
International Technology Management Review, November 2008, v1, n2.

43

International Technology Management Review
Volume 1 Number 2 (November) 2008
<http://www.academicglobalpublications.com/itmr/>

An Extended Knowledge Management Framework during the
Software Development Life Cycle

Ali A. Alawneh
Department of MIS
Faculty of Information Technology
Philadelphia University, Amman, Jordan
Email: alawneh2001@yahoo.com

Ezz Hattab
The Arab Academy for Banking and Financial Sciences (AABFS)
Faculty of Information Systems and Technology
Department of MIS, Amman – Jordan
Email: ehattab@aabfs.org

Walid Al-Ahmad
New York Institute of Technology, Amman
School of Engineering and Computing Sciences, Amman, Jordan
Email: Walid.AlAhmad@nyit.edu.jo

International Technology Management Review, November 2008, v1, n2.

44

Abstract

Title: An Extended Knowledge Management Framework During the Software Development
Life Cycle.
Keywords: software development (SD), knowledge (K), knowledge management (KM),
software engineering (SE), organisational memory (OM), requirements knowledge, domain
knowledge, technical knowledge.
Category of paper: Conceptual paper
Purpose of the paper: This paper describes the role of knowledge management and its
application in the context of software development. Knowledge management (KM) can be
used to capture, organize, and catalo knowledge and experience generated during the software
process.
Methodology: Literature review
Findings: The paper proposes a new way of thinking about the role of (KM) in software
engineering environments by developing an extended framework that integrates five types of
knowledge into the five phases of software development lifecycle and the five phases of the
KM life cycle. The results found that the proposed framework for managing knowledge
during software development will help individuals in identifying the critical knowledge
available during software development and choosing the right phase of KM lifecycle for the
right knowledge area in the right phase of software development lifecycle.
Implications for practice: The application of the proposed framework will improve the
success rate of software development projects, through enhancing the exchange and transfer
of knowledge and experience among software development teams. This will also result in
improved software development training programs, policies, project management, and
practices in software development projects.
Value of the paper: The paper will be of interest to researchers, academics, knowledge
workers, top management, and software practitioners.
Number of pages: 20
Number of figures: 4
Section headings: Abstract, Introduction, Research problem, Knowledge in Software
Organisations, Reasons why people would not share knowledge, KM in Software Engineering
Environments, The need for capturing and sharing process and product knowledge, A five C’s
KM lifecycle, A five-layered KM model for software team knowledge, Combining the five
layered and the five C’s models, Discussion and Key Findings, Conclusions and future work,
References.

© 2008 Academic Global Publications P/L. This work is copyright. You may download and
print only one paper copy from this electronic file for your personal use only, from which you
may not make any further paper copies.

International Technology Management Review, November 2008, v1, n2.

45

International Technology Management Review
Volume 1 Number 2 (November) 2008
<http://www.academicglobalpublications.com/itmr/>

An Extended Knowledge Management Framework during the
Software Development Life Cycle

Software development is a collective, complex, and creative effort. Worldwide, there is an
increasing demand for IT projects and the demand for skilled and experienced software
developers is increasing as well. Shorter time-to-market, better quality and better productivity
present the increasing number of goals to be achieved. To meet these requirements, software
organisations have tried to better use one of their most important resources: the organisational
software engineering knowledge.

Historically, this knowledge has been stored on paper or in people’s minds. When a problem
arises, we look for experts across our work, relying on people we know, or we look for
documents. Unfortunately, paper has limited accessibility and it is difficult to update. On the
other hand, in a large organisation, it can be difficult to locate who knows what, and
knowledge in people’s minds is lost when individuals leave the company. Important
discussions are lost because they are not adequately recorded. Therefore, knowledge has to be
systematically collected, stored in the corporate memory, and shared across the organisation.
However, knowledge is more than simply a list of things we know or a collection of facts.
Therefore, knowledge management (KM) can play a vital role in encapsulating and spreading
software development knowledge and expertise.

In the context of software development, KM can be used to capture the knowledge and
experience generated during the software process. Reusing knowledge can prevent the
repetition of past failures and guide the solution of recurrent problems. Also, we must not
forget that collaboration is one of the most important knowledge sources for software
organisations. But, to be effective in the software development context, a KM system should
be integrated into the software development process.

KM is an emerging discipline that promises to capitalize on organisations’ intellectual capital.
The concept of knowledge is far from new and phrases containing the word knowledge, such
as “knowledge bases” and “knowledge engineering”, have been around for a while.

With reference to KM in software development organisations, Davenport and Prusak describe
knowledge as “a fluid mix of framed experience, values, contextual information, and expert
insights and grounded intuitions that provides a framework for evaluating and incorporating
new experiences and information. It originates and is applied in the minds of the knower. In
software organisations, knowledge often becomes embedded not only in documents or

International Technology Management Review, November 2008, v1, n2.

46

repositories, but also in organisational routines, processes, practices, and norms” (Davenport
and Prusak, 1998).

