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In order to develop highly reliable software in a cost-effective manner, it is necessary to manage software reliability 
at the early test phases. Most of developers at those phases perform a test and debug activities together. In this 
paper, we propose a new reliability estimation model to manage the reliability of individual units from the early test 
phases as a solution for considering the test and debug time together. Via the proposed model using experiment of 
actual data, we can improve the accuracy of software reliability estimation.  
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1. Introduction 

Software reliability is an important quality attribute that 
must be assured throughout a software development life 
cycle. The definitions of software reliability can vary 
according to the people and organizations involved. 
Based on the definition of the IEEE 1633 standard [3], 
software reliability is the ability of software to perform 
without failures under specified conditions during a 
specified time. 

Therefore, the release time of software can be 
determined based on the estimated reliability. This 
implies that tests or releases of software will be 

determined according to the estimated number of 
residual software failures or the estimated time between 
software failures. Software reliability engineering 
focuses on engineering mechanisms for quantitative 
evaluations of software reliability, the development of 
software, and the maintenance of software. Thus, 
software reliability engineering refers to engineering 
techniques that quantitatively represent software 
behaviors according to users’ requirements. Lyu [2] 
defined software reliability as an engineering process 
and stated that (1) reliability objectives, (2) operational 
profiles, (3) reliability modeling and measurement, and 
(4) reliability validation are more important than other 
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attributes. Particularly, the reliability modeling involves 
measuring and analyzing software reliability. In this 
paper, software reliability are measured and analyzed 
according to a novel model developed here.  

Since 1970s, more than approximately 200 
reliability models have been developed to estimate 
software reliability. These models have been applied to 
various domains, such as the medical, military, 
shipbuilding, and aerospace industry. Software 
reliability models have the form a mathematical 
expression that specifies the general form of the 
software failure process to estimate the initial failure 
counts, the time between failures, the remaining 
failures, and other factors based on detected failures, 
faults and the time that elapses during testing activities. 
Software reliability models are classified according to 
the phases of the software development life cycle [4, 5, 
6]. Specifically, software reliability estimation models 
are classified into exponential models and S-shaped 
models [15]. These models are also classified into 
failure detection estimation models and failure removal 
estimation models [1]. Figure 1 shows the two 
exponential model and S-shaped model according to the 
test time. 

In this paper, exponential software reliability models 
are used [4, 7] used during test phases. Specifically, in 
the Background section, three models are introduced to 

show that the proposed model represents a modification 
of exponential models considering characteristics that 
these models do not have. The Schneidewind model [3, 
8], was developed to estimate total number of failures, 
remaining number of failures, and time to reach 
reliability goals based on the failure and time data 
collected during the test phases. Schneidewind also 
developed another estimation model to represent a 

failure removal process [9]. The model introduced the 
delay time, which is a different opinion from the 
assumption of the original Schneidewind model in 
which all failures are immediately removed. The 
integrated model of a failure detection and correction 
process [10] considers the delay time to correct failures 
and the failure detection process together. Existing 
models were developed to represent the failure detection 
process and correction process separately, as the test 
activities and debug activities are separately performed 
by developers and testers. However, at the early test 
phases and in small organizations, developers and 
testers are often not separated. This implies that 
developers should perform testing and debug activities 
together. Therefore, the proposed model was developed 
to support the situation that occurs frequently in the 
early test phases and in the small organizations. 

2. Background 

The exponential model is a basic model among software 
reliability models. The Goel-Okumoto model [4] is well 
known as a model of exponential models and the model 
proposed in this paper is also similar to the Goel-
Okumoto model because the proposed model is 
developed through a modification of the Goel-Okumoto 
model. The Goel-Okumoto model is not described in 
this section, the Schneidewind model, a very well-
known exponential model used to estimate failure 
detections, is described. Other models that estimate 
failure removal processes are also described. 

2.1. Failure detection estimation model 

One feature of the failure detection estimation models 
like the Schneidewind detection model [3, 8] is that it 
can also model failure detection processes. The 
Schneidewind detection model is a recommended model 
among various software reliability estimation models in 
the IEEE 1633 standard. It is validated based on the 
failure data of National Aeronautics and Space 
Administration (NASA) in the U.S. The Schneidewind 
detection model uses the detected failure counts within 
the same time interval and calculates the current failure 
rate based on the historical failure rate to predict future 
failures accurately. The Schneidewind detection model 
considers that the failure detection process can be 
changed when the test is performed and suggests a basic 
approach as well as two additional approaches 
considering that recent failure counts are more useful 

 

Fig. 1. Exponential Model and S-shaped Model 
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than historical failure counts to predict near-future 
failures. It is possible to select one approach among the 
three approaches based on the purpose. According to 
each approach, parameter α and β can be estimated by 
the Maximum Likelihood Estimation (MLE)[11] 
method.  

