

Improvement of Software Reliability Estimation Accuracy
with Consideration of Failure Removal Effort

Myungmuk Kang
Department of Eco Vehicle Control Development, Hyundai Autron

688-1, Sampyeong-dong, Bundang-gu,Seongnam-si, Gyeonggi-do, Korea
E-mail: myungmuk.kang@hyundai-autron.com

Okjoo Choi
Department of Computer Science, KAIST,

291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
E-mail: okjoo.choi@kaist.ac.kr

Juhwan Shin
Naval Combat System, Agency for Defense Development

P.O.Box 18, Jinhae, 645-600, Korea
E-mail: sharkshin@naver.com

Jongmoon Baik
Department of Computer Science, KAIST

291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
E-mail: jbaik@kaist.ac.kr

In order to develop highly reliable software in a cost-effective manner, it is necessary to manage software reliability
at the early test phases. Most of developers at those phases perform a test and debug activities together. In this
paper, we propose a new reliability estimation model to manage the reliability of individual units from the early test
phases as a solution for considering the test and debug time together. Via the proposed model using experiment of
actual data, we can improve the accuracy of software reliability estimation.

Keywords: Software Reliability, Software Reliability Model, Exponential Model, Software Reliability Tool

1. Introduction

Software reliability is an important quality attribute that
must be assured throughout a software development life
cycle. The definitions of software reliability can vary
according to the people and organizations involved.
Based on the definition of the IEEE 1633 standard [3],
software reliability is the ability of software to perform
without failures under specified conditions during a
specified time.

Therefore, the release time of software can be
determined based on the estimated reliability. This
implies that tests or releases of software will be

determined according to the estimated number of
residual software failures or the estimated time between
software failures. Software reliability engineering
focuses on engineering mechanisms for quantitative
evaluations of software reliability, the development of
software, and the maintenance of software. Thus,
software reliability engineering refers to engineering
techniques that quantitatively represent software
behaviors according to users’ requirements. Lyu [2]
defined software reliability as an engineering process
and stated that (1) reliability objectives, (2) operational
profiles, (3) reliability modeling and measurement, and
(4) reliability validation are more important than other

International Journal of Networked and Distributed Computing, Vol. 1, No. 1 (January 2013), 25-36

Published by Atlantis Press
 Copyright: the authors
 25

Administrateur
Texte tapé à la machine
Received 18 November 2012

Administrateur
Texte tapé à la machine
Accepted 19 November 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Myungmuk Kang et al.

attributes. Particularly, the reliability modeling involves
measuring and analyzing software reliability. In this
paper, software reliability are measured and analyzed
according to a novel model developed here.

Since 1970s, more than approximately 200
reliability models have been developed to estimate
software reliability. These models have been applied to
various domains, such as the medical, military,
shipbuilding, and aerospace industry. Software
reliability models have the form a mathematical
expression that specifies the general form of the
software failure process to estimate the initial failure
counts, the time between failures, the remaining
failures, and other factors based on detected failures,
faults and the time that elapses during testing activities.
Software reliability models are classified according to
the phases of the software development life cycle [4, 5,
6]. Specifically, software reliability estimation models
are classified into exponential models and S-shaped
models [15]. These models are also classified into
failure detection estimation models and failure removal
estimation models [1]. Figure 1 shows the two
exponential model and S-shaped model according to the
test time.

In this paper, exponential software reliability models
are used [4, 7] used during test phases. Specifically, in
the Background section, three models are introduced to

show that the proposed model represents a modification
of exponential models considering characteristics that
these models do not have. The Schneidewind model [3,
8], was developed to estimate total number of failures,
remaining number of failures, and time to reach
reliability goals based on the failure and time data
collected during the test phases. Schneidewind also
developed another estimation model to represent a

failure removal process [9]. The model introduced the
delay time, which is a different opinion from the
assumption of the original Schneidewind model in
which all failures are immediately removed. The
integrated model of a failure detection and correction
process [10] considers the delay time to correct failures
and the failure detection process together. Existing
models were developed to represent the failure detection
process and correction process separately, as the test
activities and debug activities are separately performed
by developers and testers. However, at the early test
phases and in small organizations, developers and
testers are often not separated. This implies that
developers should perform testing and debug activities
together. Therefore, the proposed model was developed
to support the situation that occurs frequently in the
early test phases and in the small organizations.