Software development is a complex set of tasks. It involves several scientific disciplines, like
understanding the needs of other people, and technical issues like transferring requirements
into a reliable and efficient computer program. It involves planning the process of developing
the software, organizing work between several people, and sharing mental models on the
status of the software in development. Software development is a discipline where one has to
master both social and technical skills.

The first argument in favor of managing knowledge in software engineering is that it is a
human and knowledge intensive activity (Birk, et al., 1999). But as software development
projects grow larger and the discipline moves from craftsmanship to engineering, it becomes a
group activity where individuals need to communicate and coordinate. Individual knowledge
has to be shared and leveraged at a project and organisational level, and this is exactly what
KM does.

In software development, one can identify two types of knowledge. First, Knowledge
embedded in the products (artifacts), since they are the result of highly intellectual creative
activities. Second, meta-knowledge, which is knowledge about the products and processes.

Software organisations are heavily dependent on tacit knowledge, which is very mobile
(Tiwana, 2000). If a person with critical knowledge about processes and practices suddenly
leaves the organisation, severe knowledge gaps are created (Brössler, 1999). Therefore, it is
more important for software engineering organisations to exploit and manage their intangible
assets in contrast to their physical assets (Tiwana, 2000).

Software development organisations are knowledge-intensive firms where the knowledge is
mainly embedded in human beings and is largely in the form of tacit knowledge. This paper
identifies five critical knowledge areas relevant to software development, namely user
requirements knowledge, functional domain knowledge, technical knowledge, project status
knowledge, and project experience knowledge.

Research problem

Software engineering (SE) is a knowledge-intensive business and, as such, it could benefit
from the ideas of KM. The important question is, however, where and in what formats does
knowledge reside in software engineering?

It is clear that SE involves a multitude of knowledge-intensive tasks: analyzing user
requirements for new software systems; identifying and applying best software development
practices; collecting experience about project planning and risk management; and many others
(Birk, et al., 1999).

SE is a complex business that involves many people working in different phases and
activities. The knowledge in SE is diverse and its proportions are immense and growing.
Software organisations have problems keeping track of what this knowledge is, where it is,
and who has it. A structured way of managing the knowledge and treating the knowledge and
its owners as valuable assets could help organisations leverage the knowledge they possess.
Therefore, there is a pressing need for a theoretically rigorous and empirically relevant
framework for examining the use of KM in software organisations.

International Technology Management Review, November 2008, v1, n2.

47

In sum, the research problem is defined as “developing an integrated model for knowledge
management in software organisations including the phases of knowledge management
lifecycle, types of knowledge required in software development projects, and phases of
software development lifecycle (figure 1).

This model will help individuals who are working in software organisations to identify and
catalog the different types of knowledge – that is available for software projects – to capture,
create, codify, communicate and capitalize in different phases of software development.

Figure 1: The basic components of the proposed model

Source: Developed for this research

Knowledge in software organisations

When individuals team up to solve a problem (or to develop a product), they form a
community of practice. When individuals communicate and exchange information related to a
common topic, but for solving different problems within or outside a company, they form
communities of interest, such as groups of Java programmers. These communities heavily
utilize web technology for knowledge sharing.

Phases of KM life cycle Types of knowledge in software Phases of software development
development projects life cycle

capture

creation

codification

communication

capitalization

User

requirements
knowledge

Functional
domain

knowledge

Project status
knowledge

Project
experience
knowledge

Technical
knowledge

Planning

Analysis

Design

Implementation

Maintenance &
Support

International Technology Management Review, November 2008, v1, n2.

48

In software development, learning occurs during projects. For organisational learning,
knowledge from all projects must be documented, collected and organized into a repository
that will support decision making for future projects (Schneider, 2001).

KM is seen as a strategy that creates, acquires, transfers, brings to the surface, consolidates,
distills, promotes creation, sharing, and enhances the use of knowledge in order to: improve
organisational performance; support organisational adaptation, survival and competence; gain
competitive advantage and customer commitment; improve employees’ comprehension;
protect intellectual assets; enhance decisions, services, and products; and reflect new
knowledge and insights.
Implementing KM in any organisation is a challenge because of the time and effort that is
required before there is a return on the investment. Software organisations seem to have even
less time than others because of the fast pace of the business.

Another challenge is the elusiveness of software. Unlike products of other domains, software
is not visible (compared with buildings in the civil engineering domain). Invisibility leads to
less reuse of the system. Another result is that software developers are not accustomed to
reuse, which is a problem because the idea behind KM is reuse of assets.

The most problematic challenge to KM is that most of the knowledge in SE is tacit and will
never become explicit. It will remain tacit because there is no time to make it explicit. A way
to address this problem can be to develop a knowledge sharing culture, as well as technology
support for KM, never forgetting that the main asset of the organisation is its employees.

It is clear that a KM system needs to be supported by appropriate IT infrastructure (Brössler,
1999). While IT can be intimidating to many people, this is not the case for software
engineers (Schneider, 2001). The other obvious benefit with software engineering activities is
the fact that all artifacts are already in electronic form (Schneider, 2001) and, thus, can easily
be distributed and shared.

