
Journal of Nonlinear Mathematical Physics Volume 12, Number 4 (2005), 462–468 Letter

On the Integrability of a Class of Nonlinear

Dispersive Wave Equations

Rossen IVANOV 1

Department of Mathematics, Trinity College
Dublin 2, Ireland

E-mail: ivanovr@maths.tcd.ie

Received February 16, 2005; Accepted in Revised Form March 29, 2005

Abstract

We investigate the integrability of a class of 1+1 dimensional models describing non-
linear dispersive waves in continuous media, e.g. cylindrical compressible hyperelastic
rods, shallow water waves, etc. The only completely integrable cases coincide with
the Camassa-Holm and Degasperis-Procesi equations.

1 Introduction

In this letter we investigate the integrability of the nonlinear equation

ut − uxxt + ∂xg[u] = νuxuxx + γuuxxx, (1.1)

where

g[u] = κu + αu2 + βu3 (1.2)

and α, β, γ, κ, ν are constant parameters. The symmetries of (1.1) for specific choices of
the parameters are studied in [4].

The case κ = 0, α = 3/2, β = 0, ν = 2γ and γ an arbitrary real parameter has
been recently studied as a model, describing nonlinear dispersive waves in cylindrical
compressible hyperelastic rods [11, 10] – see also [9, 25]. The physical parameters of
various compressible materials put γ in the range from -29.4760 to 3.4174 [11, 10].

Other important cases of (1.1) are:
Camassa-Holm (CH) equation [3, 14]

ut − uxxt + κux + 3uux = 2uxuxx + uuxxx, (1.3)

κ−arbitrary (real), describing the unidirectional propagation of shallow water waves over
a flat bottom [3, 17]. CH is a completely integrable equation [1, 8, 6, 18], describing
permanent and breaking waves [7, 5]. The solitary waves of CH are smooth if κ > 0 and
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peaked if κ = 0 [3, 19]. Integrable generalizations of CH with higher order terms are
derived in [15].

Degasperis-Procesi (DP) equation [12]:

ut − uxxt + κux + 4uux = 3uxuxx + uuxxx, (1.4)

κ−arbitrary (real), is another completely integrable equation of this class. It is also known
to possess (multi)peakon solutions if κ = 0 [13, 16].

CH and DP equations are particular cases of the b-family

ut − uxxt + (b + 1)uux = buxuxx + uuxxx, (1.5)

which possesses multipeakon solutions for any real b [13].
Fornberg-Whitham (FW) equation [24]

ut − uxxt + ux + uux = 3uxuxx + uuxxx (1.6)

appeared in the study of the qualitative behaviors of wave-breaking.
The regularized long-wave (RLW) or BBM equation [2]

ut − uxxt + ux + uux = 0 (1.7)

and the modified BBM equation

ut − uxxt + ux + (u3)x = 0 (1.8)

are not completely integrable, although they have three nontrivial independent inte-
grals [22].

In what follows we will demonstrate that the only completely integrable representatives
of the class (1.1) are CH and DP equations (1.3), (1.4).

In our analysis we will use the integrability check developed in [20, 23, 21]. This
perturbative method can be briefly outlined as follows. Consider the evolution partial
differential equation

ut = F1[u] + F2[u] + F3[u] + . . . (1.9)

where Fk[u] is a homogeneous differential polynomial, i.e. a polynomial of variables u, ux,
uxx, ..., ∂n

xu with complex constant coefficients, satisfying the condition

Fk[λu] = λkFk[u], λ ∈ C.

The linear part is F1[u] = L(u), where L is a linear differential operator of order two or
higher. The representation (1.9) can be put into correspondence to a symbolic expression
of the form

ut = uω(ξ1) +
u2

2
a1(ξ1, ξ2) +

u3

3
a2(ξ1, ξ2, ξ3) + . . . = F (1.10)

where ω(ξ1) is a polynomial of degree 2 or higher and ak(ξ1, ξ2, . . . ξk+1) are symmetric
polynomials. Each of these polynomials is related to the Fourier image of the corresponding
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Fk[u] and can be obtained through a simple procedure, described e.g. in [20]. Each
differential monomial un0un1

x . . . (∂q
xu)nq is represented by a symbol

um〈ξ0
1 . . . ξ0

n0
ξ1
n0+1 . . . ξ1

n0+n1
ξ2
n0+n1+1 . . . ξ2

n0+n1+n2
. . . ξq

m〉

where m = n0 + n1 + . . . nq and the brackets 〈〉 denote symmetrization over all arguments
ξk (i.e. symmetrization with respect to the group of permutations of m elements Sm):

〈f(ξ1, ξ2, . . . , ξn)〉 =
1

m!