2. Background

The exponential model is a basic model among software
reliability models. The Goel-Okumoto model [4] is well
known as a model of exponential models and the model
proposed in this paper is also similar to the Goel-
Okumoto model because the proposed model is
developed through a modification of the Goel-Okumoto
model. The Goel-Okumoto model is not described in
this section, the Schneidewind model, a very well-
known exponential model used to estimate failure
detections, is described. Other models that estimate
failure removal processes are also described.

2.1. Failure detection estimation model

One feature of the failure detection estimation models
like the Schneidewind detection model [3, 8] is that it
can also model failure detection processes. The
Schneidewind detection model is a recommended model
among various software reliability estimation models in
the IEEE 1633 standard. It is validated based on the
failure data of National Aeronautics and Space
Administration (NASA) in the U.S. The Schneidewind
detection model uses the detected failure counts within
the same time interval and calculates the current failure
rate based on the historical failure rate to predict future
failures accurately. The Schneidewind detection model
considers that the failure detection process can be
changed when the test is performed and suggests a basic
approach as well as two additional approaches
considering that recent failure counts are more useful

Fig. 1. Exponential Model and S-shaped Model

Published by Atlantis Press
 Copyright: the authors
 26

 Improvement of Software Reliability Estimation Accuracy

than historical failure counts to predict near-future
failures. It is possible to select one approach among the
three approaches based on the purpose. According to
each approach, parameter α and β can be estimated by
the Maximum Likelihood Estimation (MLE)[11]
method.

Three approaches of the Schneidewind model are as
follows.
• Approach 1: use all of the failure counts from

interval 1 through t (i.e., s = 1).
• Approach 2: use failure counts only in intervals s

through t (i.e., 1 ≤ s ≤ t).
• Approach 3: use cumulative failure counts in

intervals 1 through s-1 and individual failure
counts in intervals s through t (i.e., 2 ≤ s ≤ t).

In order to use this model, it is necessary to follow

the next process shown below.
• Assumptions for data collection

▪ Perfect debugging
▪ Removal time is ignored

• Data collection
▪ Detected failures
▪ Test time

• Estimation of parameters for the mean value function
▪ Parameter for the total failure counts
▪ Parameter from the failure occurrence rate

• Reliability validation
▪ Estimation of failure counts that is undetected
▪ Decision of the time point for test or release

2.2. Failure removal estimation model

The failure removal estimation model is modeled from
the failure removal process and the Schneidewind
removal model and JungHua’s removal model are
representative models among failure removal estimation
models [9, 10]. The Schneidewind removal model was
developed from a modification of the basic
Schneidewind detection model because the basic
Schneidewind model has the unrealistic limitation in
which the “removal time is ignored”. Therefore, a delay
time is introduced; this is the time between failure
detection and removal. JungHua’s removal model was
developed from the basic Goel-Okumoto model. It
considers the delay time and the failure correction rate.
JungHua’s removal model shows the failure removal
process and considers the failure detection process and
the removal process. According to these two functions,

failure detection and correction processes can be
estimated.
To use these models, it is necessary to follow the
process shown below.
• Assumptions for data collection

▪ Perfect debugging
▪ Delay time occurs

• Data collection
▪ Detected failures and removed failures
▪ Test time and delay time

• Estimation of parameters for the mean value function
▪ Parameter for total failure counts
▪ Parameter from the failure occurrence rate and
failure correction rate

• Reliability validation
▪ Estimation of failure counts removed
▪ Remaining uncorrected failure counts and time
point of all detected failures removed

2.3. Motivation

Basic Non-Homogeneous Poisson Process (NHPP)
models have the assumption that all detected failures are
immediately removed and that it is possible to measure
and analyze software reliability based on these
assumptions. However, it is impossible to remove all
failures immediately in reality. This signifies that a
certain delay time must transpire [9, 10]. General
estimation models do not consider the removal time of
faults; only the test time is considered. This is a
limitation of general estimation models. In order to deal
with this limitation, improved models contain a new
assumption. When a failure is detected, faults are
removed after a certain time. However, in this paper, the
definition of the delay time differs from that in the
earlier research. According to the previous research, the
delay time is the time between failure detection and
failure correction. However, the removal time is
different. The removal time is described as solely the
time spent removing faults. Therefore, the delay time is
larger than the removal time. Figure 2 describes the test
time, delay time, and the removal time.

