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Abstract

In this article we use the Fokas transform method to analyze boundary value prob-
lems for the sine-Gordon equation posed on a finite interval. The representation of
the solution of this problem has already been derived using this transform method.
We interchange the role of the independent variables to obtain an equivalent repre-
sentation which can be used to study the asymptotic behavior for large times. We use
this analysis to prove that the solution corresponding to constant boundary data is
dominated for large times by the underlying similarity solution.

Dedicated to Francesco Calogero in occasion of his 70th birthday

1 Introduction

The sine-Gordon (sG) equation is a significant example of evolution problem belonging to
the class of integrable PDEs in one space dimensions.

We consider the hyperbolic form of this equation, which is given by

qxt + sin q = 0, q = q(x, t). (1.1)

The initial value problem posed on the full line can be solved by the Inverse Scattering
Transform, and the associated spectral problem is the one studied by Zakharov and Shabat
[2].

A boundary value problem on the half line x > 0 or on any finite interval (0, L), with
t > 0, is well posed as soon as one initial and one boundary conditions (at t = 0 and
x = 0 respectively) are prescribed, and there are no additional boundary values to be
characterized. For this reason, the analysis of this equation is simpler than the analysis
of other integrable evolution PDEs, such as NLS or KdV, which can also be solved by the
inverse scattering transform.
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We are interested in the large time asymptotic behavior of the solution of such prob-
lems, and in understanding the generation of solitons and assessing their asymptotic role.
It is well known that the solution of the initial value problem on the whole line decom-
poses asymptotically into a finite train of special solutions, for any given initial waveform
carrying sufficient energy [9]. These special solutions are either soliton-kinks, or soliton-
breathers. In the classical formulation, these solutions correspond to the poles of the
spectral problem lying in the upper (or the lower) half of the complex spectral plane.
However, the question of what happens when one considers the initial and boundary value
problem posed on the half line x > 0 is still open. One can clearly construct boundary
conditions such that this problem can be considered a restriction of the whole line problem,
and then its solution must be consistent with the corresponding solution of the Cauchy
problem and therefore may produce soliton asymptotics. However, generic boundary con-
ditions yield a problem that cannot be considered as the restriction to x > 0 of an initial
value problem, and the asymptotic behavior can be rather different.

This matter has been unexpectedly controversial. Consider the particular boundary
value problem obtained by prescribing the constant boundary data q(0, t) = γ. The
analysis of this equation using the classical Zakharov-Shabat spectral problem, either by
the usual inverse scattering transform [11] or by the generalization proposed by Fokas [3, 4],
yields a spectral transform with infinitely many zeros in the upper half complex spectral
plane. Since in the full line case these zeros are associated with the soliton components
of the asymptotics of the equation, one might expect that, as t → ∞, the solution, in the
half line case, will decompose into infinitely many solitonic components.

However, the zeros of the Zakharov-Shabat formulation do not appear to be relevant
for soliton generation. Leon in [10] has argued that these zeros are spurious and an artifact
of the lack of continuity of the spectral functions near the real axis. He associates to the
sine-Gordon equation (1.1) a spectral problem, different from the usual one, defined by a
weakly commuting Lax pair. Using the spectral data associated to this problem, he showed
that, in correspondence with a constant boundary datum and vanishing initial conditions,
the relevant spectral function has only a finite number of zeros as t → ∞. However,
whether these zeros are indeed related to soliton solutions which are important for the
large time asymptotics of the whole solution was not verified. We note that although the
example presented in [3] and [10] generates the same spectral function, in the former case
the problem is posed on a finite interval, with nonzero initial conditions, while in the latter
case, the problem is posed on the half line with a vanishing boundary condition, and a
stepwise constant boundary datum. Since this boundary datum is not differentiable, this
is somewhat of a spurious example, and one should really pose this problem on a finite
interval, with constant, but nonzero, initial condition.

The only explicit asymptotic results we are aware of in the literature for the sine-
Gordon equation are the results in [9] on the generation of solitons for the equation on
the infinite line, with data that are not necessarily decreasing. We cite also the results in
[8] on the same problem for the stimulated Raman scattering (SRS) on the half line. In
both cases, the behavior at large times is dominated by asymptotic solitons, generated by
the continuous rather than the discrete spectrum. The points in the discrete spectrum are
however assumed (and we stress that this is an assumption) to be finitely many, and their
asymptotic contribution is, as usual, in the form of canonical solitons.