Three approaches of the Schneidewind model are as 
follows. 
• Approach 1: use all of the failure counts from 

interval 1 through t (i.e., s = 1). 
• Approach 2: use failure counts only in intervals s 

through t (i.e., 1 ≤ s ≤ t). 
• Approach 3: use cumulative failure counts in 

intervals 1 through s-1 and individual failure 
counts in intervals s through t (i.e., 2 ≤ s ≤ t). 

 
In order to use this model, it is necessary to follow 

the next process shown below.  
• Assumptions for data collection 

▪ Perfect debugging 
▪ Removal time is ignored 

• Data collection 
▪ Detected failures 
▪ Test time 

• Estimation of parameters for the mean value function 
▪ Parameter for the total failure counts 
▪ Parameter from the failure occurrence rate  

• Reliability validation 
▪ Estimation of failure counts that is undetected 
▪ Decision of the time point for test or release 

2.2. Failure removal estimation model 

The failure removal estimation model is modeled from 
the failure removal process and the Schneidewind 
removal model and JungHua’s removal model are 
representative models among failure removal estimation 
models [9, 10]. The Schneidewind removal model was 
developed from a modification of the basic 
Schneidewind detection model because the basic 
Schneidewind model has the unrealistic limitation in 
which the “removal time is ignored”. Therefore, a delay 
time is introduced; this is the time between failure 
detection and removal. JungHua’s removal model was 
developed from the basic Goel-Okumoto model. It 
considers the delay time and the failure correction rate. 
JungHua’s removal model shows the failure removal 
process and considers the failure detection process and 
the removal process. According to these two functions, 

failure detection and correction processes can be 
estimated.  
To use these models, it is necessary to follow the 
process shown below.  
• Assumptions for data collection 

▪ Perfect debugging 
▪ Delay time occurs 

•  Data collection 
▪ Detected failures and removed failures 
▪ Test time and delay time 

•  Estimation of parameters for the mean value function 
▪ Parameter for total failure counts 
▪ Parameter from the failure occurrence rate and 
failure correction rate 

•  Reliability validation 
▪ Estimation of failure counts removed 
▪ Remaining uncorrected failure counts and time 
point of all detected failures removed 

2.3. Motivation 

Basic Non-Homogeneous Poisson Process (NHPP) 
models have the assumption that all detected failures are 
immediately removed and that it is possible to measure 
and analyze software reliability based on these 
assumptions. However, it is impossible to remove all 
failures immediately in reality. This signifies that a 
certain delay time must transpire [9, 10]. General 
estimation models do not consider the removal time of 
faults; only the test time is considered. This is a 
limitation of general estimation models. In order to deal 
with this limitation, improved models contain a new 
assumption. When a failure is detected, faults are 
removed after a certain time. However, in this paper, the 
definition of the delay time differs from that in the 
earlier research. According to the previous research, the 
delay time is the time between failure detection and 
failure correction. However, the removal time is 
different. The removal time is described as solely the 
time spent removing faults. Therefore, the delay time is 
larger than the removal time. Figure 2 describes the test 
time, delay time, and the removal time. 
 

 
(a) Failure Detection Estimation Model 
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(b) Failure Removal Estimation Model 

 

 
(c) Proposed Model 

Fig. 2. Testing Time, Delay Time and Removal Time of each 
model 

In the existing studies, the failure detection process 
and failure removal process are modeled based on the 
test time and delay time. This implies that general 
detection estimation models consider the test time under 
the limitation that the removal time is 0. General 
removal estimation models consider the test time to 
confirm failure detection and the delay time to confirm 
the failure removal process. As described above, 
existing models have a limitation in which the failure 
detection and removal processes are separated because 
existing models are normally used during system testing 
and operational testing in which developers and testers 
are normally separated, performing their test and debug 
activities independently. 