(a) Failure Detection Estimation Model

Published by Atlantis Press
 Copyright: the authors
 27

Myungmuk Kang et al.

(b) Failure Removal Estimation Model

(c) Proposed Model

Fig. 2. Testing Time, Delay Time and Removal Time of each
model

In the existing studies, the failure detection process
and failure removal process are modeled based on the
test time and delay time. This implies that general
detection estimation models consider the test time under
the limitation that the removal time is 0. General
removal estimation models consider the test time to
confirm failure detection and the delay time to confirm
the failure removal process. As described above,
existing models have a limitation in which the failure
detection and removal processes are separated because
existing models are normally used during system testing
and operational testing in which developers and testers
are normally separated, performing their test and debug
activities independently.

However, developers and testers cannot be
separated in the early test phases or in small
organizations if performing testing and debug activities
together. Therefore, failure detection and removal
efforts cannot be separated. This indicates that a new
estimation model to deal with this limitation must be
used in the early test phases or in small organizations.
Figure 3 shows software reliability models according to
a software development life cycle. As shown in the
figure 3, no suitable model exists for unit testing and
integration testing. This paper suggests a feasible model
for use in the test phases.

Fig. 3. Software Reliability Models on V-Model

3. A Reliability Estimation Model based on
Software Fault Detection and Removal Effort

As described in the previous section, existing
reliability estimation models are used based on testing
and debug activities, which are performed separately.
However, developers and testers are not separated
during the early test phases and in small organizations .
Developers perform tests to detect failures and debug
the detected faults. Therefore, it is necessary to consider
testing and debugging effort together. To support the
idea, a new model is developed here. This section
explains the approach of this research, including the
description of the proposed model.

3.1. Overview

The proposed model in this paper is based on the
Goel-Okumoto model [7], a well-known model among
exponential models. Also the proposed model considers
the characteristics of early test phases where developers
create test cases and perform testing and debugging.

The Goel-Okumoto model has a Mean Value
Function (MVF) to estimate cumulative detected
failures.

0,0)],exp(1[  tMVF

To use the MVF, it is necessary to estimate

parameters α and β. The two parameters can be
estimated by Maximum Likelihood Estimation (MLE)
based on the collected data. Parameter α refers to the
number of estimated total failures and the parameter β
refers to the failure occurrence rate.

Published by Atlantis Press
 Copyright: the authors
 28

 Improvement of Software Reliability Estimation Accuracy

The Goel-Okumoto model estimates the total
number of failures based only on test time and the
number of detected failures. Therefore, estimating the
total number of failures is straightforward. The
proposed model also follows the number of total failures
estimated by the Goel-Okumoto model. Thus, the two
models show the same number of estimated total
failures. However, the Goel-Okumoto model does not
consider the failure removal time. Therefore, it is
limited when estimating the accurate time when
developers perform test and debug activities together at
the early test phases because the Goel-Okumoto model
can estimate detected failure counts based only on the
test time. In order to deal with this limitation, it is
necessary to change the failure rate according to the
removal time. In other words, failure occurrence is
delayed according to the removal time which then
changes the failure occurrence rate. Two characteristics
of the proposed model are as follows:

C1: the number of estimated total failures is identical
between the basic Goel-Okumoto model and the
proposed model.

C2: the failure occurrence rate is changed according to
the removal time because detected failures occur at the
delayed time point.

Fig. 4. Results of the Basic Exponential Model and the
Proposed Model

Figure 4 shows the result of the basic exponential
model; the graph changes when the removal time is
included in the result of a basic exponential model. In
this figure, all graphs have the same number of
estimated total failures.

3.2. Assumption

The proposed model has the same assumptions as a
basic exponential model because the proposed model is
based on the exponential model. One of the
representative assumptions is that all detected failures
are immediately removed. Thus, the failure removal
time is not considered and only the test time is
considered. However, the removal time must be
considered in actual development scenario. Therefore,
new models have been developed to deal with the
limitations [9, 10].

