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Abstract

Long-wave equations for an incompressible inviscid free-surface fluid in N + 1 dimen-
sions are derived and shown to be Hamiltonian and liftable into the space of moments.

1 Introduction

Hierarchies of integrable evolution equations are concentrated in 0 (discrete) and 1 (con-
tinuous) space dimensions. The only known integrable 2-dimensional hierarchies, first
introduced in [5,6] by Manin and myself, are of free-surface type; the prototypical such
system was discovered by Benney in 1973 [1]:

ut = uux + ghx − uy

∫ y

0
uxdy, (1.1a)

ht = (

∫ h

0
udy)x. (1.1b)

Here −∞ < x < ∞; t is the time variable; u = u(x, y, t) is the horizontal component of
velocity of an inviscous incompressible fluid; 0 ≤ y ≤ h; h = h(x, t) is the height of the
free surface over the bottom {y = 0}; subscripts t, x, and y denote partial derivatives;
the density of the fluid is taken to be 1; the gravitational acceleration g in formula (1.1a)
is also taken to be 1 most of the time; and the mathematical time t in formulae (1.1) is
opposite in sign to the physical time t, to make forthcoming formulae simpler.

Benny in [1] found two remarkable facts about the system (1.1):
(A) If one introduces the moments of the velocity u(x, y, t) :

An(x, t) =

∫ h

0
un(x, y, t)dy, n ∈ Z≥0, (1.2)

then the integro-differential system (1.1) implies a purely differential evolution system in
the space of moments An’s:
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An,t = An+1,x + gnAn−1A0,x, n ∈ Z≥0; (1.3)

(B) The system (1.3) has an infinite number of conserved densities Hn ∈ An +Z[g;A0,
..., An−2]:

H0 = A0, H1 = A1, H2 = A2 + gA2
0, ... (1.4)

Both of these facts can be generalized considerably. In this note I shall re-examine the
nature of the Benney system (1.1) by deriving an (N + 1)-dimensional version of it for
the case when the external potential is arbitrary and not just gravitational. We shall see
that the resulting (N +1)-dimensional free-surface system, integro-differential as expected,
again implies a purely differential evolution system in the space of moments.

2 Incompressible Fluids With A Free Surface

We start off the Euler equations for an incompressible inviscid fluid in N + 1 dimensions.
Denote the space coordinates by (xα) = (xi; y), 1 ≤ α ≤ N + 1, 1 ≤ i ≤ N, y = xn+1,
and set

∂α = ∂/∂xα, (·),α = ∂α(·), ∂i = ∂/∂xi, (·),i = ∂i(·). (2.1)

The Euler equations are:

uα,t − uβuα,β = (P − U), (2.2α)

uα,α = 0 , (2.3)

ht = (

∫ h

0
uidy),i , (2.4)

uN+1 |y=0= 0 , (2.5)

P |y=h= P0 = const . (2.6)

Here u = (uα) = (u1, ..., uN+1) is the velocity vector, P = P (x1, ..., xN+1; t) is the
pressure, U = U(x1, ..., xN+1) is the potential, h = h(x1, ..., xN ; t) is the height of the free
surface over the horizontal (for inessential simplicity) bottom {y = 0}; and we sum on the
repeated indices.

The system (2.2-6) is clearly non-local, having the non-holonomic incompressibility con-
strain (2.3) imposed upon it, and with no separate equation for the time evolution of the
unknown pressure function P given. It is only after one makes a ”long-wave approxima-
tion” to this not-evolutional system that one ends up with a genuine evolution system like
(1.1).



510 B A Kupershmidt

3 Long-wave Approximation

Pick arbitrary non-zero constants λ1, ..., λN+1, and generalize the system (2.3-6) by keeping
equations (2.3-6) unchanged and replacing equation (2.2α) by the equation

λα(uα,t − uβuα,β) = (P − U),α , no sum on α. (3.1α)

Our original system (2.2-6) results when

λ1 = ... = λN = λN+1 = 1. (3.2)

Now set

E = E(λ) =

∫ h

0
dy(

λα

2
u2

α − U). (3.3)

This is an analog of the energy density for our extended system {(3.1), (2.2-6)}, because
Proposition 3.4.