However, developers and testers cannot be 
separated in the early test phases or in small 
organizations if performing testing and debug activities 
together. Therefore, failure detection and removal 
efforts cannot be separated. This indicates that a new 
estimation model to deal with this limitation must be 
used in the early test phases or in small organizations. 
Figure 3 shows software reliability models according to 
a software development life cycle. As shown in the 
figure 3, no suitable model exists for unit testing and 
integration testing. This paper suggests a feasible model 
for use in the test phases. 
 

 

Fig. 3. Software Reliability Models on V-Model 

3. A Reliability Estimation Model based on 
Software Fault Detection and Removal Effort 

As described in the previous section, existing 
reliability estimation models are used based on testing 
and debug activities, which are performed separately. 
However, developers and testers are not separated 
during the early test phases and in small organizations . 
Developers perform tests to detect failures and debug 
the detected faults. Therefore, it is necessary to consider 
testing and debugging effort together. To support the 
idea, a new model is developed here. This section 
explains the approach of this research, including the 
description of the proposed model. 

3.1. Overview 

The proposed model in this paper is based on the 
Goel-Okumoto model [7], a well-known model among 
exponential models. Also the proposed model considers 
the characteristics of early test phases where developers 
create test cases and perform testing and debugging.  

The Goel-Okumoto model has a Mean Value 
Function (MVF) to estimate cumulative detected 
failures. 

 
0,0)],exp(1[   tMVF   

 
To use the MVF, it is necessary to estimate 

parameters α and β. The two parameters can be 
estimated by Maximum Likelihood Estimation (MLE) 
based on the collected data. Parameter α refers to the 
number of estimated total failures and the parameter β 
refers to the failure occurrence rate.  
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The Goel-Okumoto model estimates the total 
number of failures based only on test time and the 
number of detected failures. Therefore, estimating the 
total number of failures is straightforward. The 
proposed model also follows the number of total failures 
estimated by the Goel-Okumoto model. Thus, the two 
models show the same number of estimated total 
failures. However, the Goel-Okumoto model does not 
consider the failure removal time. Therefore, it is 
limited when estimating the accurate time when 
developers perform test and debug activities together at 
the early test phases because the Goel-Okumoto model 
can estimate detected failure counts based only on the 
test time. In order to deal with this limitation, it is 
necessary to change the failure rate according to the 
removal time. In other words, failure occurrence is 
delayed according to the removal time which then 
changes the failure occurrence rate. Two characteristics 
of the proposed model are as follows: 
 
C1: the number of estimated total failures is identical 
between the basic Goel-Okumoto model and the 
proposed model. 
 
C2: the failure occurrence rate is changed according to 
the removal time because detected failures occur at the 
delayed time point. 
 

 

Fig. 4. Results of the Basic Exponential Model and the 
Proposed Model 

Figure 4 shows the result of the basic exponential 
model; the graph changes when the removal time is 
included in the result of a basic exponential model. In 
this figure, all graphs have the same number of 
estimated total failures. 

3.2. Assumption 

The proposed model has the same assumptions as a 
basic exponential model because the proposed model is 
based on the exponential model. One of the 
representative assumptions is that all detected failures 
are immediately removed. Thus, the failure removal 
time is not considered and only the test time is 
considered. However, the removal time must be 
considered in actual development scenario. Therefore, 
new models have been developed to deal with the 
limitations [9, 10]. 

The proposed model also has different assumptions 
to consider failure the detection time and the removal 
time. 

 
A1: all detected failures are immediately removed and a 
certain time is spent to remove detected faults. 
 
A2: the failure occurrence rate is decreased at time 
goes on. Thus, the failure occurrence rate is decreased 
based on the time rate, which is the failure detection 
time divided by the total time. 
 

In assumption A1, developers perform test activities 
and analyze detected failures to identify the cause of the 
failures to remove. Therefore, all detected failures are 
immediately removed. However, to remove detected 
failures, the removal time must be considered because 
developers must spend a certain amount of time. In 
assumption A2, if only the test time is considered, the 
failure occurrence rate will be identical to the basic 
exponential model. However, the failure occurrence rate 
must be decreased because the failure removal time is 
considered; the failure detection time rate is calculated 
by the total time including the test time and the debug 
time.  

The proposed model was developed based on the 
assumptions of the basic exponential model and the two 
different assumptions are added. The two different 
assumptions are different from those in existing models 
and the characteristics of the unit and integration testing 
phases are considered to estimate a more accurate result. 