In this paper, we find an alternative representation for the solution of such boundary
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value problems, and prove that the large time asymptotic behavior of the solution corre-
sponding to constant boundary conditions is dominated by the similarity solution. Our
main result is the following.

Theorem 1. Consider the sine-Gordon equation

qxt + sin q = 0, 0 < x < L, t > 0,

with given initial and boundary conditions

q(x, 0) = q0(x), q(0, t) = γ, q0(0) = γ,

where γ 6= 0 is a constant. The leading behavior of this boundary value problem is given

by

qt(x, t) =
ξ

2t
q̃(ξ), ξ =

√
xt, (1.2)

where

q̃(ξ) = − 2 sin γ

π(1 + cos γ)

∫ ∞

−∞

N2(ξ, λ)e−iξ(λ+ 1

λ
)dλ, (1.3)

and the functions N1, N2 are the unique solution of the system of linear integral equations

N1(ξ, λ) =
sin γ

2πi(1 + cos γ)

∫ ∞

−∞

N2(ξ, λ
′)e−iξ(λ′+ 1

λ′
) dλ′

λ′ − (λ + i0)
,

N2(ξ, λ) = 1 − sin γ

2πi(1 + cos γ)

∫ ∞

−∞

N1(ξ, λ
′)e−iξ(λ′+ 1

λ′
) dλ′

λ′ − (λ + i0)
. (1.4)

We are motivated by the results in [5] on a similar boundary value problem for the
Transient Stimulated Raman Scattering (SRS). Note that the Riemann-Hilbert problem
associated with the solution of SRS has the same form as the one associated with sG. In
what follows we combine the results of [5] with the analysis of the sine-Gordon equation
on a finite interval given in [3].

We restrict ourselves to data given on a finite space interval. Since this equation is
an evolution equation with respect not only to time, but also to space, this restriction
is not as significant as for other evolution (in time) PDEs. Indeed, the solution q(x0, t0)
depends only on the values of (x, t) satisfying x < x0, t < t0. Therefore the value of
the solution of the boundary value problem posed on the half line, at any given point x0,
should be identical to the value of the solution, at the same point x0, obtained by solving
the problem posed on the finite interval (0, x0).

We first briefly review the solution method for the linearized equation. Using the fact
that the roles of the two variables x and t are symmetric in this equation, we interchange
them in the derivation of the spectral problem, and hence give an expression for the solution
which is not the usual one but is equivalent to it. We then use the same idea to analyze the
nonlinear equation. Finally, we consider the special case of constant boundary data, and
show that in this case, the large time asymptotics are dominated by the similarity solution,
while the contribution of the zeros of the spectral functions (if any exist) is exponentially
small.



The sine-Gordon Equation on a Finite Interval 521

2 The linearized equation

We consider the small q limit of the sine-Gordon equation, given by

qxt + q = 0, x ∈ (0, L), t ∈ (, 0, T ). (2.1)

Our first remark that this is an evolution equation in both x and t. This implies, as we
show below and is well know [7], that the solution at any point (L, T ) depends only on the
values of q(x, t) for x < L and t < T . We therefore consider this equation in the domain
(0, L) × (0, T ), where L and T are arbitrary but finite.

This equation is supplemented with the following initial and boundary conditions, taken
to be sufficiently smooth and compatible:

q(x, 0) = q0(x), x ∈ (0, L) q(0, t) = f(t), t ∈ (0, T ), f(0) = q0(0). (2.2)

In what follows, we assume that a solution of this boundary value problem exists, and we
derive a representation for it.