The proposed model also has different assumptions
to consider failure the detection time and the removal
time.

A1: all detected failures are immediately removed and a
certain time is spent to remove detected faults.

A2: the failure occurrence rate is decreased at time
goes on. Thus, the failure occurrence rate is decreased
based on the time rate, which is the failure detection
time divided by the total time.

In assumption A1, developers perform test activities
and analyze detected failures to identify the cause of the
failures to remove. Therefore, all detected failures are
immediately removed. However, to remove detected
failures, the removal time must be considered because
developers must spend a certain amount of time. In
assumption A2, if only the test time is considered, the
failure occurrence rate will be identical to the basic
exponential model. However, the failure occurrence rate
must be decreased because the failure removal time is
considered; the failure detection time rate is calculated
by the total time including the test time and the debug
time.

The proposed model was developed based on the
assumptions of the basic exponential model and the two
different assumptions are added. The two different
assumptions are different from those in existing models
and the characteristics of the unit and integration testing
phases are considered to estimate a more accurate result.

3.3. Proposed Model

Below are the notations of the proposed model.
• α: the number of estimated total failures of the

Goel-Okumoto model

Published by Atlantis Press
 Copyright: the authors
 29

Myungmuk Kang et al.

• αp: the number of estimated total failures of the
proposed model (the same as α)

• β: failure occurrence rate per failure of the
Goel-Okumoto model

• βp: failure occurrence rate per failure of the
proposed model

• t: failure detection time
• tp: total time (failure detection time + failure

removal time)
• MVF (t): the cumulative number of detected

failures between time 0 and time t of the Goel-
Okumoto model.

• MVFp (tp): the cumulative number of detected
failures between time 0 and time tp of the
proposed model.

The proposed model uses the same procedure to

collect data as used in existing models. Data regarding
the detected failures during test activities is analyzed
and the detected failure counts are rearranged in the
same time interval. In addition, data concerning the
faults that are cause of the failures is also collected
because the proposed model considers the failure
removal time. In the proposed model, the failure
detection process is shown with total time as spent by
developers. Therefore, the proposed model provides
more accurate predictions of the time point of future
failures.

The proposed model is based on the Goel-Okumoto
model, which is a well-known basic exponential model.
Therefore, the new notation MVFp is developed based
on MVF in the Goel-Okumoto model. There also two
new assumptions. Essentially, parameters α and αp,
estimated according to the test time, are identical
because the number of estimated total failures must not
be changed.

 P1: αp = α (C1)

Parameter β of the failure occurrence rate,
considering only the test time according to assumptions
A1 and A2, is decreased according to the test time rate
of the total time.

P2: βp = β × [Td × (Td + Tr)] (C2)

Td is the time spent on detecting failures and Tr is the
time spent on removing failures. Thus, the total time is
the time to spend on detecting (Td) and removing (Tr)
failures. According to P1 and P2 above the basic MVF

is changed to a new MVF to consider the failure
removal time to predict cumulative detected failures.





 )exp(1[tMVF pppp
x 

As Figure 5 shows, it is necessary to follow certain
steps to estimate the number of cumulative detected
failures according to the proposed model. Estimation
activities are that it is firstly necessary to collect failure-
related data to estimate parameters α and β according to
the equation as above, then parameters αp and βp are
calculated from the new equations. The new MVFp
consists of new parameters αp, βp, and tp to estimate the
number of cumulative detected failures. Therefore, the
number of cumulative detected failures is estimated
based on fault detection and removal effort.

Fig. 5. Process of Proposed Model

To use the proposed model, it is necessary to follow the
process below.

