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Abstract

We give a simple proof that for any non-zero initial data, the solution of the Camassa-
Holm equation loses instantly the property of being compactly supported.

1 Introduction

In this paper, we consider the Camassa-Holm equation

ut − utxx + 3uux = 2uxuxx + uuxxx t ≥ 0, x ∈ R. (1.1)

This equation is a model for the unidirectional propagation of shallow water waves, with
u(t, x) representing the water’s free surface above a flat bed in nondimensional variables
cf. [3] (see also [18] for an alternative derivation). It also models axially symmetric waves
in hyperelastic rods [15] and was first derived as an abstract bi-Hamiltonian equation
[16]. Moreover, the Camassa-Holm equation is a re-expression of geodesic flow on the
diffeomorphism group of the line [6, 20]. Some solutions exist for all times, while others
have a finite life-span, modelling wave breaking [8]. The solitary waves of the Camassa-
Holm equation are stable solitons [2, 14] with a peak at their crest (and thus have to be
interpreted as weak solutions cf. [13]. Equation (1.1) is an integrable infinite-dimensional
Hamiltonian system (see [5, 7, 12, 19]). There is in fact a whole hierarchy of integrable
equations associated to the Camassa-Holm equation, cf. [17].

In this paper we will show that the classical solutions of the Camassa-Holm equation
have infinite propagation speed: the only initial data u(0, ·) of compact support for which
the solution stays compactly supported for some time T > 0 is u(0, x) ≡ 0. In so doing
we refine the results obtained in [4], by lessening the restriction that the classical solution
u of (1.1) must be smooth. Our approach is also simpler than the one pursued in [4].
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2 Main Results

Assume that u0 ∈ H
4(R). Then [9] there is a maximal time T = T (u0) > 0 such that (1.1)

has a unique solution with

u ∈ C([0, T ), H4(R)) ∩ C1([0, T ), H3(R)) ∩ C2([0, T ), H2(R)) (2.1)

In view of the Sobolev embedding H
k+1(R) ⊂ Ck(R) for k ≥ 0, we have, in particular,

that u ∈ C2([0, T ) × R, R).
We begin by proving the following result for the function m = u − uxx. It guarantees

that if a classical solution u of (1.1) starts out having compact support, then this property
will be inherited by m at all times t ∈ [0, T ).

Proposition 1. Assume that u0 ∈ H
4(R) is such that m0 = u0 − u0,xx has compact

support. If T = T (u0) > 0 is the maximal existence time of the unique solution u(x, t)
to (1.1) with initial data u0(x), then for any t ∈ [0, T ) the C1 function x 7→ m(x, t) has
compact support.

Proof. Let us associate to the function m the family {ϕ(·, t)}t∈[0,T ) of increasing C2

diffeomorphisms of the line defined by

ϕt(x, t) = u(ϕ(x, t), t), t ∈ [0, T ), (2.2)

with

ϕ(x, 0) = x, x ∈ R. (2.3)

The claimed smoothness of the functions ϕ follows from classical results on the dependence
on parameters of solutions of differential equations [1].

Using (1.1) and (2.2)–(2.3), and by differentiating with respect to t, one can easily
check the following identity:

m(ϕ(x, t), t) · ϕ2
x(x, t) = m(x, 0), x ∈ R, t ∈ [0, T ). (2.4)

Additionally, from (2.2)–(2.3) we infer

ϕx(x, t) = exp

(
∫ t

0
ux(ϕ(x, s), s) ds

)

, x ∈ R, t ∈ [0, T ). (2.5)

It follows that if m0 is supported in the compact interval [a, b], then since ϕx(x, t) > 0
on R × [0, T ) from (2.5), we can conclude from (2.4) that m(x, t) has its support in the
interval [ϕ(a, t), ϕ(b, t)].

�

Remark 1. Relation (2.4) is not accidental: it represents the conservation of momentum
in the physical variables (see [10, 11]).

We next show that although m = u − uxx has compact support for all t ∈ [0, T ) if m0

does, where T is the maximal existence time of the solution, this property does not carry
over to the function u.
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Theorem 1. Assume that the function u0 ∈ H
4(R) has compact support. Let T > 0 be the

maximal existence time of the unique solution u(x, t) with initial data u0(x). If at every
t ∈ [0, T ) the C2 function x 7→ u(x, t) has compact support, then u is identically zero.

For (x, t) ∈ R × [0, T ), let m = u − uxx. Clearly m(x, 0) has compact support since u0

does. By Proposition 1 the C1 function x 7→ m(x, t) has compact support for all t ∈ [0, T ).
Given u, it is easy to find m. The reverse is also true by means of taking Fourier transforms
[21], namely

2u(x) = e−x

∫ x

−∞

eym(y) dy + ex

∫

∞

x

e−ym(y) dy. (2.6)

In order to prove Theorem 1 we will use the following result.