Reasons Why People Would Not Share Knowledge

A company’s culture reflects what people think and feel about the organisation. Do they trust
each other and their management, and are they willing to go out of the traditional bounds of
the work culture to benefit the organisation?
Software organisations need to realize that employees may feel possessive about their
knowledge, and they may not be forthcoming in sharing it. After all, the knowledge they have
is why they are valuable to the organisation, why they are paid by the organisation, and why
they do not want to give that knowledge away. A term which is used these days is “capturing
tacit knowledge”, which is similar to “picking your employees’ brains.” This term sounds like
software organisations are picking whatever their employees know. The “capturing emotion”
might scare people into withholding their knowledge, thinking they will be expendable as
soon as their employers have captured all of the knowledge they need. If this was the result of
successful knowledge management, then everybody should be afraid of losing their job (Rus
and Lindvall, 2002).

Here are several reasons why employees might be reluctant to share their knowledge: First,
employees want the organisation to be dependent on them. If they share the knowledge with
others, they fear they will loose their “expert” status. Second, some cultures encourage

International Technology Management Review, November 2008, v1, n2.

49

individualism and ban cooperative work and sharing. In such cultures it is harder to establish
a successful knowledge management program. As a matter of fact, most Western schools do
not encourage students to work together in the classroom or while doing homework, so most
students have learned that sharing is cheating. In order to create a sharing culture, such values
and manners have to be unlearned. Third, employees might not be willing to share lessons
learned because of their negative connotation. Lessons learned are based on incidents, some
of which might be failures. Although the purpose is to learn from failures to avoid similar
mistakes, many employees might fear that submitting negative lessons learned could be
interpreted against them by management.

These are cultural issues that management must handle by creating a learning environment.
Employees will, however, always be concerned with how management treats them, and the
information that management has about them. Employees will react negatively if they fear
that information will be used against them.

Knowledge Management in Software Engineering Environments

Success in an increasingly competitive marketplace depends critically on the quality of the
knowledge, which organisations apply to their business processes. The challenge of using
knowledge to create competitive advantage becomes more crucial.

Software development is a collective, complex, and creative effort. As such, the quality of a
software product heavily depends on the people, organisation, and processes and procedures
used to create and deliver it. In other words, there is a direct correlation between the quality of
the software process and the quality of the software developed (Davenport and Prusak, 1998).

1. First Level Knowledge Management:
Knowledge Management Support for Core Software Engineering Activities

This section addresses core software engineering processes and activities. Birk illustrates the
wide spectrum of software engineering processes that might occur in a typical software
engineering project (Birk, et. al., 1999). What is common amongst the results from all these
processes and activities is that they are all documents (even the source code and the
executable programs can be regarded as documents). The work is, many times, focused on
authoring, reviewing, editing, and using these documents. Due to the fact that many software
organisations are distributed over large geographic areas, these documents need to be
remotely available. Because software engineering is so dominated by the documents that are
produced during the various activities and processes, the foundation for a knowledge
management system is a document management system.

Document management systems have been used for quite some time, but as the term
knowledge management became popular, there was a tendency to re-label the document
management tools as knowledge management tools, to accommodate the new trend. Portal
technology enables web-based communication within or outside organisations. Although
managing web sites can be fairly complicated (for example, they need support for links and
content management) portals can certainly be valuable to software engineering projects that
need to share knowledge captured in different forms.

As stated before, not all tacit knowledge in an organisation can be made explicit. Therefore, in
order to fully utilize the competence of the organisation there is a need for keeping track of
who knows what. Generally, employees do have knowledge about other employees’ expertise

International Technology Management Review, November 2008, v1, n2.

50

if the group is small enough (10-15 people), but larger groups of people are exposed to the
risk of “not knowing what other people know.” An elaborated solution to this problem is
competence management (i.e., skills management or expert network).

Competence management systems were initially developed with the major objectives of being
able to find employees with the right skills in order to staff new projects and to find
individuals who have specific pieces of knowledge. Competence management has evolved
over time into systems for much broader use.

2. Second Level Knowledge Management:
Organisational Memory for Software Development

Learning from experience requires remembering history. Individual memory is, however, not
sufficient and the entire organisation needs a memory to explicitly record critical events.
There are at least three distinguishable forms of organisational memory: First, Memory
consisting of regular work documents and other artifacts that were developed primarily to
assist development of the product (examples in this category are requirements specification,
and design specification). Second, Memory consisting of entities that were developed
specifically to support the organisational memory (examples are lessons learned and post-
mortem analyses). Third, A mix of the first two forms.

3. Third Level Knowledge Management:
Packaged Knowledge That Supports Knowledge Application

There are a large number of tools available, either as research prototypes or as commercial
tools, that claim to be knowledge-based. Common for these tools is that they are specifically
tailored for software engineering. They support the software engineer in his daily job and
often result from analysis of knowledge from many previous projects.

The need for capturing and sharing process and product knowledge

The Need for Domain Knowledge
Software development not only requires knowledge about its own domain, but also about the
domain for which software is being developed. Domain knowledge that no one in the
organisation possesses must be acquired either by training or by hiring knowledgeable
employees. KM can, however, enable the acquisition of new knowledge and it can help
identify expertise as well as capture, package and share knowledge that already exists in the
organisation.