• Assumptions for data collection

▪ Perfect debugging
▪ No delay time
▪ Removal time occurs

• Data collection
▪ Detected failures and removed failures
▪ Test time and removal time

• Estimation of the parameters of the basic Goel-
Okumoto model

▪ Parameter for total failure counts
▪ Parameter from the failure occurrence rate

• Changes of parameters for the new MVF of the
proposed model

Published by Atlantis Press
 Copyright: the authors
 30

 Improvement of Software Reliability Estimation Accuracy

▪ Parameter change to fit the proposed model
▪ Parameter αp and βp are calculated

• Calculation of the total time
▪ Failure detection time and removal time
▪ Calculation of total time

• Reset up parameters for the new MVF
▪ Parameter set up for αp, βp, and tp
▪ Estimation of the result of the new MVF

• Reliability validation
▪ The number of cumulative failures and remaining
failures
▪ Confirmation of current reliability

In section 2, the three existing models were
introduced. These models are based on the exponential
model and failure counts model. The proposed model
was developed to improve the limitations of existing
models. The result of the comparison is summarized in
the table1. This table contains the phases, assumptions,
removal time, integration of the detection time and the
removal time, the outputs, and the usage of the models.

4. Validation

This section gives a validation of the proposed
model to confirm how it fits actual data. To confirm
whether the proposed model can be used without
problems, collected industrial data was used during the
early test phases of the unit and integration testing
phases. To validate the proposed model, a proper
environment was set up and an experiment conducted.

4.1. Environment for the experiment

There are two existing open tools, CASRE and
SMERFS, to estimate software reliability with models
based on data collected in a convenient manner [12, 13].
However, it is very difficult to compare the results of
the Goel-Okumoto model and the proposed model with
these two open tools. To deal with this difficulty, a new
software reliability analysis tool developed by us,
known as SRTpro [14], was used for the experiment.
Also SRTpro was developed to deal with the limitations
and drawbacks of existing tools. Figure 6 shows a
screenshot of SRTpro.

Fig. 6. Screenshot of SRTpro

4.2. Data Collection

To conduct an experiment of the proposed model,
actual data collected from an organization was used
instead of hypothetical data. The actual data was
collected from the in-progress project of a CMMI level
5. To collect the actual data, the two data collection
templates were used, as shown in Figure 7 and Figure 8
below. Developers collected the actual data using forms
and sent them to us.

Figure 7 shows the template used to collect detected
failures during test activities, and Figure 8 shows the
template used to collect faults which were the causes of
the failures. The removal time is included. All
experimental data was collected using the data
collection templates and the data was rearranged for use
as input data in the reliability models.

Fig. 7. Failure Collection Template

Fig. 8. Fault Collection Template

Published by Atlantis Press
 Copyright: the authors
 31

Myungmuk Kang et al.

The actual data was collected in 28 files, and only
10 CSCs were selected for the experiment because
unusable CSCs had problems such as not being fitted to
an exponential model, CSCs that were too small, no
failures detected, and too short a test time. However,
more CSCs can be used for the experiment through
more analysis activities of the actual data.

4.3. Goals of experiment

The primary goal of the experiment was to confirm
relationship between the result from the proposed model
and the actual collected data. First, it sought to confirm
the limitation that the Goel-Okumoto model, which does
not consider the time to remove faults according to the
difference between the estimation results of the Goel-
Okumoto model based on the collected data without the
removal time and the actual data including the removal
time. Second, it sought to confirm how to improve the
limitation according to the difference between the
estimation results of the proposed model and the actual
data including the removal time. To compare estimation
results to actual data, Mean Relative Error (MRE) [10]
and Mean Square Error (MSE) [10] mechanisms were
used to confirm the difference. The scope of the values

was confirmed through a box-Plot between the actual
collected values and the estimated values of the Goel-
Okumoto model and the proposed model.

Mean Relative Error (MRE)




n

k k

kk

z
ztm

n 1

)(1

Zk is the number of failures occurring at the time

interval k as observed during test the activities. m(tk) is
the number of cumulative failures at the time point k as
estimated through MVF. n is the number of total time
intervals. It was used to confirm the difference between
the estimation results and the actual values; when the
MRE value is small, it can be interpreted that there is no
difference between the estimation results and the actual
values, implying that it is possible to estimate the
number of future failures more accurately.