E,t =

{
∫ h

0
dy(−U − P0 + P +

λβ

2
u2

β)ui

}

,i . (3.5)

Proof. We have:

E,t =
λα

2
u2

α|hht − U |hht+ (3.6a)

+

∫ h

0
dyλβuβ

{

λ−1
β (P − U),β +uαuβ,α

}

. (3.6b)

Let us transform separately each of the two summands in the expression (3.6b).

1)

∫ h

0
dyuβ(P − U),β [by (2.3)] =

∫ h

0
dy

{

uβ(P − U)

}

,β =

=

{

uN+1(P − U)

}
∣

∣

∣

∣

h

0

+

{
∫ h

0
dyui(P − U)

}

,i −

{

(P − U)ui

}
∣

∣

∣

∣

h

h,i =

=

(

U

∣

∣

∣

∣

h

− P0

)(

− uN+1

∣

∣

∣

∣

h

+ ui|hh,i

)

+

{
∫ h

0
dyui(P − U)

}

,i . (3.7)

But formulae (2.3,5) imply that

uN+1 = −

∫ y

0
dyui,i, (3.8)
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so that

uN+1|h = −

∫ h

0
dyui,i = −

(
∫ h

0
dyui

)

,i +ui|hh,i [by (2.4)] =

= −ht + ui|hh,i . (3.9)

Hence, the expression (3.7) equals to

(

U |h − P0

)

h,t +

{
∫ h

0
dyui

(

P − U

)}

,i . (3.10)

2)

∫ h

0
dyλβuβuαuβ,α [by (2.3)] =

∫ h

0
dy

(

λβ

2
u2

βuα

)

,α =

=
λβ

2
u2

βuN+1|
h
0 +

(
∫ h

0
dy

λβ

2
u2

βui

)

,i −
λβ

2
u2

β|hui|hh,i [by (2.5), (3.9)] =

=
λβ

2
u2

β |h(−ht) +

(
∫ h

0
dy

λβ

2
u2

βui),i . (3.11)

Collecting together expressions (3.6a,10,11), we arrive at formula (3.3). �

We now set

λ1 = ... = λN = 1, λN+1 = ǫ, (3.12)

consider ǫ as an asymptotic parameter, and keep only zero-order in ǫ terms in the resulting
asymptotic expansion.

The equation (3.1N+1) then becomes:

(P − U),N+1 = 0, (3.13)

which can be rewritten with the help of (3.6) as

P − U = P0 + V, (3.14)

V = V (x1, ..., xn, h) = −U |h. (3.15)

We thus arrive at the purely evolution system:

ui,t = ujui,j − ui,y

∫ y

0
uj,jdy + V,i 1 ≤ i ≤ N, (3.16a)

ht = (

∫ h

0
ujdy),j , (3.16b)

ui = ui(x, y, t), h = h(x, t), x = (x1, ..., xN ), (3.16c)
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where we used formula (3.8) for uN+1.
For the case

N = 1, U = −gy2/2, V = gh2/2, (3.17)

we recover the original Benny system (1.1).
We now proceed to show that the system (3.16) is a Hamiltonian system which induces

a purely differential evolution in the space of moments.

4 The Evolution Of Moments

For a multiindex

σ = (σ(1), ..., σ(N)) = (σ1, ..., σN ) ∈ ZN
≥0, (4.1)

set

Aσ = Aσ(x, t) =

∫ h

0
uσdy, (4.2)

where

uσ = u
σ(1)
1 ...u

σ(N)
N . (4.3)

In particular,

A0 = h. (4.4)

Proposition 4.5.

Aσ,t = Aσ+1j ,j + σjAσ−1j
V,j , σ ∈ ZN

≥0, (4.6)

where 1j is the multiindex

1j = (0, ..., 1, ..., 0) (4.7)

with only nonzero entry being 1 at the jth place.