3.3.  Proposed Model 

Below are the notations of the proposed model. 
•  α: the number of estimated total failures of the 

Goel-Okumoto model 
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•  αp: the number of estimated total failures of the 
proposed model (the same as α) 

•  β: failure occurrence rate per failure of the 
Goel-Okumoto model 

•  βp: failure occurrence rate per failure of the 
proposed model 

•  t: failure detection time 
•  tp: total time (failure detection time + failure 

removal time) 
•  MVF (t): the cumulative number of detected 

failures between time 0 and time t of the Goel-
Okumoto model. 

•  MVFp (tp): the cumulative number of detected 
failures between time 0 and time tp of the 
proposed model. 

 
The proposed model uses the same procedure to 

collect data as used in existing models. Data regarding 
the detected failures during test activities is analyzed 
and the detected failure counts are rearranged in the 
same time interval. In addition, data concerning the 
faults that are cause of the failures is also collected 
because the proposed model considers the failure 
removal time. In the proposed model, the failure 
detection process is shown with total time as spent by 
developers. Therefore, the proposed model provides 
more accurate predictions of the time point of future 
failures. 

The proposed model is based on the Goel-Okumoto 
model, which is a well-known basic exponential model. 
Therefore, the new notation MVFp is developed based 
on MVF in the Goel-Okumoto model. There also two 
new assumptions. Essentially, parameters α and αp, 
estimated according to the test time, are identical 
because the number of estimated total failures must not 
be changed. 

              P1: αp = α                  (C1) 

Parameter β of the failure occurrence rate, 
considering only the test time according to assumptions 
A1 and A2, is decreased according to the test time rate 
of the total time. 

P2: βp = β × [Td × (Td + Tr)]    (C2) 

Td is the time spent on detecting failures and Tr is the 
time spent on removing failures. Thus, the total time is 
the time to spend on detecting (Td) and removing (Tr) 
failures. According to P1 and P2 above the basic MVF 

is changed to a new MVF to consider the failure 
removal time to predict cumulative detected failures. 





  )exp(1[ tMVF pppp
x       

 

As Figure 5 shows, it is necessary to follow certain 
steps to estimate the number of cumulative detected 
failures according to the proposed model. Estimation 
activities are that it is firstly necessary to collect failure-
related data to estimate parameters α and β according to 
the equation as above, then parameters αp and βp are 
calculated from the new equations. The new MVFp 
consists of new parameters αp, βp, and tp to estimate the 
number of cumulative detected failures. Therefore, the 
number of cumulative detected failures is estimated 
based on fault detection and removal effort. 
 

 

Fig. 5. Process of Proposed Model 

To use the proposed model, it is necessary to follow the 
process below. 
 
• Assumptions for data collection 

▪ Perfect debugging 
▪ No delay time 
▪ Removal time occurs 

• Data collection 
▪ Detected failures and removed failures 
▪ Test time and removal time 

• Estimation of the parameters of the basic Goel-
Okumoto model 

▪ Parameter for total failure counts 
▪ Parameter from the failure occurrence rate 

• Changes of parameters for the new MVF of the 
proposed model 
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▪ Parameter change to fit the proposed model 
▪ Parameter αp and βp are calculated 

• Calculation of the total time 
▪ Failure detection time and removal time 
▪ Calculation of total time 

• Reset up parameters for the new MVF 
▪ Parameter set up for αp, βp, and tp 
▪ Estimation of the result of the new MVF 

• Reliability validation 
▪ The number of cumulative failures and remaining 
failures 
▪ Confirmation of current reliability 
 

In section 2, the three existing models were 
introduced. These models are based on the exponential 
model and failure counts model. The proposed model 
was developed to improve the limitations of existing 
models. The result of the comparison is summarized in 
the table1. This table contains the phases, assumptions, 
removal time, integration of the detection time and the 
removal time, the outputs, and the usage of the models. 

4. Validation 

This section gives a validation of the proposed 
model to confirm how it fits actual data. To confirm 
whether the proposed model can be used without 
problems, collected industrial data was used during the 
early test phases of the unit and integration testing 
phases. To validate the proposed model, a proper 
environment was set up and an experiment conducted. 

4.1.  Environment for the experiment 

There are two existing open tools, CASRE and 
SMERFS, to estimate software reliability with models 
based on data collected in a convenient manner [12, 13]. 
However, it is very difficult to compare the results of 
the Goel-Okumoto model and the proposed model with 
these two open tools. To deal with this difficulty, a new 
software reliability analysis tool developed by us, 
known as SRTpro [14], was used for the experiment. 
Also SRTpro was developed to deal with the limitations 
and drawbacks of existing tools. Figure 6 shows a 
screenshot of SRTpro.  