The Need for Acquiring Knowledge About New Technologies
Knowledge Management fosters a knowledge sharing culture within the company that helps
facilitate sharing of knowledge related to new technologies. Knowledge Management also
makes the point that time should be spent on actively searching for knowledge both within the
organisation and outside. Knowledge sharing occurs within communities of practice and
interests, which can help speed up the learning curve.

International Technology Management Review, November 2008, v1, n2.

51

The Need for Sharing Knowledge About Local Policies

 Knowledge Management can help set up a system that encourages both informal knowledge
sharing sessions and more formal ways of communicating. Lightweight knowledge
management approaches attempt to capture the informal knowledge that is shared on a daily
basis so that it can be disseminated on a larger scale.

The Need for Knowing Who Knows What

Much knowledge can be recorded, but, nevertheless, the assets of a software engineering
organisation are mainly its employees and their tacit knowledge. Management of intangible
assets includes knowing who knows what and is part of competence management. Knowing
who knows what can help reduce the time it takes employees to find experts.

Knowledge Management can never tap the brains of the employees, but it can help build
structures and frameworks for capturing key information that can help retain some knowledge
when employees leave. This key information would at least help in understanding what the
employee who left knew and what profile his successor needs to have to fill the position.
Knowledge Management can help establish routines for identifying knowledge, as well as the
people who own the knowledge--- the experts.

The Need for Distance Collaboration

Knowledge Management can help solve this problem as it acknowledges the need to capture,
organize and store knowledge, as well as the necessity of knowledge transfer. Communication
in software engineering is often related to the transfer of knowledge. Collaboration is related
to mutual sharing of knowledge. Coordination that is independent of time and space is
facilitated if the work artifacts and their status are stored and made part of an organisational
memory.

A Five C’s KM lifecycle

In (Al-khaldi, et al., 2005), the researchers proposed a new model of the KM lifecycle called
the Five C's Model. The five Cs refer to: Capture-Creation-Codification-Communication-
Capitalization. Figure 2 shows the five phases of the model, along with the tasks that are
embedded in each phase. It also shows the interaction between the five knowledge phases.

International Technology Management Review, November 2008, v1, n2.

52

(K) Capture

(K)
Capitalization

(K) Creation (K)
Codification

(K)
Communicatio

n

Organisational

Memory

New
Knowledge

(K) Of the
individuals Feedback

(Source: Khaldi, et al., 2005)

Figure 2: The five C’s knowledge management lifecycle

Next, we give a brief description of each knowledge phase:

Knowledge capture phase: the tasks that are embedded in this phase are: searching for
several sources of knowledge that is necessary and related for performing the work,
perceiving and sensing needs and requirements of work from knowledge resources, acquiring
knowledge that already exists in the organisation from its appropriate sources at appropriate
times where it is needed, extracting the knowledge of other people in the organisation,
formulation of conceptual knowledge or idea from the knowledge that is available in the
organisation, using metaphor mechanism in order to extract the hidden knowledge in the
organisation, using brainstorming to solve the work problems of the organisation, consulting
others in the organisation to capture and acquire their knowledge, participation in training
workshops and sessions in order to acquire more knowledge.

Knowledge creation phase: the tasks that are embedded in this phase are: conducting
research activities in order to discover the knowledge in the organisation, exploiting past
experiences in the organisation to discover new knowledge, creating new knowledge through
the continuous learning in the organisation, preparing an appropriate culture and system in
order to create new knowledge in the organisation, developing systematic knowledge in the
organisation through combining explicit knowledge of people in the organisation, developing
sympathetic knowledge in the organisation through socialization with other people in the
organisation, developing new ways for doing work tasks in the organisation, referring to
external consulting firms in order to discover new knowledge and new ways of doing,
referring to departments and specialized units in the organisation to create knowledge,
engaging and participating in work meetings with other people in the organisation in order to
get common answers for work problems, enforcing strict conditions on people in the
organisation to encourage them to create new knowledge and new ways of doing, forming

International Technology Management Review, November 2008, v1, n2.

53

social networks of people in the organisation in order to let them generate new knowledge
among one another, arousing states of uncertainty about knowledge during discovering of new
knowledge, searching in the organisational setting for new knowledge through general routine
procedures.

Knowledge codification phase: the tasks that are embedded in this phase are: classification
and categorization of existing knowledge in the organisation according to its nature into
categories such as administrative, technical, financial etc., storing knowledge in the
organisation in locations that are easy to retrieve, mapping knowledge in the organisation so it
can be easily accessed whenever needed, organizing knowledge in the organisation in a way
that is understandable to all organisational members, considering the classification of the
knowledge so it cannot be accessed except by authorized people, placing the knowledge of the
organisation in suitable settings so it can be easily perceived and comprehended, knowledge
of the organisation reflects what is actually known and done by the organisation, refining and
filtering the knowledge of the organisation in order to access the most critical knowledge,
providing the necessary mechanisms to simplify the expression and articulation of the
knowledge from organisational members, distinguishing between explicit and hidden
knowledge of people in the organisation, orientation of organisational members to available
knowledge resources.