∑

σ∈Sm

f(ξσ(1), ξσ(2), . . . , ξσ(n))

Also, for any function F (1.10) there exists a formal recursion operator

Λ = η + uφ1(ξ1, η) + u2φ2(ξ1, ξ2, η) + . . . (1.11)

where the coefficients φm(ξ1, ξ2, . . . ξm, η) can be determined recursively:

φ1(ξ1, η) = Nω(ξ1, η)ξ1a1(ξ1, η) (1.12a)

φm(ξ1, ξ2, . . . ξm, η) = Nω(ξ1, ξ2, . . . ξm, η)
{

(ξ1 + ξ2 + . . . + ξm)am(ξ1, ξ2, . . . ξm, η)+

+

m−1
∑

n=1

〈 n

m − n + 1
φn(ξ1, . . . ξn−1, ξn + . . . + ξm, η)am−n(ξn, . . . ξm)+

+φn(ξ1, . . . ξn, η + ξn+1 + . . . + ξm)am−n(ξn+1, . . . ξm, η)−

−φn(ξ1, . . . ξn, η)am−n(ξn+1, . . . ξm, η + ξ1 + . . . + ξn)
〉}

(1.12b)

with

Nω(ξ1, ξ2, . . . ξm) =
(

ω(
m

∑

n=1

ξn) −
m

∑

n=1

ω(ξn)
)

−1
(1.13)

and the symbols 〈〉 denote symmetrization with respect to ξ1, ξ2, . . . ξm, (the symbol η is
not included in the symmetrization). Before formulating the integrability criterion it is
necessary to introduce the following

Definition 1. The function bm(ξ1, ξ2, . . . ξm, η) , m ≥ 1 is called local if all coefficients
bmn(ξ1, ξ2, . . . ξm), n = ns, ns+1, . . . of its expansion as η → ∞

bm(ξ1, ξ2, . . . ξm, η) =

∞
∑

n=ns

bmn(ξ1, ξ2, . . . ξm)η−n (1.14)

are symmetric polynomials.

Now the integrability criterion can be summarized as follows [20]:

Theorem 1. The complete integrability of the equation (1.9), i.e. the existence of an
infinite hierarchy of local symmetries or conservation laws, implies that all the coefficients
(1.12) of the formal recursion operator(1.11) are local.
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2 The integrability test

After shifting u → −(u + δ) and x → x − λt where δ and λ are arbitrary constants, the
equation (1.1) can be written in the form

ut = (1 − ∂2
x)−1

(

Kux + Buxxx + Cuux + Au2ux − νuxuxx − γuuxxx

)

(2.1)

where the new constants A, B, C and K are related to the old ones as follows:

A = −3β (2.2a)

B = λ − γδ (2.2b)

C = 2α − 6βδ (2.2c)

K = 2αδ − κ − 3βδ2 − λ (2.2d)

Since the linear part of the equation must contain second derivative or higher, the appli-
cability of the test requires B 6= 0, i.e. λ 6= γδ which always can be achieved by a proper
choice of the arbitrary constant λ.

The symbolic representation of the operator (1 − ∂2
x)−1 is 1

1−η2 and the symbol, corre-

sponding to (1−∂2
x)−1Fk[u] is uk

k

ak−1(ξ1,ξ2,...ξk)
1−(ξ1+ξ2+...+ξk)2

, where uk

k
ak−1(ξ1, ξ2, . . . ξk) is the symbol

corresponding to Fk[u]; see [20] for details. Moreover, Theorem 1 can be applied in this
case as well. Therefore, the equation (2.1) can be represented in the form (1.10) with

ω(ξ1) =
Kξ1 + Bξ3

1

1 − ξ2
1

(2.3a)

a1(ξ1, ξ2) =
C(ξ1 + ξ2) − νξ1ξ2(ξ1 + ξ2) − γ(ξ3

1 + ξ3
2)

1 − (ξ1 + ξ2)2
(2.3b)

a2(ξ1, ξ2, ξ3) =
A(ξ1 + ξ2 + ξ3)

1 − (ξ1 + ξ2 + ξ3)2
(2.3c)

Then from (1.12):

φ1(ξ1, η) =
(1 − ξ2

1)(1 − η2)
(

− C + γξ2
1 + (ν − γ)ξ1η + γη2

)

(B + K)η(−3 + ξ2
1 + ξ1η + η2)

(2.4a)

φ2(ξ1, ξ2, η) = Φ21(ξ1, ξ2)η + Φ20(ξ1, ξ2) + Φ2,−1(ξ1, ξ2)η
−1 + Φ2,−2(ξ1, ξ2)η

−2 + . . .
(2.4b)

All coefficients in the expansion of φ1(ξ1, η) (2.4a) with respect to η are polynomials on
ξ1 and therefore there are no obstacles to the integrability of (2.1). However, the expansion
of φ2(ξ1, ξ2, η) (2.4b) may contain, in general, non-polynomial contributions.