We introduce the spectral parameter k and rewrite the equation in the form

(

e−ikt− i

k
xqt

)

x
+

(

e−ikt− i

k
x i

k
q

)

t

= 0, k ∈ C,

or equivalently as the compatibility condition of the Lax pair

µt − ikµ = qt, µx − i

k
µ = − i

k
q. (2.3)

In view of the analogy with the nonlinear case, we will derive the solution representation
using the Lax pair. The solutions µ of (2.3) are of the form

µ(x, t, k) = − i

k
eik(t−t0)

∫ x

x0

e(i/k)(x−y)q(y, t0)dy +

∫ t

t0

eik(t−s)qt(x, s)ds,

where x0, t0 are two arbitrary values.
Choosing x0 = L, t0 = 0, we obtain a solution which is analytic and bounded for

k ∈ C
+:

µ+(x, t, k) =
i

k
eikt

∫ L

x
e(i/k)((x−y)q(y, 0)dy +

∫ t

0
eik(t−s)qt(x, s)ds, (2.4)

while choosing x0 = 0, t0 = T , we obtain a solution which is analytic and bounded for
k ∈ C

−:

µ−(x, t, k) = − i

k
eik(t−T )

∫ x

0
e(i/k)((x−y)q(y, T )dy −

∫ T

t
eik(t−s)qt(x, s)ds. (2.5)

It is easy to verify, by integration by parts, that these functions satisfy

µ =
qt

ik
+ O(

1

k2
), k → ∞, (2.6)

µ = q + ikqx + O(k2), k → 0.
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The difference of these two solutions satisfies the homogeneous Lax pair, hence it is given
by

µ+ − µ− = eikt+ i

k
xρ(k), ρ(k) =

i

k

∫ L

0
e−(i/k)yq(y, 0)dy +

∫ T

0
e−iksqt(0, s)ds. (2.7)

Since µ+ as a function of k, is analytic and bounded in C
+, while µ− is analytic and

bounded in C
−, equation (2.7) and the asymptotic behavior (2.6) determine a Riemann-

Hilbert problem for the function µ(x, t, k). This means that µ(x, t, k) is the unique func-
tion, sectionally analytic in C and with the decay prescribed by (2.6), that coincides with
µ+ in C

+, with µ− in C
−, and that satisfies the jump condition (2.7) across R. This

function is given by

µ(x, t, k) =
1

2iπ

∫ ∞

−∞

eiλt+(i/λ)xρ(λ)

λ − k
dλ.

The computation of µt − ikµ (modulo some technicalities regarding the slow decay at
infinity of ρ(k), see [3]), and integration with respect to t, yield q(x, t):

q(x, t) =
1

2iπ

∫ ∞

−∞

eikt+(i/k)xρ(k)

k
dk. (2.8)

It can then be verified that the function defined by (2.8) satisfies the equation and the
given initial and boundary conditions, see [3]. Also, as shown in [3], (2.8) is equivalent to
the expression

q(x, t) =
1

2
q0(0) +

1

2π

∫ ∞

−∞

eikt+(i/k)x

(∫ x

0
e−(i/k)yq0(y)dy

)

dk

k2
+

+
1

2πi

∫ ∞

−∞

eikt+(i/k)x

(∫ t

0
eiksḟ(s)ds

)

dk

k
.

This expression shows that indeed the solution at any point (x, t) depends only on the
values of the variables in (0, x) and (0, t).

3 The sine-Gordon equation in light cone coordinates

We now consider an initial boundary value problem for the sine-Gordon equation

qxt + sin q = 0, 0 < x < L, 0 < t < T, (3.1)

with given conditions (2.2). We follow the same steps used to solve the linearized problem.
As before, we consider this equation in the domain (0, L)× (0, T ). As we are interested in
the large t behavior of this equation, we eventually let T → ∞, still keeping L finite, so
that limt→∞ x/t = 0.

Our first step is to interchange the role of the x and t variables in the classical formu-
lation, to obtain a Lax pair that is the nonlinear analogue of (2.3). Hence the Lax pair
we use is given by:

µt + ik [σ3, µ] = Qµ, µx +
i

4k
[σ3, µ] = Q̃µ, (3.2)
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where

Q =

(

0 − 1
2qt(x, t)

1
2qt(x, t)0

)

, Q̃ =

(

cos q(x, t) − 1 sin q(x, t)
sin q(x, t)1 − cos q(x, t)

)

.