Mean Square Error (MSE)

21

1

)(
1




k

kk ztmn

Table 1. Comparing of Existing Models and the Proposed Model

 Detection model Removal Model Proposed Model

Phases
• System testing
• Operational testing

• Unit and Integration testing

Assumptions
• Perfect debugging
• No delay time
• No removal time

• Perfect debugging
• Delay time for removal

• Perfect debugging
• No delay time, but removal

time exists

Removal Time X (delay time) O

Integration of
detection time and

removal time
X (separately use) O

Outputs

• The number of
cumulative detected
failures
• The number of

remaining undetected
failures

• The number of cumulative
removed failures
• The number of remaining

unresolved failures

• The number of cumulative
detected failures

• The number of remaining
undetected failures

Usage
• To decide when to stop

testing
• To know the time when to

finish debugging failures

• To manage reliability at the
early phases
• To decide when to move on

the next step

Published by Atlantis Press
 Copyright: the authors
 32

 Improvement of Software Reliability Estimation Accuracy

Zk is the number of observed failures occurring at
the time interval k and m(tk) is the number of
cumulative failures at the time interval k as estimated
through MVF, as above. A MSE value is the average
value of the squared value of the difference between the
two values. It is used to confirm the difference between
the estimation values and the actual values. In most
cases to determine the priorities of several models based
on collected data, MSE values are normally used. If the
MSE value is small, it indicates that the estimation
values are close to the actual values and that it is
possible to estimate the number of future failures more
accurately.

The next section describes the confirmation results
of the experiment. To confirm that there exist a
difference between the estimation values of the
proposed model and the actual values statistically
according to Paired T Test, the tool known as “Minitab”
is used.

4.4. Experiment and Validation Result

To conduct the experiment, the collected failure
data of a unit among 10 available units was used. The
experiment produced several graphs of the results from
the Goel-Okumoto and from the proposed model for
validation. Shown first are the MVF result of the Goel-
Okumoto model, ignoring the removal time in Figure 9.

Fig. 9. Estimation Values of Goel-Okumoto Model

Figure 9 shows a graph of the cumulative failures
estimated through MVF considering the failure counts
and the test time. 10 failures are estimated at the time
interval of 34 and 10.41 failures are estimated at the
time interval of 38 in the graph. The next figure
describes a comparison of the results of the proposed

model considering the removal time of failures and
results of the Goel-Okumoto model together.

 Developers essentially spend a certain amount
of time finding failures. They also spend a certain
amount of time to remove faults that are the causes of
these failures. In this experiment developers spent 120
to remove all of the faults. Therefore, the proposed
model considers the removal time to reflect delay, as
shown in the figure.
Developers essentially spend a certain amount of time
finding failures. They also spend a certain amount of
time to remove faults that are the causes of these
failures. In this experiment developers spent 120 to
remove all of the faults. Therefore, the proposed model
considers the removal time to reflect delay, as shown in
the figure.

Fig. 10. Estimation Values of the Goel-Okumoto Model and
the Proposed Model

The next figure shows two graphs: a graph of the Goel-
Okumoto model and a graph of the proposed model
with actual data including the test and debug time
required by developers. As Shown in this figure, the
proposed model considering the removal time of all
faults is more accurate than that in the Goel-Okumoto
model considering only the test time.

Published by Atlantis Press
 Copyright: the authors
 33

Myungmuk Kang et al.

Fig. 11. Estimation Values and Actual Collected Values

The table below gives a comparison of the Goel-
Okumoto model and the proposed model with estimated
values according to the actual collected data. Thus, in
the early test phases, developers normally perform
testing and debugging activities, but the Goel-Okumoto
model only reflects the test activities. Therefore, there is
an error between the estimated values and the actual
collected values.

Table 2. Description of Measurement of the Goel-Okumoto
and the Proposed Model

Goel-Okumoto

Model
Proposed Model

Time 1140 1140

Detection time rate - 0.8947

α 12.3437 12.3437

β 0.0489 0.0437

MRE 0.1276 0.0909

MSE 0.5964 0.2990

Total intervals 38 38

Failures 10.4161 10

From this table, it is clear that the Goel-Okumoto

model has larger MRE and MSE values because the
model does not have the assumption that developers
perform testing and debugging activities in the early test
phases. As mentioned earlier, smaller MRE and MSE
values indicate that the model, with its smaller MRE
and MSE values, is more accurate to estimate future
failures because the current failure behavior shows a

better fit to the actual collected data. As shown in the
table, the proposed model has smaller MRE and MSE
values than those of the Goel-Okumoto model. The
MRE value of the proposed model is 0.0909 and the
MRE value of the Goel-Okumoto model is 0.1276. The
MSE value of the proposed model is 0.2990 while the
MSE value of Goel-Okumoto model is 0.5964.
 The difference between the estimated values and
the actual values were determined through a box-plot.
Figure 12 shows the result of the box-plot,
demonstrating the difference. As shown in this figure,
the medium value of the proposed model is close to 0,
whereas the medium value of the Goel-Okumoto model
is not close to 0 because the removal time of the faults is
not considered.