Proof. We have:

Aσ,t = (

∫ h

0
dyuσ)t = uσ|hht +

∫ h

0
dyσiu

σ−1iui,t =

= uσ|h(uj |hh,j +

∫ h

0
dyuj,j)+ (4.8a)

+

∫ h

0
dyσiu

σ−1i(ujui,j − ui,y

∫ y

0
uj,jdy + V,i ). (4.8b)
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We now transform some of the five summands making up the expression (4.8).
The Second summand in (4.8b) becomes:

−

∫ h

0
dy(uσ)y

∫ y

0
dyuj,j = −

∫ h

0
dy{(uσ

∫ y

0
dyuj,j)y − uσuj,j} =

= −uσ|h

∫ h

0
dyuj,j +

∫ h

0
dyuσuj,j. (4.9)

The second summand in (4.8a) and the first summand in (4.9) cancel out. The first
summand in (4.8b) and the second summand in (4.9) combine into

−

∫ h

0
dy

(

(uσ),j uj + uσuj,j

)

=

∫ h

0
dy(uσuj),j =

=

(
∫ h

0
dyuσuj

)

,j −(uσuj)|hh,j . (4.10)

The first summand in (4.8a) and the second summand in (4.10) cancel out. What remains,
the first summand in (4.10) and the third summand in (4.8b), make up the RHS of (4.6).

�

5 Hamiltonian Properties Of The Evolution Of Moments

In the space of moments Aσ’s, consider the following matrix:

Bσ|µ = σiAσ+µ−1i
∂i + ∂iµiAσ+µ−1i

. (5.1)

We shall verify in a moment that this is a Hamiltonian matrix.
Let us now check that our long-wave system (4.6) is Hamiltonian. Take as the Hamil-

tonian the remainder of the total energy E(λ) (3.3) after the asymptotic expansion (3.12)
has been made:

H =
1

2

∑

i

A2i
−

∫ h

0
dyU. (5.2)

Then

δH

δAµ
=

∂H

∂Aµ
=

1

2

∑

j

δµ
2j

+ V δµ
0 . (5.3)

Thus, the corresponding motion equations,

Aσ,t = Bσ|µ

(

δH

δAµ

)

, (5.4)

become, by formula (5.1):
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Aσ,t = σiAσ+µ−1i
∂i(V δµ

0 ) + ∂i(µiAσ+µ−1i

1

2

∑

j

δµ
2j

) =

= σiAσ−1i
V,i +Aσ+1i,i. (5.5)

These are exactly our motion equations (4.6).
Now, the matrix B (5.1) is linear in the field variables Aσ’s. Therefore [2; 4, Ch. 5],

the matrix B is Hamiltonian iff the algebra canonically attached to it by the rule

XtB(Y) ∼ Aσ[X,Y]σ (5.6)

is a Lie algebra; here ∼ denotes equality modulo
∑

i Im(∂i) (“divergencies”). Hence,

XtB(Y) = Xσ(σiAσ+µ−1i
∂i + ∂iµiAσ+µ−1i

)(Yµ) ∼

∼ XσσiAσ+µ−1i
Yµ,i − Xσ,iµiAσ+µ−1i

Yµ, (5.7)

so that

pν [X,Y]ν = pσ+µ−1i(XσσiYµ,i − YµµiXσ,i) =

=
∂

∂pi

(Xσpσ) ·
∂

∂xi

(Yµpµ) −
∂

∂pi

(Yµpµ) ·
∂

∂xi

(Xσpσ). (5.8)

We see that we indeed get a Lie algebra of functions on T ∗RN polynomial in the p’s
(the coordinates in the fibers T ∗RN → RN .) This is a particular case of the general
construction in [3] attaching a Hamiltonian matrix to a local Lie algebra. For N = 1, this
interpretation of the Hamiltonian matrix B (5.1) is due to Lebedev [7].