The solutions of this Lax pair are of the form

µ(x, t, k) = I − i

4k
e−ik(t−t0σ̂3

∫ x

x0

e−(i/4k)(x−y)σ̂3 Q̃µ(y, 0, k)dy+

+

∫ t

t0

e−ik(t−s)σ̂3Qµ(x, s, k)ds. (3.3)

Choosing x0 = L, t0 = 0 and x0 = 0, t0 = T we obtain two particular solutions of the Lax
pair (3.2):

Φ(x, t, k) = I +
i

4k
e−iktσ̂3

∫ L

x
e−

i

4k
(x−y)σ̂3Q̃Φ(y, 0, k)dy+

+

∫ t

0
e−ik(t−s)σ̂3QΦ(x, s, k)ds, (3.4)

Ψ(x, t, k) = I − i

4k
e−ik(t−T )σ̂3

∫ x

0
e−

i

4k
(x−y)σ̂3Q̃Ψ(y, T, k)dy−

−
∫ T

t
e−ik(t−s)σ̂3QΨ(x, s, k)ds (3.5)

We write Φ = (Φ+,Φ−) where Φ± are column vectors. It is easy to verify that these vectors
are bounded and analytic in C

±, respectively. Their components are given explicitly by

(

Φ+
1

Φ+
2

)

=

(

1

0

)

+

∫ t

0





− 1
2qt(x, s)Φ+

2 (x, s)

1
2qt(x, s)Φ+

1 (x, s)e2ik(t−s)



 ds+

+
i

4k

∫ L

x





(cos q(y, 0) − 1)Φ+
1 (y, 0) + sin q(y, 0)Φ+

2 (y, 0)

[

sin q(y, 0)Φ+
1 (y, 0) + (1 − cos q(y, 0))Φ+

2 (y, 0)
]

e2ikt+(i/2k)(x−y)



 dy

and similarly

(

Φ−

1

Φ−

2

)

=

(

0

1

)

+

∫ t

0





− 1
2qt(x, s)Φ−

2 (x, s)e−2ik(t−s)

1
2qt(x, s)Φ−

1 (x, s)



 ds+

+
i

4k

∫ L

x





[

(cos q(y, 0) − 1)Φ−

1 (y, 0) + sin q(y, 0)Φ−

2 (y, 0)
]

e−2ikt−(i/2k)(x−y)

sin q(y, 0)Φ−

1 (y, 0) + (1 − cos q(y, 0))Φ−

2 (y, 0)



 dy

In the same way, Ψ = (Ψ−,Ψ+), where Ψ∓ are analytic and bounded in C
∓, and satisfy

equations similar to the ones for Φ, with
∫ t
0 replaced by −

∫ T
t and

∫ L
x replaced by −

∫ x
0 .

It is immediate to verify that the matrices above satisfy special symmetry relations,
given by

Φ22(k) = Φ11(−k),Φ12(k) = −Φ21(−k),

Ψ22(k) = −Ψ11(−k),Ψ12(k) = Ψ21(−k). (3.6)
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and in addition, for real q,

Φ22(k) = Φ11(k̄), Φ12(k) = −Φ21(k̄), Ψ22(k) = Ψ11(k̄), Ψ12(k) = −Ψ21(k̄). (3.7)

For k ∈ R, the matrices Ψ and Φ are related as follows:

Φ(x, t, k) = Ψ(x, t, k)e−iktσ̂3−(i/4k)xσ̂3ρ(k).

Indeed, since they both satisfy the x-equation, then there exists a function T (t, k) such
that Φ = ΨT (t, k), and since they both satisfy the t-equation, then there exists a function
X (x, k) such thatΦ = ΨX (x, k). It follows that these two functions are related through a
function of k only. We call this function ρ(k).

At x = 0, t = T we have Ψ(0, T, k) = I, therefore

ρ(k) = eikT σ̂3Φ(0, T, k) = I +
i

4k

∫ L

0
e

i

4k
yσ̂3Q̃Φ(y, 0, k)dy+

+

∫ T

0
eiksσ̂3QΦ(0, s, k)ds. (3.8)

Any solution µ(x, t, k) of the Lax pair (3.2) has constant determinant equal to 1, and
the following asymptotic behavior as k → ∞ and k → 0:

µ(x, t, k) = I +
µ1(x, t)

k
+ O

(

1

k2

)

, k → ∞,

µ(x, t, k) = µ0(x, t) + O(k), k → 0. (3.9)

Equation (3.9(a)) is obtained by integration by parts of (3.3). ¿From (3.9(a)), using the
fact that µ satisfies the first equation of the Lax pair, we obtain that i[σ3, µ1] = Q, hence

qt = −4i(µ1)12 = −4i lim
k→∞

k(µ − I)12. (3.10)

To verify that the behavior at k → 0 is indeed as given by equation (3.9(b)), assume that
µ has this form. Then substituting into the two equations of the Lax pair, we find

Qµ0 = (µ0)t, Q̃µ0 = [µ0, σ3].