Fig. 12. Results of a Box-plot of the Goel-Okumoto and the
Proposed Model

In Table 3, the measured values from the box-plot from
Figure 12 are listed. Through Table 3, the difference
between the medium values is identified.

Table 3. Measurements of the Box-plot

 Goel Model (C6) Proposed Model (C3)

Max 0.8236 0.4844

Min -0.1321 -0.3290

Median 0.4463 0.0260

IQRange 0.6915 0.7873

N 38 38

Published by Atlantis Press
 Copyright: the authors
 34

 Improvement of Software Reliability Estimation Accuracy

An experiment was conducted and the results described
to explain the difference between the Goel-Okumoto
model and the proposed model thus far. The differences
between the two models were clearly identified from the
experiment. When developers perform testing and
debugging activities, the estimated values of the
proposed model are closer to the actual values compared
to those of the Goel-Okumoto model. Table 4 and Table
5 show results of a Paired T Test done to confirm that
the difference is statistically significant. In order to use
a Paired T Test, it is necessary to define a null
hypothesis and an alternative hypothesis. The bull
hypothesis is that there is no significant difference and
the alternative hypothesis is that there is a significant
statistical difference.

Table 4. Goel-Okumoto Model and the Proposed Model in
Paired T Test

N Mean StDev SE Mean

Goel 38 0.501650 0.537837 0.087249

Proposed 38 0.113082 0.550028 0.089225

Difference 38 0.388568 0.186429 0.030243

T-Value 12.85

P-Value 0.000

First, a Paired T Test was conducted to confirm the
statistical difference between the difference between the
actual values and the estimated values of the Goel-
Okumoto model and the difference between the actual
values and the estimated values of the proposed model.
From Table 4, the P value of the result of the two
models in 95% significant level is 0, which is obviously
smaller than 0.05. Therefore, the null hypothesis is
rejected and the alternative hypothesis is selected. This
implies that there is a significant difference between the
two models.
 Second, another Paired T Test was conducted to
confirm the statistical difference between the actual
values and the values estimated by the proposed model.
From Table 5, P value of the result of the proposed
model at the 95% significant level is 0.213, which is
larger than 0.05. Therefore, the null hypothesis is not
rejected. This indicates that the alternative hypothesis is
not selected, implying that there is no evidence to
explain the significant difference between the actual

values and the estimated values of the proposed model.
Therefore, it is possible that there is no significant
difference.

Table 5. Actual Collected Data and the Proposed Model in
Paired T Test

N Mean StDev SE Mean

Actual Data 38 6.34211 2.76343 0.44829

Estimated Data
from proposed

model
38 6.645519 2.79828 0.45394

Difference 38 -0.113082 0.550018 0.089225

T-Value -1.27

P-Value 0.213

This section described the experiment and results to

confirm the differences between the two models. Also
described are the results of the Paired T Test to confirm
whether is a significant difference exists statically. The
experiment identified that the proposed model has more
accurate estimation results when developers perform
testing and debugging activities together. It was also
found that there is a significant difference between the
Goel-Okumoto model and the proposed model
according to statistical validation methods. It was also
whether a statistically significant difference exists
between the actual values and the values estimated by
the proposed model.