Knowledge communication phase: the tasks that are embedded in this phase are:
considering source, nature, and type of knowledge when transferring and sharing in the
organisation, motivating organisational members for participation in their creative and
intellectual resources, encouraging and enhancing the culture of knowledge sharing among
organisational members, providing information and communication technology in order to
transfer knowledge among people in the organisation, taking into account that the power of
the organisation is based on the extent of knowledge sharing among organisational members,
encouraging dialogue, conversations, and discussions among people in the organisation in
order to share in their knowledge, reaching common understanding of problems faced by the
organisational members when performing their tasks, reaching collaborative group solutions
through sharing their ideas, exchanging knowledge among people in the organisation through
documents, manuals and catalogues, accessing knowledge in the organisation anywhere
anytime when it is needed, determining who are the people who can transfer knowledge to
them, determining mechanisms and methods for distributing and disseminating knowledge in
the organisation.

Knowledge capitalization phase: the tasks that are embedded in this phase are: investing and
utilizing organisational knowledge in new ways and methods of doing work, enhancing the
feeling of individual responsibility towards the knowledge of the organisation, enhancing
individual effectiveness through this acquisition of organisational knowledge, encouraging
individual competitiveness through acquiring knowledge of the organisation, application of
knowledge leading to changing organisational culture, application of knowledge leading to
finding new managerial practices for performing organisational work, application of
knowledge leading to making creative and intellectual resources available in the organisation,
application of knowledge leading to improving overall performance of organisation,
application of knowledge lead to balancing cost-benefit in the organisation through improving
services and reducing costs, enhancing creative tasks and practices through the application of
knowledge, improving the decision-making process and problem solving through application
of knowledge, utilizing the knowledge that is embedded in procedures, rules, and norms in the
organisation in order to direct the future behavior of organisational members, directing other
people in the organisation for performing some roles and functions without transferring

International Technology Management Review, November 2008, v1, n2.

54

knowledge to them, evolving organisational knowledge after its application through the
feedback that results from evaluation tasks and functions of organisational members,
evaluating the outcomes of organisational knowledge after its application through the services
that are offered by the organisation.

A five-layered KM model for software team knowledge

Software development is no longer a homogeneous field. A socio-technical approach and a
commitment to project management principles are essential for attaining success in software
development projects. However, managing project knowledge is another critical factor that
has to be taken into consideration. Managing knowledge in globally distributed teams
involves managing software project knowledge through the lifecycle of the development of
the software project. The lifecycle of software development projects can be defined using the
systems development lifecycle approach as shown in Figure 3, which also shows the various
types of knowledge that needs to be managed during the project lifecycle. It has been
observed that the following five types of project-related critical knowledge need to be
managed as the project progresses: User requirements knowledge, functional domain
knowledge, technical knowledge, project status knowledge, and project experience
knowledge.

Need for managing user requirements knowledge
Meeting the client’s requirements is critical to a software project success. Clients may be
unable to articulate their requirements. They may articulate the wrong requirements. Besides,
different client groups may disagree over requirements. Their articulation of requirements
may be misunderstood by the software developers. As a result of this and environmental
volatility, requirements may change during a project. This uncertainty may lead to conflict,
delays, cost over-runs, and failure to meet the client’s needs.

 Figure 3: Knowledge Areas during Systems Development Life-cycle

(Source: Bharadwaj and Saxena, 2005)

International Technology Management Review, November 2008, v1, n2.

55

Requirements refer to the descriptions of properties, attributes, services, functions, and/or
behaviors needed in the software to accomplish the goals and purposes of the system. At the
system level, requirements should address the needs but should not specify a design solution.
This should be left to the software designers in the team. Thus, adopting a KM perspective of
requirements is necessary. Some specific recommendations for software project managers are:

• Increase the amount of application domain knowledge across the entire
software development team.

• Actively promote the acquisition, sharing, and integration of knowledge within
a software design effort through team facilitation techniques and formally
recognize these activities by allocating time to them.

• Much of the information that needs to become part of the team’s memory is not
captured formally, particularly, in standard documentation. Therefore, new tools (such
as intranets) are needed to easily and unobtrusively capture this process-based
information.

Need for managing technical and functional domain knowledge
Knowledge from multiple technical and functional domains is a necessity for software
development. This knowledge falls along at least three inter-dependent domains, namely the
application domain such as manufacturing, banking, transportation, etc. the technical domain,
and the best practices in the two domains.

Need for managing project status knowledge
The third type of project knowledge, which must be available to the software team, is project
status knowledge. Project documentation (such as requirements specification, design
documentation, program specifications, project plans, etc.) and standards (such as checklists,
templates, standard procedures, etc.) need to be managed.

Need for managing project experience knowledge
Although issues are always project-specific, they may have some generic patterns. Therefore,
many of the issues encountered in a project could be relevant to other project sites or other
projects as well. For example, the issues may pertain to important system requirements,
instructions or clarifications for customers, innovative design ideas for addressing some
problems, precautions to be taken when using some software for development, etc.
Knowledge about the success and failure factors of projects is a valuable knowledge that
should e managed properly to increase the success rate of software projects.