 

Fig. 6. Screenshot of SRTpro 

4.2. Data Collection 

To conduct an experiment of the proposed model, 
actual data collected from an organization was used 
instead of hypothetical data. The actual data was 
collected from the in-progress project of a CMMI level 
5. To collect the actual data, the two data collection 
templates were used, as shown in Figure 7 and Figure 8 
below. Developers collected the actual data using forms 
and sent them to us.  

Figure 7 shows the template used to collect detected 
failures during test activities, and Figure 8 shows the 
template used to collect faults which were the causes of 
the failures. The removal time is included. All 
experimental data was collected using the data 
collection templates and the data was rearranged for use 
as input data in the reliability models.  

 

Fig. 7. Failure Collection Template 

 

Fig. 8. Fault Collection Template 
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The actual data was collected in 28 files, and only 
10 CSCs were selected for the experiment because 
unusable CSCs had problems such as not being fitted to 
an exponential model, CSCs that were too small, no 
failures detected, and too short a test time. However, 
more CSCs can be used for the experiment through 
more analysis activities of the actual data. 

4.3. Goals of experiment 

The primary goal of the experiment was to confirm 
relationship between the result from the proposed model 
and the actual collected data. First, it sought to confirm 
the limitation that the Goel-Okumoto model, which does 
not consider the time to remove faults according to the 
difference between the estimation results of the Goel-
Okumoto model based on the collected data without the 
removal time and the actual data including the removal 
time. Second, it sought to confirm how to improve the 
limitation according to the difference between the 
estimation results of the proposed model and the actual 
data including the removal time. To compare estimation 
results to actual data, Mean Relative Error (MRE) [10] 
and Mean Square Error (MSE) [10] mechanisms were 
used to confirm the difference. The scope of the values 

was confirmed through a box-Plot between the actual 
collected values and the estimated values of the Goel-
Okumoto model and the proposed model. 

Mean Relative Error (MRE) 




n

k k

kk

z
ztm

n 1

)(1  

 
Zk is the number of failures occurring at the time 

interval k as observed during test the activities. m(tk) is 
the number of cumulative failures at the time point k as 
estimated through MVF. n is the number of total time 
intervals. It was used to confirm the difference between 
the estimation results and the actual values; when the 
MRE value is small, it can be interpreted that there is no 
difference between the estimation results and the actual 
values, implying that it is possible to estimate the 
number of future failures more accurately. 

Mean Square Error (MSE) 

21

1
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Table 1. Comparing of Existing Models and the Proposed Model 

 Detection model Removal Model Proposed Model 

Phases 
•  System testing 
•  Operational testing 

•  Unit and Integration testing 

Assumptions 
•  Perfect debugging 
•  No delay time 
•  No removal time 

•  Perfect debugging 
•  Delay time for removal 

•  Perfect debugging 
•  No delay time, but removal 

time exists 

Removal Time X  (delay time) O 

Integration of 
detection time and 

removal time 
X  (separately use) O 

Outputs 

•  The number of 
cumulative detected 
failures 
•  The number of 

remaining undetected 
failures 

•  The number of cumulative 
removed failures 
•  The number of remaining 

unresolved failures 

•  The number of cumulative 
detected failures 

•  The number of remaining 
undetected failures 

Usage 
•  To decide when to stop 

testing 
•  To know the time when to 

finish debugging failures 

•  To manage reliability at the 
early phases 
•  To decide when to move on 

the next step 
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Zk is the number of observed failures occurring at 
the time interval k and m(tk) is the number of 
cumulative failures at the time interval k as estimated 
through MVF, as above. A MSE value is the average 
value of the squared value of the difference between the 
two values. It is used to confirm the difference between 
the estimation values and the actual values. In most 
cases to determine the priorities of several models based 
on collected data, MSE values are normally used. If the 
MSE value is small, it indicates that the estimation 
values are close to the actual values and that it is 
possible to estimate the number of future failures more 
accurately. 

The next section describes the confirmation results 
of the experiment. To confirm that there exist a 
difference between the estimation values of the 
proposed model and the actual values statistically 
according to Paired T Test, the tool known as “Minitab” 
is used. 