5. Conclusions

In this paper, a new reliability estimation model
was developed to consider the characteristics of the
early test phases. Current existing reliability estimation
models are normally used during the late test phases,
which typically include system testing and operational
testing. Therefore, the current existing reliability
estimation models can be divided into failure detection
estimation models and failure removal estimation
models.
 Failure detection estimation models consider the
test time to estimate future failure trends using the
detected failure counts per time interval. Failure
removal estimation models estimate that future failure
will be removed using the removed failures detected per
time interval. These models do not consider that
developers perform testing and debugging activities

Published by Atlantis Press
 Copyright: the authors
 35

Myungmuk Kang et al.

together during the early test phases because the models
are used in the late test phases and because developers
and testers are separated in the late test phases.
 To deal with these limitations, a new model was
proposed that considers the test time and the debug time
together, making it possible to manage software
reliability from the early test phases to the late test
phases through the proposed model. Therefore, the
failure removal cost will be reduced.
 An experiment was conducted to compare the
existing model and the proposed model with actually
collected industrial data, and a Paired T Test was used to
confirm the difference between the proposed model and
the existing model and between the actual collected
values and the estimated values by the proposed model.
This experiment confirmed whether there was a
statistically significant difference.
 Through the proposed model, it was possible to
provide more accurate estimation results on the test
side. Moreover, the failure removal cost during the late
test phases can be reduced on the development side. On
the management side, the three steps of the reliability
process, the software reliability prediction models, early
estimation models, and late estimation models, can
supported while reducing the schedule management cost
as well as the total cost. On the project side, the high
possibility of software development is enhanced.
 Currently, the proposed model is based on
Exponential models. Therefore, data that is fitted to S-
shaped models cannot be used with the proposed model.
This is a limitation of the proposed model. To deal with
this limitation, the proposed model will be expanded to
use data that is fitted to S-shaped models. The expanded
model will provide MRE and MSE values to select
more accurate models according to the estimated results.
Additional experiments will also be conducted to
confirm accuracy of the model based on data collected
during integration testing to provide more accurate
evidence for use with the model.

Acknowledgements

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 2011-0018020).

References

1. Reliability Analysis Center, “Introduction to Software
Reliability: a State of the Art Review”, Rome Laboratory,
1996

2. Michael R. Lyu, “Software Reliability Engineering: A
Roadmap”, FOSE, 2007.

3. “IEEE Recommend Practice on Software Reliability”,
IEEE Reliability Society, June, 2008.

4. M. Xie, “Software Reliability Modeling”,
WorldScientific, 1991.

5. Ch. Ali Asad Muhammad Irfan Ullah, Muhammad Jaffar-
Ur Rehman, “An Approach for Software Reliability
Model Selection”, Computer Software and Applications
Conference, 2004.

6. Yinong Chen and Jean Arlat, “An Input Domain-Based
Reliability Growth Model and Its Applications in
Comparing Software Testing Strategies”, LAAS
REPORT, April, 1995.

7. Michael R. Lyu, “Handbook of Software Reliability
Engineering”, IEEE Computer Society Press, 1997..

8. Norman F. Schneidewind, “Reliability Modeling for
Safety-Critical Software”, IEEE Transactions on
Reliability, March, 1997.

9. Norman F. Schneidewind, “Modeling the Fault
Correction Process”, 12th International Symposium on
software Reliability, November, 2001.

10. Jung-Hua Lo, Chin-Yu Huang, “An Integration of Fault
Detection and Correction Processes in Software
Reliability Analysis”, The Journal of Systems and
Software, 2006.

11. Robert V. Hogg, Joseph W. McKean, Allen T. Craig,
“Introduction to Mathematical Statistics”, Pearson, 2005.

12. Allen Nikora, “CASRE-A Computer-Aided Software
Reliability Estimation Tool”,
http://www.openchannelfoundation.org/projects/CASRE
_3.0.

13. William Farr, Oliver Smith, “SMERFS-Statistical
Modeling and Estimation of Reliability Functions for
Systems”, 1996.

14. Myungmuk Kang, Taewan Gu, Jongmoon Baik, “A User
Friendly software Reliability Analysis Tool based on
Development Process to Iteratively Manage Software
Reliability”, International Symposium on Software
Reliability Engineering, 2009.

15. S. Yamada, M. Ohba, O. Osaki, “S-Shaped Reliability
Growth Modeling for Software Error Detection, IEEE
Transactions on Reliability”, Vol, R-32, no. 5475-5478,
1983.

Published by Atlantis Press
 Copyright: the authors
 36