The second equation can be rewritten as

µ0σ3µ
−1
0 = Q̃ + σ3 =

(

cos q sin q
sin q − cos q

)

.

Since both left and right hand side have determinant equal to −1, this equation can be
solved in terms of one of the matrix elements. For example, we obtain

(µ0)12 =
cos q − 1

(µ0)21
, (µ0)11 = − sin q

2(cos q − 1)
(µ0)21, (µ0)22 =

sin q

2(µ0)21
.

The data above define a Riemann-Hilbert problem. This problem, modulo interchang-
ing the role of x and t, is studied in detail in [3]. It can be written in a canonical form as
follows:

(

Ψ+,
Φ+

ρ11

)

=

(

Φ−

ρ22
,Ψ−

)

G, G =

(

1 ρ21E
ρ11

−ρ12Ē
ρ22

1
ρ11ρ22

)

, k ∈ R, (3.11)
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where E = e2ikt+(i/2k)x. Note that

lim
k→∞

(

Ψ+,
Φ+

ρ11

)

= lim
k→∞

(

Φ−

ρ22
,Ψ−

)

=

(

0 1
1 0

)

.

Any matrix Riemann-Hilbert problem of the form T + = T −G, where limk→∞ T ± = J is
a constant matrix, and G satisfies a certain definiteness condition, is uniquely solvable [1].
The solution is given by the formula

T −(k) = J +
1

2πi

∫ ∞

−∞

T −(k′)G(k′)
dk′

k′ − (k − i0)
, T + = T −G, (3.12)

where G = G − I, I the identity matrix.

In the present case, T − =
(

Φ−

ρ22
,Ψ−

)

. Considering the second column vector, and using

the symmetry conditions relating the components of Ψ+ and Ψ−, the expression (3.12)
yields for the vectors Ψ+, Ψ− the integral equation

Ψ+(x, t, k) =

(

0
1

)

− 1

2πi

∫ ∞

−∞

ρ12(k
′)

ρ22(k′)
Ψ−(k′)e−2ik′t−(i/2k′)x dk′

k′ − (k + i0)
. (3.13)

Finally, using (3.10) (with µ = Ψ), we find that the solution q(x, t) of the given boundary
value problem is characterized by

qt(x, t) =
2

π

∫ ∞

−∞

Ψ−
1 (x, t, k)

ρ12(k)

ρ22(k)
e−2ikt−(i/2k)xdk. (3.14)

Indeed, choosing µ = Ψ in equation (3.10), since Ψ12 = Ψ+
1 , we have

qt = −4i lim
k→∞

kΨ+
1 ,

which yields equation (3.14). The use of equation (1.1) yields an expression for q(x, t).

We are only interested here in the asymptotic behavior of the solution as t → ∞. We
now show that to analyze this behavior, we need to evaluate the limit of the quotient
ρ12(k)/ρ22(k) as k → 0. Since the matrix ρ(k) can be characterized via the values of the
solution Φ(x, t, k) of the Lax pair at x = 0, t = T , we start by analyzing the behavior of
the matrix defined by (3.4).

3.1 Small k behavior of Φ(x, 0, k)

We start by remarking how, because of the symmetry properties (3.6) of these matrices,
we only need to analyze the asymptotic behavior of one of the columns of Φ. By definition,
we have

Φ12(x, 0, k) =
i

4k

∫ L

x
[(cos q0(y) − 1)Φ12(y, 0, k) + sin q0(y)Φ22(y, 0, k)] e−( i

2k
)(x−y)dy,

Φ22(x, 0, k) = 1 +
i

4k

∫ L

x
[sin q0(y)Φ12(y, 0, k) + (1 − cos q0(y))Φ22(y, 0, k)] dy. (3.15)
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Integrating by parts the expression for Φ12(x, 0, k), and using the fact that Φ12(L, 0, k) = 0
and Φ22(L, 0, k) = 1, we find

Φ12(x, 0, k) = − sin q0(x)

1 + cos q0(x)
Φ22(x, 0, k) +

sin q0(L)

1 + cos q0(L)
e−(i/2k)(x−L)−

− 1

2

∫ L

x

d

dy
[(cos q0(y) − 1)Φ12(y, 0, k) + sin q0(y)Φ22(y, 0, k)] e−(i/2k)(x−y)dy.