Let us start with the case γ 6= 0. Then

Φ21(ξ1, ξ2) = γ
(1 − ξ2

1)(1 − ξ2
2)

(

− C + (γ + ν)ξ1ξ2

)

(B + K)2(1 − ξ1ξ2)
(2.5)
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is a polynomial iff

C = γ + ν. (2.6)

Then

Φ2,−1(ξ1, ξ2) =
(1 − ξ2

1)(1 − ξ2
2)P1(ξ1, ξ2)

(B + K)2(1 − ξ1ξ2)
(2.7)

where

P1(ξ1, ξ2) = −A(B + K)+

+(−1 + ξ1ξ2)
(

γ2(2ξ1 + ξ2)(ξ1 + 2ξ2) + γν(1 + ξ2
1 + ξ1ξ2 + ξ2

2) − ν2(1 + (ξ1 + ξ2)
2)

)

.

Φ2,−1(ξ1, ξ2) is a polynomial iff A = 0. From (2.2), (2.6) we get

β = 0, α =
γ + ν

2
. (2.9)

With α and β as in (2.9), the term Φ2,−3(ξ1, ξ2) has the form

Φ2,−3(ξ1, ξ2) =
P2(ξ1, ξ2)

(B + K)2(1 − ξ1ξ2)
(2.10)

where P2(ξ1, ξ2) is a symmetric polynomial. The polynomial remainder of the division of
P2(ξ1, ξ2) with 1−ξ1ξ2 (e.g. if ξ2 is treated as a constant, and ξ1 as a polynomial variable)
is proportional to the factor 6γ2−5γν+ν2. Thus, for complete integrability it is necessary

6γ2 − 5γν + ν2 = 0. (2.11)

There are two nonzero solutions of (2.11): ν = 2γ and ν = 3γ. From (2.9), α = 3γ
2

and α = 2γ in these two cases correspondingly. The requirement B + K 6= 0 (2.4a) or
κ 6= νδ can be achieved for suitable δ, if ν 6= 0, or even for ν = 0 if κ 6= 0. The test is
inconclusive if κ = ν = 0, which corresponds to the equation (1.5) with b = 0. This case
is not integrable, although it admits a Hamiltonian formulation [13].

Without loss of generality one can choose now γ = 1 (e.g. after rescaling of t), which
gives precisely the integrable Camassa-Holm and Degasperis-Procesi equations (1.3), (1.4).

Now suppose γ = 0, ν 6= 0. In this case

Φ20(ξ1, ξ2) = ν
(1 − ξ2

1)(1 − ξ2
2)(ξ1 + ξ2)(C − νξ1ξ2)

(B + K)2(1 − ξ1ξ2)
(2.12)

is a polynomial iff C = ν. Then

Φ2,−1(ξ1, ξ2) = ν
(1 − ξ2

1)(1 − ξ2
2)

(

− A(B + K) + ν2(1 − ξ1ξ2)(1 + (ξ1 + ξ2)
2)

)

(B + K)2(1 − ξ1ξ2)
(2.13)

is a polynomial iff A = 0, i.e. β = 0. If C = ν and β = 0 (i.e. α = ν/2) a further
computation gives

Φ2,−3(ξ1, ξ2) = −ν2 (1 − ξ2
1)(1 − ξ2

2)P3(ξ1, ξ2)

(B + K)2(1 − ξ1ξ2)
(2.14)
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where

P3(ξ1, ξ2) = 3 + 7ξ2
1 + 7ξ2

2 − ξ4
1 − ξ4

2 + 12ξ1ξ2 − 29ξ2
1ξ2

2 + 8ξ3
1ξ

3
2 + ξ5

1ξ2 + ξ1ξ
5
2+

+8ξ2
1ξ4

2 + 8ξ4
1ξ2

2 − 12ξ3
1ξ2 − 12ξ1ξ

3
2 .

Therefore Φ2,−3 (2.14) is not a polynomial for ν 6= 0. Note that the restriction B + K 6= 0
(2.4a) is again secured by the choice δ 6= κ/ν. Thus, if γ = 0 and ν 6= 0 no completely
integrable equations emerge.

Finally, let us take γ = ν = 0. In this case

Φ2,−1(ξ1, ξ2) =

(

A(B + K) − C2
)

(1 − ξ2
1)(1 − ξ2

2)

(B + K)2(1 − ξ1ξ2)
(2.16)

is a polynomial iff C2 = A(B + K). But then

Φ2,−3(ξ1, ξ2) =
A(1 − ξ2

1)(1 − ξ2
2)(1 − 4ξ1ξ2)

(B + K)(1 − ξ1ξ2)
(2.17)

is apparently not a polynomial if A 6= 0, i.e. β 6= 0 ( if β 6= 0, B + K = 2αδ − κ − 3βδ2

can be arranged to be nonzero by a proper choice of δ). Therefore, the only possibility,
leading to an integrable equation could be A = 0. Then it is obvious that for C 6= 0 (2.16)
is not a polynomial (in this case B + K = Cδ − κ, δ 6= κ/C). Thus for integrability it is
necessary A = C = 0 but then the equation (2.1) becomes linear.

Therefore, the only nonlinear completely integrable representatives of the class (1.1)
are the Camassa-Holm and Degasperis-Procesi equations (1.3), (1.4).
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