Combining the five layered and the five C’s models

In order to best harness and utilize the knowledge of employees during the software
development lifecycle in software organisations, the following steps are required as shown in
Figure 4.

First, in the planning phase, the user requirements knowledge should be captured through
searching for several sources of knowledge that is necessary and related for performing the
work, perceiving and sensing needs and requirements of work from knowledge resources,
acquiring knowledge that already exists in the organisation from its appropriate sources at the
appropriate time where it is needed, extracting the knowledge of other people in the
organisation, formulation of conceptual knowledge or idea from the knowledge that is
available in the organisation, using a metaphor mechanism in order to extract the hidden

International Technology Management Review, November 2008, v1, n2.

56

knowledge in the organisation, using a brainstorming mechanism in order to solve the work
problems of the organisation.

Second, functional domain knowledge should be created during analysis and design phases
through conducting research activities in order to discover the knowledge in the organisation,
exploitation of past experiences in the organisation to discover new knowledge, creating new
knowledge through the continuous learning in the organisation.

Third, the project status knowledge should be codified throughout all phases of the software
development lifecycle through classification and categorization of existing knowledge in the
organisation into categories such as administrative, technical, financial, etc., storing
knowledge in the organisation in locations the are easy to retrieve, mapping knowledge in the
organisation so it easy to access whenever needed, organizing knowledge in the organisation
in a way that is understandable to all organisational members.

Fourth, the project experience knowledge should be communicated among employees
throughout all phases of the development through considering the source, nature, and type of
knowledge when transferring and sharing knowledge in the organisation, motivating
organisational members to share their creative and intellectual resources, encouraging and
enhancing the culture of knowledge sharing among organisational members, providing
information and communication technology in order to transfer knowledge among people in
the organisation.

Finally, the technical knowledge should be capitalized during implementation, maintenance
and support phases through investing and utilizing organisational knowledge in new ways and
methods of doing work.

Figure 4: Integrating the software development lifecycle and the knowledge management
lifecycle.

(Source: Developed for this research)

(K) Capture (K) Creation (K)
Codification

(K)
Communication

(K)
Capitalization

International Technology Management Review, November 2008, v1, n2.

57

From the above proposed model, three main categories for software engineering tasks are
identified:

1. Tasks performed by a team focusing on developing a software product based on
customer requirements.

2. This represents the core task of any software organisation. The team leader (project
manager) is responsible for ensuring that work is completed on time and within budget
and possesses the intended functionality and quality. Software engineering is
document-oriented and what is produced during the project is a set of documents such
as contracts, project plans, requirements and design specifications, source code, test
plans and related documents. These documents are not just work products. There is
also additional information embedded within them: (1) during the project they
document the decisions; (2) after the project’s completion, they contain the history of
the project. The documents can be reused in different ways by the next project so that
people can learn from them, by analyzing the solutions to different problems that these
documents capture.

3. Tasks that focus on improving a team’s ability to develop a software product.
Here we can include tasks that might be conducted during and shortly after the
project. The reason for performing these tasks is to ensure that potential
knowledge gained in the project is not lost. Included here are all forms of
lessons learned and post-mortem analyses that identify what went right or
wrong in the project. Also included are analyses of data from the project, for
example, comparisons of budgeted and actual costs, estimated and actual
effort, planned and actual calendar time. Tasks in this category attempt to
collect and create knowledge about one particular project. The results from this
activity are useful by themselves, but can also be the basis for further learning.
They can be stored in repositories and experience bases (for example, in
lessons learned repositories).

4. Tasks that focus on improving an organisation’s or an industry’s ability to develop
software.

This category represents activities that analyze results from several previous projects
in order to identify similarities and differences between them. The insights gathered by
these analyses can be formulated as knowledge or experience packages and can be
qualitative, quantitative, or a mix of both.

Discussion and Key Findings

Knowledge intensive organisations have realized that a large number of problems are
attributed to un-captured and unshared product and process knowledge, as well as the need to
know ‘who knows what’ in the organisation, the need for remote collaboration, and the need
to capture lessons learned and best practices. These realizations have led to a growing call for
KM.

Software development is a knowledge-intensive and people-intensive activity. Groups that are
geographically dispersed carry out a significant amount of the work in SE. People in such
groups must collaborate, communicate, and coordinate their work, which makes KM a
necessity. For organisations that are large and distributed, whose environment is continuously
changing, or have a high turnover, managing their knowledge assets is critical for survival.

International Technology Management Review, November 2008, v1, n2.

58

A characteristic of SE that turns out to be an advantage over other industries in terms of
managing intellectual capital is that artifacts are already captured in electronic form and can
easily be stored and shared. In addition, software engineers often have a positive attitude
towards using new technology. This means that a software organisation that implements a
KM system could have a good chance to succeed with this mission.

In the context of SE, we define KM as a set of activities, techniques, and tools supporting the
creation and transfer of SE knowledge throughout the organisation. One use of KM is to
support software process improvement (SPI) activities. This support is important because both
SE and quality management techniques fail if they are not based on a thorough knowledge of
what is needed and what has been done in a software development organisation.