Write

Φ = Φ0(x, t) + kΦ1(x, t) + O(k2), k → 0.

Substituting and integrating by parts the first of the above equations, we find

Φ0
12(x, 0) = − sin q0(x)

1 + cos q0(x)
Φ0

22(x, 0) +
sin q0(L)

1 + cos q0(L)
e−(i/2k)(x−L). (3.16)

These equations suggest that we assume for Φ12(x, 0, k), Φ22(x, 0, k) the following behavior:

Φ12(x, 0, k) = α1(x) + β1(x)e−(i/2k)(x−L) + O(k),

Φ22(x, 0, k) = α2(x) + β2(x)e−(i/2k)(x−L) + O(k).

Substituting these expressions in equation (3.16), we find

α1(x) + β1(x)e−(i/2k)(x−L) = − sin q0(x)

1 + cos q0(x)

(

α2(x) + β2(x)e−(i/2k)(x−L)
)

+

+
sin q0(L)

1 + cos q0(L)
e−(i/2k)(x−L).

It follows that

α1(x) = − sin q0(x)

1 + cos q0(x)
α2(x), (3.17)

β1(x) = − sin q0(x)

1 + cos q0(x)
β2(x) +

sin q0(L)

1 + cos q0(L)
.

3.2 Small k behavior of ρ(k)

We recall that ρ(k) = eikT σ̂3Φ(0, T, k). Note that we can write

Φ(x, t, k) = e−iktσ̂3Φ(x, 0, k) +

∫ t

0
e−ik(t−s)σ̂3QΦ(x, s, k)ds.

Therefore,

eikT σ̂3Φ(0, T, k) = Φ(0, 0, k) +

∫ T

0
eiksσ̂3QΦ(0, s, k)ds,

and, as k → 0, we find

ρ12(k)

ρ22(k)
∼ α1(0) + β1(0)e

(i/2k)L − 1
2

∫ T
0 e2iksqt(0, s)Φ22(0, s, k)ds

α2(0) + β2(0)e(i/2k)L + 1
2

∫ T
0 qt(0, s)Φ12(0, s, k)ds

. (3.18)
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4 The case of constant boundary data - proof of Theorem 1

We now consider in detail the boundary value problem obtained when q(0, t) = γ is a
constant, γ 6= 0. For consistency, it must be γ = q0(0), where q0(x) is the given initial
condition. We want to show that in this case, the asymptotic behavior of the solution
for large t is dominated by the similarity solution, while the zeros of the spectral function
ρ12(k)
ρ22(k) , when they exist, do not play a role in the leading asymptotic behavior of the solution
of these boundary value problems.

We introduce the similarity variable ξ =
√

xt, and write k = 1
2

√

x
t λ. Then

2ikt + (i/2k)x = iξ

(

λ +
1

λ

)

.

The Riemann-Hilbert problem with respect to these variables is identical to the Riemann-
Hilbert problems characterizing the solution of the so-called Painlevé III ODE, which is
analyzed in [6].

With respect to the variable λ, the kernel of equation (3.13) is

ρ12(
1
2

√

x
t λ

′)

ρ22(
1
2

√

x
t λ

′)
e−iξ(λ′+ 1

λ′
) dλ′

λ′ − (λ + i0)
. (4.1)

If we let t → ∞, since x is finite, then k → 0. Using the method of the stationary phase
[1], we find that the leading order behavior of equation (3.13) when t → ∞ depends on

limk→0
ρ12(k)
ρ22(k) .

In the particular case that q(0, t) = γ is constant, since qt(0, t) = 0, the integral terms
in the expression (3.18) vanish. Hence the leading term of the ratio ρ12/ρ22, for k small,
is given by

ρ12(k)

ρ22(k)
∼ α1(0) + β1(0)e

(i/2k)L

α2(0) + β2(0)e(i/2k)L
(4.2)

We consider first the case that ρ22(k) has no zeros in C
−.