4.4. Experiment and Validation Result 

To conduct the experiment, the collected failure 
data of a unit among 10 available units was used. The 
experiment produced several graphs of the results from 
the Goel-Okumoto and from the proposed model for 
validation. Shown first are the MVF result of the Goel-
Okumoto model, ignoring the removal time in Figure 9. 
 

 

Fig. 9. Estimation Values of Goel-Okumoto Model 

Figure 9 shows a graph of the cumulative failures 
estimated through MVF considering the failure counts 
and the test time. 10 failures are estimated at the time 
interval of 34 and 10.41 failures are estimated at the 
time interval of 38 in the graph. The next figure 
describes a comparison of the results of the proposed 

model considering the removal time of failures and 
results of the Goel-Okumoto model together. 

 Developers essentially spend a certain amount 
of time finding failures. They also spend a certain 
amount of time to remove faults that are the causes of 
these failures. In this experiment developers spent 120 
to remove all of the faults. Therefore, the proposed 
model considers the removal time to reflect delay, as 
shown in the figure. 
Developers essentially spend a certain amount of time 
finding failures. They also spend a certain amount of 
time to remove faults that are the causes of these 
failures. In this experiment developers spent 120 to 
remove all of the faults. Therefore, the proposed model 
considers the removal time to reflect delay, as shown in 
the figure.  

 

Fig. 10. Estimation Values of the Goel-Okumoto Model and 
the Proposed Model 

The next figure shows two graphs: a graph of the Goel-
Okumoto model and a graph of the proposed model 
with actual data including the test and debug time 
required by developers. As Shown in this figure, the 
proposed model considering the removal time of all 
faults is more accurate than that in the Goel-Okumoto 
model considering only the test time. 
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Fig. 11. Estimation Values and Actual Collected Values 

The table below gives a comparison of the Goel-
Okumoto model and the proposed model with estimated 
values according to the actual collected data. Thus, in 
the early test phases, developers normally perform 
testing and debugging activities, but the Goel-Okumoto 
model only reflects the test activities. Therefore, there is 
an error between the estimated values and the actual 
collected values. 

Table 2. Description of Measurement of the Goel-Okumoto 
and the Proposed Model 

 
Goel-Okumoto 

Model 
Proposed Model 

Time 1140 1140 

Detection time rate - 0.8947 

α 12.3437 12.3437 

β 0.0489 0.0437 

MRE 0.1276 0.0909 

MSE 0.5964 0.2990 

Total intervals 38 38 

Failures 10.4161 10 

 
From this table, it is clear that the Goel-Okumoto 

model has larger MRE and MSE values because the 
model does not have the assumption that developers 
perform testing and debugging activities in the early test 
phases. As mentioned earlier, smaller MRE and MSE 
values indicate that the model, with its smaller MRE 
and MSE values, is more accurate to estimate future 
failures because the current failure behavior shows a 

better fit to the actual collected data. As shown in the 
table, the proposed model has smaller MRE and MSE 
values than those of the Goel-Okumoto model. The 
MRE value of the proposed model is 0.0909 and the 
MRE value of the Goel-Okumoto model is 0.1276. The 
MSE value of the proposed model is 0.2990 while the 
MSE value of Goel-Okumoto model is 0.5964. 
 The difference between the estimated values and 
the actual values were determined through a box-plot. 
Figure 12 shows the result of the box-plot, 
demonstrating the difference. As shown in this figure, 
the medium value of the proposed model is close to 0, 
whereas the medium value of the Goel-Okumoto model 
is not close to 0 because the removal time of the faults is 
not considered. 

 

Fig. 12. Results of a Box-plot of the Goel-Okumoto and the 
Proposed Model 

In Table 3, the measured values from the box-plot from 
Figure 12 are listed. Through Table 3, the difference 
between the medium values is identified.  

Table 3. Measurements of the Box-plot 

 Goel Model (C6) Proposed Model (C3) 

Max 0.8236 0.4844 

Min -0.1321 -0.3290 

Median 0.4463 0.0260 

IQRange 0.6915 0.7873 

N 38 38 
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An experiment was conducted and the results described 
to explain the difference between the Goel-Okumoto 
model and the proposed model thus far. The differences 
between the two models were clearly identified from the 
experiment. When developers perform testing and 
debugging activities, the estimated values of the 
proposed model are closer to the actual values compared 
to those of the Goel-Okumoto model. Table 4 and Table 
5 show results of a Paired T Test done to confirm that 
the difference is statistically significant. In order to use 
a Paired T Test, it is necessary to define a null 
hypothesis and an alternative hypothesis. The bull 
hypothesis is that there is no significant difference and 
the alternative hypothesis is that there is a significant 
statistical difference.  