Proposition 2. Let u ∈ C2(R) ∩ H
2(R) be such that m = u − uxx has compact support.

Then u has compact support if and only if
∫

R

exm(x) dx =

∫

R

e−xm(x) dx = 0. (2.7)

Proof. Assume u has compact support and let 0 < Nm ∈ R be such that m(x) ≡ 0 for
all |x| > Nm. We now examine u(x) when |x| > Nm— firstly when x > 0, then for x < 0.

Case 1: x > Nm. We write (2.6) as the sum of three integrals, denoted I1,I2 and I3:

2u(x) = e−x

∫

−x

−∞

eym(y) dy + e−x

∫ x

−x

eym(y) dy + ex

∫

∞

x

e−ym(y) dy.

Note the integrals I1,I2,I3 are well-defined as m has compact support. It is obvious that
I1 ≡ I3 ≡ 0 since m(y) = 0, |y| > Nm, and so we observe that u(x) = 0 with x > Nm if
and only if e−x

∫ x

−x
eym(y) dy = 0, that is, if and only if

∫ x

−x
eym(y) dy = 0.

Therefore, since u(x) had compact support, we can infer that

lim
x→∞

∫ x

−x

eym(y) dy =

∫

R

eym(y) dy = 0.

Case 2: −x > Nm. We now decompose (2.6) in terms of the integrals I1, I2, I3:

2u(x) = e−x

∫ x

−∞

eym(y) dy + ex

∫

−x

x

e−ym(y) dy + ex

∫

∞

−x

e−ym(y) dy.

As before, the integrals I1, I2, and I3 are well-defined because m has compact support,
and we also have I1 ≡ I3 ≡ 0. We again infer that

∫

R
e−ym(y) dy = 0.

Therefore, if u(x) has compact support then (2.7) holds.
We now prove the converse. It is given that m has compact support, which means that

there is a constant N > 0 such that m(x) = 0 for all |x| > N . Assume that (2.7) holds.
Therefore

∫

R

exm(x) dx =

∫ N

−N

exm(x) dx = 0 (A)

∫

R

e−xm(x)dx =

∫ N

−N

e−xm(x) dx = 0. (B)
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Pick x > N . We can now write equation (2.6) as

2u(x) = e−x

∫ N

−N

eym(y) dy + ex

∫

∞

x

e−ym(y) dy = 0,

if we take into account (A) and the fact that m(y) = 0 for all y ≥ x > N .
Similarly, for x < −N , equation (2.6) becomes

2u(x) = e−x

∫ x

−∞

eym(y) dy + ex

∫ N

−N

e−ym(y) dy = 0.

So u has compact support. �

Proof of Theorem 1. We now prove the theorem using the result that u has compact
support if and only if (2.7) holds. We assume that u has compact support, and show that
this implies u ≡ 0.

Let us now write (1.1) in the form

mt + 2uxm + umx = 0

and differentiate the left hand side of (2.7) with respect to t to get the result:

d

dt

∫

R

exm(x, t) dx =

∫

R

exmt dx = −2

∫

R

exmux dx −

∫

R

exmxu dx

= −2

∫

R

exmux dx +

∫

R

exmux dx +

∫

R

exmudx

= −

∫

R

exmux dx +

∫

R

exmudx

= −

∫

R

uux dx +

∫

R

uuxx dx +

∫

R

exu2 dx −

∫

R

exuuxx dx

= −

∫

R

exuux dx −
1

2

∫

R

exu2
x dx +

∫

R

exu2 dx +

∫

R

exux(u + ux) dx

=

∫

R

exu2 dx +
1

2

∫

R

exu2
x dx

where all boundary terms after integration by parts vanish as both m(·, t) and, by as-
sumption, u(·, t) have compact support for all t ∈ [0, T ). Therefore,

d

dt

∫

R

exm(x, t) =

∫

R

ex

(

u2 +
1

2
u2

x

)

dx, t ∈ [0, T ). (2.8)

The expression under the integral on the right hand side of this relation must be
identically zero by (2.7). This implies that both of the terms must be identically zero, and
in particular u ≡ 0. This completes the proof. �

Remark 2. If u0 6≡ 0 is a function in H
4(R) with compact support, then the classical

solution u(·, t) of (1.1) looses instantly the property of having compact support. To see
this we go through the same argument as above, this time restricting our attention to an
arbitrarily small time interval [0, ε).
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