The terms containing e(i/2k)L do not contribute to the integral in (3.13). Indeed, mul-
tiplying the expression in (4.2) by the exponential e−2ikt−(i/2k)x, and writing αi = αi(0),
βi = βi(0), i = 1, 2, we find

ρ12(k)

ρ22(k)
e−2ikt−(i/2k)x ∼ α1

α2



e−2ikt−(i/2k)x +

(

β1

α1
− β2

α2

)

e−2ikt−(i/2k)(x−L)

1 + β2

α2
e(i/2k)L





The exponential terms e−2ikt−(i/2k)(x−L) and e(i/2k)L are analytic and bounded in C
−.

The same is true of the other terms appearing in the kernel (3.13), namely Ψ−(k) and
1/(k′− (k+ i0)). It follows that the integral over R of the product of these terms vanishes.
Using (3.17), we therefore find that the only contribution to the leading behavior of the
integral (3.13), for t → ∞, is given by

ρ12(k)

ρ22(k)
∼ α1

α2
= − sin q0(0)

1 + cos q0(0)
. (4.3)
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It is easy to see, as in [5], that if ρ22(k) has zeros in C
−, then the extra terms arising from

the contribution of the corresponding poles are of the form

ρ12(k0)Ψ
−(k0)e

−2ik0t−(i/2k0)x

(dρ22/dk)(k0)(k − k0)
, ρ22(k0) = 0, k0 ∈ C

−.

Since |e−2ikt| decreases exponentially with t for k ∈ C
−, these terms give an exponentially

small contribution as t → ∞, and can therefore be ignored when seeking the leading order
behavior of the solution for large time.

We note that if the given initial condition is also constant, q0(x) = γ, then it is possible
to compute explicitly ρ12(k) and ρ22(k), and find

ρ12(k) = −1

2
sin γ +

1

2
sin γe(i/2k)L, ρ22(k) =

1

2
(1 + cos γ) +

1

2
(1 − cos γ)e(i/2k)L.

In this case, the effective part of the ratio ρ12/ρ22 is precisely given by the right hand side
of (4.3).

¿From the previous discussion it follows that the leading behavior of equation (3.13)
as t → ∞, is determined by

Ψ+(x, t, λ) =

(

0
1

)

− 1

2πi

α1

α2

∫ ∞

−∞

Ψ−(ξ, λ′)e−iξ(λ′+ 1

λ′
) dλ′

λ′ − (λ + i0)
.

Hence for γ 6= nπ, n ∈ Z, we finally find

Ψ+(ξ, λ) =

(

0
1

)

− 1

2πi

sin γ

1 + cos γ

∫ ∞

−∞

Ψ−(λ′)e−iξ(λ+(1/λ) dλ′

λ′ − (λ + i0)
. (4.4)

Setting N1(ξ, λ) = Ψ+
1 (ξ, λ), N2(ξ, λ) = Ψ+

2 (ξ, λ), and using the symmetry relations
(3.7), we find that N1, N2 satisfy the system of integral equations (1.4). Defining

q̃(ξ) = lim
λ→∞

4iλN1(λ, ξ),

we find the similarity solution (1.3). Finally, we obtain from (3.14) that the leading order
behavior of the solution of this boundary value problem, for t → ∞, is given by (1.2).

5 Conclusions

We have given a representation of the solution of boundary value problems for the sine-
Gordon equation posed on a finite interval [0, L], with L a finite but otherwise arbitrary
positive constant. The interesting property of this equation is that it is an evolution
equation with respect to both the space and the time variable. This entails that the value
q(x0, t0) of the solution at any given point (x0, t0) depends only on the values of q(x, t)
for x < x0, t < t0.

We have shown that in the particular case that the given boundary conditions are
constant, the large asymptotics of the solution are dominated by the similarity solution.
Indeed, the large time asymptotic behavior is associated with a 2 × 2 Riemann-Hilbert
problem which is a particular case of a general RH problem associated with an integrable
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ODE, the so-called Painlevé III [6]. This problem coincides with the spectral problem
arising in connection with the phenomena of transient stimulated Raman scattering, and
was already analyzed in the literature [5]. The only new feature of the present analysis
is the interchange of the roles that the two variables x and t play in the classical inverse
scattering approach for the sine-Gordon equation.
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