For any Hamiltonian H = H({A}), denote

Hσ =
δH

δAσ

, (5.9)

the corresponding variational derivative. Then [3, formula (22)] the evolution in the
moments space

Aσ,t = Bσ|µ(Hµ) = (σiAσ+µ−1i
∂i + ∂iµiAσ+µ−1i

)(Hµ) (5.10)

is implied by the evolution in the (h,u)-space:

ht = (µiAµ−1i
Hµ),i , (5.11a)

us,t = µiu
µ−1ius,iHµ + uµHµ,s − us,y

∫ y

0
dy(µiu

µ−1iHµ),i . (5.11b)

For N = 1, this general system first appeared in [5,6]. For general N , the system (5.11)
has almost as many remarkable properties as its N = 1 version. We next examine one
such property.
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6 Local Flows In The Physical Space

When the velocity u = u(x, y, t) is y-independent, the integro-differential system (5.11)
assumes a purely differential form

ht = (µiA
∗
µ−1i

H∗
µ),i , (6.1a)

us,t = µiu
µ−1ius,iH

∗
µ + uµH∗

µ,s, (6.1b)

where

A∗
µ = huµ, (6.2a)

H∗ = H(A)∗ = H(A∗), H∗
µ = (Hµ)∗, (6.2b)

and * denotes the reduction homomorphism that sends Aµ into

A∗
µ =

∫ h

0
uµdy = huµ. (6.3)

Proposition 6.4. (i) The system (6.1) is Hamiltonian, with the Hamiltonian H∗, and
with the Hamiltonian matrix b:

b = h
us

h ur
(

0 ∂r

∂s
us,r − ur,s

h

)

; (6.5)

(ii) The homomorphism * (6.2a) is Hamiltonian between the Hamiltonian structures B
(5.1) and b (6.5).

Proof. (i) We have:

δH∗

δh
=

(

δH

δAµ

)∗∂A∗
µ

∂h
= H∗

µuµ, (6.6)

δH∗

δuk

=

(

δH

δAµ

)∗∂A∗
µ

∂uk

= H∗
µ

∂(huµ)

∂uk

=

= H∗
µµkA

∗
µ−1k

= H∗
µhµku

µ−1k . (6.7)

The not-yet verified as Hamiltonian matrix b (6.5) produces the motion equations

ht =

(

δH∗

δur

)

,r

(6.8a)

us,t =

(

δH∗

δh

)

,s

+
1

h
(us,r − ur,s)

δH∗

δur

. (6.8b)
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By formula (6.7a), equations (6.1a) and (6.8a) are identical.
To show that equations (6.1b) and (5.8b) coincide, we need to verify that

µiu
µ
−

1ius,iH
∗
µ + uµH∗

µ,s

?
=

(

δH∗

δh

)

,s

+
1

h
(us,r − ur,s)

δH∗

δur

[by (6.6, 7)] = (uµH ∗
µ ),s + (us,r − ur ,s)H

∗
µµru

µ−1r , (6.9)

which is equivalent to (no sum on µ):

µiu
µ−1ius,i

?
= (uµ),s +(us,r − ur,s)µru

µ−1r , (6.10)

which is obvious.
Now, the reason the matrix b (6.5) is Hamiltonian lies in the origin of that matrix.

Consider the subalgebra of Hamiltonians in the A-space which depend upon the Aµ’s with
|µ| ≤ 1, where

|µ| = |(µ1, · · · , µN )| = Σiµi. (6.11)

Formula (5.1) shows that this is indeed a Hamiltonian subalgebra, governed by the Hamil-
tonian matrix

b̃ = A0

A1i

A0 A1j
(

0 ∂jA0

A0∂i A1j
∂i + ∂jA1i

)

.
(6.12)

Passing to the coordinates

h = A0, uj = A−1
0 A1j

, 1 ≤ j ≤ N, (6.13)

we recover the Hamiltonian matrix b (6.5);
(ii) We have to verify that

JbJ t = B∗, (6.14)

where J is the Frechét derivative of the homomorphism *:

J = Aσ

h ui
(

uσ | σihuσ−1

)

.
(6.15)

Multiplying JbJ t through, formula (6.14) reduces to the identity

σihuσ−1i∂iu
µ + uσ∂jµjhuµ−1j + σiu

σ−1i(ui,j − uj,i)µjhuµ−1j
?
=

?
= σihuσ+µ−1i∂i + ∂jµjhuσ+µ−1j , (6.16)

which is obvious. �

For N = 1, we recover results from [5,6].
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