Knowledge is a valuable resource of any organisation. Any activity that does not leverage its
power is clearly a sub-optimal utilization of the resources. Software development, a highly
complex and intellectually intensive activity is not an exception. It involves intellectual effort
by individuals in teams on projects with deadlines and deliverables that often change over the
lifetime of the project. Fluctuating requirements and goals are occasioned both by greater
clarity in the clients’ true requirements and constrains as the project progresses as also by
promising new technologies that emerge and business exigencies that arise over time. The
need to manage in such contexts is often why the software development process is
characterized as undisciplined, chaotic and completely unpredictable.

Some benefits of the extended framework include:

• With KM integrated into software engineering environments (SEEs) where a
knowledge management system needs to be supported by appropriate IT
technology to produce artifacts in electronic form, that can easily be distributed
and shared. With this integration between KM and SEEs, it is easier for
software developers to create new knowledge. In this way, the organisational
memory is not closed. It is always evolving.

• A major concern for KM in the software development environment is to
capture information during the software process without extra effort on the part
of the developers. Thus, the KM system is actively integrated into the work
process. An isolated KM system, on the other hand, can be a barrier to
innovation, because it does not let workers share new ideas with their peers.
Closed systems do not give organisations control over their own knowledge,
since there is a gap between knowledge creation and integration. Innovations
happen outside the KM system, and then it contains information that is
chronically out of date and that reflects an outsider’s view of work.

• KM users are no longer passive receivers of knowledge, but are active
researchers, constructors, and communicators of knowledge. Knowledge can
be constructed collaboratively in the context of the work. Attention to
knowledge requires attention to people, including their tasks, motivation, and
interests in collaboration. The heart of intelligent human performance is not the
individual human mind but groups of minds interacting with each other and
with tools and artifacts.

As pointed earlier, the most critical knowledge area is the user requirement knowledge.
Though newer processes are introduced to manage requirements, managing user requirements
still remains a challenge for the members of the global software teams. Although functional

International Technology Management Review, November 2008, v1, n2.

59

domain knowledge and technical knowledge are managed well by companies, yet technology
updates have put pressure in identifying the gaps and bridging them during the project
execution. Project status knowledge has been well managed in the global software teams with
the help of formal procedures, checklists, and documentation. However, these are incomplete
and inadequate in most cases. Also, capturing and reusing the project experience knowledge
of the existing projects and clients is still an open issue. Therefore, these areas can indeed
benefit from the new approach to integrating knowledge management into the full software
development lifecycle.

The extended framework can provide software engineering organisations with a set of factors
for a successful implementation of a KM system. First, it provides a knowledge friendly
culture where software organisations values learning and innovation, and establishes
appropriate incentives and reward systems. Employees collaborate and have a positive
attitude towards knowledge. When there is free flow of knowledge from other employees,
individuals tend to respond in the same manner. Second, it places employees in an
environment where they have opportunities to use their capabilities to the fullest. Third, it
motivates employees to share their knowledge with other people in the organisation. They
must be convinced that their sharing of knowledge will be valuable to the organisation and,
most importantly, to themselves. Fourth, it develops a broadly shared understanding of the
organisation’s mission, current direction, and the role of the individual in support of the
organisation and of the individual’s own interests. Fifth, it manages the knowledge base the
same way as physical assets. Time and effort should be invested in designing, building and
maintaining its content. Sixth, it links all knowledge management systems to other
information systems. Seventh, it provides the continuous monitoring, evaluation, and
guidance of the KM activities and their plans, results and opportunities. Eighth, it create
problem-solving groups comprised of people from a variety of disciplines. This will transfer
the knowledge from one discipline to another, as well as provide solutions to interdisciplinary
problems in decreased time. Nineth, it provides multiple channels for knowledge transfer, as
each adds value in a different way. It is particularly important to provide opportunities for
face-to-face contact, as well as electronic forms of communication. Tenth, it gives employees
permission to innovate, improvise and stretch organisation policies and practices beyond the
predetermined scopes.

Conclusions and future work

The focus of this paper is on how SE can benefit from developments in KM. Knowledge is
the most powerful and ubiquitous resource of any organisation in general and software
development organisations in particular. Therefore, integrating the lifecycles of both SE and
KM is useful and necessary. This paper introduced a new approach to such integration. The
proposed framework is based on the five C’s KM model, which defines and relates five major
KM processes, and the five-layered model, which defines and relates the main five software
development activities that can best benefit from KM. We believe that the new framework can
have a positive impact on the software industry in terms of the success rate of IT projects.

The efforts to identify and catalog knowledge constructs for software development activities
are still in their infancy. It is hoped that this work will invite a wider population of software
developers and knowledge managers to help refine and validate the model introduced in this
paper.

International Technology Management Review, November 2008, v1, n2.

60

As future work, we will be investigating the practical aspects and the effectiveness of the
proposed framework by carrying out a pilot project. Currently, we are investigating several
issues related to this pilot project such as the application domain (e-commerce or traditional),
organisation (government or private), project size (small or medium), software development
process (waterfall or iterative and incremental), etc.

