of the 11th International Conference
on Sensing, Computing and Automation. Chongqing,
China: [s. n.], 2006.

13. Capkunl, S., Ganeriwal, S., Han, S., Srivastava, M.:
Securing Timing Synchronization inSensor Networks. In:
Proceedings of, pp. 369-390. Springer, New York (2006).

14. Song, H., Zhu, G.C.S.: Attack-resilient time
synchronization for wireless sensor networks.In: IEEE
International Conference on Mobile Adhoc and Sensor
Systems Conference, p.772 (2005)

15. Hai Liu, Amiya Nayak, Ivan Stojmenovi?.:Fault Tolerant
Algorithms/Protocols in Wireless. Computer
Communications and Networks, 2009, 261-291, DOI:
10.1007/978-1-84882-218-4_10

16. J. Elson, L. Girod, and D. Estrin, "Fine-Grained Network
Time Synchronization Using Reference Broadcasts,"
ACM SIGOPS Operating Systems Rev., vol. 36, pp. 147-
163, 2002.

17. Q. Li and D. Rus, "Global Clock Synchronization in
Sensor Networks," Proc. IEEE INFOCOM 2004 Conf.,
Mar. 2004.

18. Kun Sun, Peng Ning, and Cliff Wang, "Fault-Tolerant
Cluster-Wise Clock Synchronization for Wireless Sensor
Networks", IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING, VOL. 2,
NO. 3, JULY-SEPTEMBER 2005

19. P. Ramanathan, K.G. Shin, and R.W. Butler, "Fault-
Tolerant Clock Synchronization in Distributed Systems,"
IEEE Computer, vol. 23, no. 10, pp. 33-42, 1990.

20. J. Lundelius-Welch and N. Lynch, "A New Fault-
Tolerant Algorithm for Clock Synchronization,"
Information and Computation, vol. 77, no. 1, pp. 1-36,
1988.

21. D. Dolev, J.Y. Halpern, B. Simons, and R. Strong,
"Dynamic Fault-Tolerant Clock Synchronization" , J.
ACM, vol. 42, no. 1, pp. 143-185, 1995.

22. T.K. Srikanth and S. Toueg, "Optimal Clock
Synchronization," J. ACM, vol. 34, no. 3, pp. 626-645,
1987.

23. Hui-Ching Hsieh, Jenq-Shiou Leu, Wei-Kuan Shih, "A
fault-tolerant scheme for an autonomous local wireless
sensor network", Computer Standards & Interfaces 32
(2010) 215-221.

24. M. Pease, R. Shostak, L. Lamport, Reaching agreement
in presence of faults, Journal of ACM 27 (2) (1980) 228-
234.

Published by Atlantis Press
 Copyright: the authors
 52