Table 4. Goel-Okumoto Model and the Proposed Model in 
Paired T Test 

 
N Mean StDev SE Mean

Goel 38 0.501650 0.537837 0.087249

Proposed 38 0.113082 0.550028 0.089225

Difference 38 0.388568 0.186429 0.030243

T-Value 12.85 
 

P-Value 0.000 

 
First, a Paired T Test was conducted to confirm the 
statistical difference between the difference between the 
actual values and the estimated values of the Goel-
Okumoto model and the difference between the actual 
values and the estimated values of the proposed model. 
From Table 4, the P value of the result of the two 
models in 95% significant level is 0, which is obviously 
smaller than 0.05. Therefore, the null hypothesis is 
rejected and the alternative hypothesis is selected. This 
implies that there is a significant difference between the 
two models.  
 Second, another Paired T Test was conducted to 
confirm the statistical difference between the actual 
values and the values estimated by the proposed model. 
From Table 5, P value of the result of the proposed 
model at the 95% significant level is 0.213, which is 
larger than 0.05. Therefore, the null hypothesis is not 
rejected. This indicates that the alternative hypothesis is 
not selected, implying that there is no evidence to 
explain the significant difference between the actual 

values and the estimated values of the proposed model. 
Therefore, it is possible that there is no significant 
difference.  

Table 5. Actual Collected Data and the Proposed Model in 
Paired T Test 

N Mean StDev SE Mean

Actual Data 38 6.34211 2.76343 0.44829 

Estimated Data 
from proposed 

model 
38 6.645519 2.79828 0.45394 

Difference 38 -0.113082 0.550018 0.089225

T-Value -1.27 
 

P-Value 0.213 

 
This section described the experiment and results to 

confirm the differences between the two models. Also 
described are the results of the Paired T Test to confirm 
whether is a significant difference exists statically. The 
experiment identified that the proposed model has more 
accurate estimation results when developers perform 
testing and debugging activities together. It was also 
found that there is a significant difference between the 
Goel-Okumoto model and the proposed model 
according to statistical validation methods. It was also 
whether a statistically significant difference exists 
between the actual values and the values estimated by 
the proposed model. 

5. Conclusions 

In this paper, a new reliability estimation model 
was developed to consider the characteristics of the 
early test phases. Current existing reliability estimation 
models are normally used during the late test phases, 
which typically include system testing and operational 
testing. Therefore, the current existing reliability 
estimation models can be divided into failure detection 
estimation models and failure removal estimation 
models.  
 Failure detection estimation models consider the 
test time to estimate future failure trends using the 
detected failure counts per time interval. Failure 
removal estimation models estimate that future failure 
will be removed using the removed failures detected per 
time interval. These models do not consider that 
developers perform testing and debugging activities  
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together during the early test phases because the models 
are used in the late test phases and because developers 
and testers are separated in the late test phases.  
 To deal with these limitations, a new model was 
proposed that considers the test time and the debug time 
together, making it possible to manage software 
reliability from the early test phases to the late test 
phases through the proposed model. Therefore, the 
failure removal cost will be reduced.  
 An experiment was conducted to compare the 
existing model and the proposed model with actually 
collected industrial data, and a Paired T Test was used to 
confirm the difference between the proposed model and 
the existing model and between the actual collected 
values and the estimated values by the proposed model. 
This experiment confirmed whether there was a 
statistically significant difference.  
 Through the proposed model, it was possible to 
provide more accurate estimation results on the test 
side. Moreover, the failure removal cost during the late 
test phases can be reduced on the development side. On 
the management side, the three steps of the reliability 
process, the software reliability prediction models, early 
estimation models, and late estimation models, can 
supported while reducing the schedule management cost 
as well as the total cost. On the project side, the high 
possibility of software development is enhanced.  
 Currently, the proposed model is based on 
Exponential models. Therefore, data that is fitted to S-
shaped models cannot be used with the proposed model. 
This is a limitation of the proposed model. To deal with 
this limitation, the proposed model will be expanded to 
use data that is fitted to S-shaped models. The expanded 
model will provide MRE and MSE values to select 
more accurate models according to the estimated results. 
Additional experiments will also be conducted to 
confirm accuracy of the model based on data collected 
during integration testing to provide more accurate 
evidence for use with the model. 
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