International Technology Management Review, November 2008, v1, n2.

61

References

Andrew B. 1999, ‘Using stakeholders, domain knowledge, and responsibilities to

specify information systems' requirements’, Journal of organisational computing
and electronic commerce, 9(4), pp.287-296.

Barbara P. 2000, ‘Project memories: integrating knowledge and requirements

management’, Fraunhofer Institute for Experimental Software Engineering
(IESE), Kaiserslautern.

Bharadwaj S., Saxena K. 2005, ‘Knowledge management in global software teams’,

Interfaces VIKALPA, volume.30, no.4, pp.65-75.

Birk A., Surmann D., Althoff K. 1999, ‘Applications of knowledge Acqusition in

Experimental Software Engineering’, 11th European Workshop on Knowledge
Acquisition, Modeling, and Management, pp.67-84.

Borges S., Falbo A. 2002, ‘Managing Software Process Knowledge’, Proceedings of

the International Conference on Computer Science, Software Engineering,
Information Technology, e-Business, and Applications (CSITeA'2002), pp. 227 –
232, Foz do Iguazu, Brazil.

Brössler P. 1999, ‘Knowledge Management at a Software Engineering Company – An

Experience Report’, Workshop on Learning Software Organisations, LSO'99,
Kaiserslautern, Germany, pp. 163-170.

Conradi R. 2000, ‘From software experience databases to learning organisations’,

International journal of software engineering and knowledge engineering, vol.10,
no.4, pp.541-547.

Dai, et.al. 2004, ‘Software warehouse: its design, management and application’,

International journal of software engineering and knowledge engineering, vol.14,
no.4, pp.395-406.

Davenport H., Prusak L. 1998, Working Knowledge, Boston, Massachusetts: Harvard

Business School Press.

Davies J., et al. 2005, ‘Next generation knowledge management’, BT technology

journal, vol.23, no.3, 175-190.

Desouza C. 2003, ‘Barriers to effective use of knowledge management systems in

software engineering’, communications of the ACM, vol.46, no.1, pp.99-101.

Dingsoyr T., Conradi R. 2002, ‘A survey of case studies of the use of knowledge

management in software engineering’, International journal of software
engineering and knowledge engineering, vol.12, no.4, pp.391-414.

Hellstrom T., Mikaelsson, J. 2001, ‘Decentralizing knowledge: managing knowledge

work in a software engineering firm’, Journal of high technology management
research, 12(2001), pp.25-38.

International Technology Management Review, November 2008, v1, n2.

62

Jahnke H., Walenstein A. 2002, ‘Evaluating theories for managing imperfect
knowledge in human-centric database reengineering environments’, International
journal of software engineering and knowledge engineering, vol.12, no.1, pp.77-
102.

Khaldi F., Alawneh A., Khateeb A. 2005, ‘A five C’s knowledge management

lifecycle’, Faculty of Information Systems and Technology, AABFS, Working
Paper.

Komi-Sirvio S., et.al. 2002, ‘Toward a practical solution for capturing knowledge for

software projects’, IEEE software, vol. 19, no. 3 pp. 60-62.

Lawton G. 2001, ‘Knowledge Management: Ready for Prime Time’ IEEE Computer,

vol. 34, no.2, pp.12-14.

Morasca S., Ruhe G. 1999, ‘Knowledge discovery from empirical software

engineering data’, International journal of software engineering and knowledge
engineering, vol.9, no.5, pp.495-498.

Muller C., Bahrs J., Grohau, N. 2005, ‘Considering the knowledge factor in agile

software development’, Journal of universal knowledge management, vol.0, no.2,
pp.128-147.

O’Leary E. 1998, ‘Enterprise Knowledge Management’, IEEE Computer Magazine.

Preece A., et.al. 2001, ‘Better knowledge management through knowledge

engineering’, IEEE Intelligent systems, pp.36-43.

Richter H., Abowd G. 2004, ‘Tagging knowledge acquisition sessions to facilitate

knowledge traceability’, International journal of software engineering and
knowledge engineering, vol.14, no.1, pp.3-19.

Robillard N. 1999, ‘The role of knowledge in software development’,

Communications of the ACM, vol.42, no.1, pp. 87-92.

Rus I., Lindvall M. 2002, ‘Knowledge Management in Software Engineering’, IEEE

Software, vol. 19, no. 3, pp. 26-38.

Schneider K. 2001, ‘Experience Magnets - Attracting Experiences, Not Just Storing

Them’, Product Focused Software Process Improvement, PrOFES'01,
Kaiserslautern, Germany, pp.126-140.

Shaft M., Michael F., Vessey I. 2006, ‘The role of cognitive fit in the relationship

between software comprehension and modification’, MIS Quarterly, vol.30, no.1,
pp.29-55.

Tiwana A., Mclean E. 2000, ‘Expertise integration and creativity in information

systems development’, Journal of MIS, vol. 22, no. 1, pp. 13-43.

© 2008 Academic Global Publications P/L. This work is copyright. You may download and print only one paper copy from
this electronic file for your personal use only, from which you may not make any further paper copies.

