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Abstract

We analyze asymptotic scaling properties of a model class of anomalous reaction-
diffusion (ARD) equations. Numerical experiments show that solutions to these have,
for large t, well defined scaling properties. We suggest a general framework to ana-
lyze asymptotic symmetry properties; this provides an analytical explanation of the
observed asymptotic scaling properties for the considered ARD equations.

1 Introduction

In this note we consider a class [15] of scalar partial differential equations (PDEs) of
reaction-diffusion type associated to anomalous diffusion (see e.g. [4] for a recent review
focusing on aspects of interest here). This is far from representing the most general
anomalous reaction-diffusion (ARD) type of equation, but displays a variety of behaviors
common to much more general ARD equations.

Numerical experiments on representatives of this class [15] show that for large t solutions
are described by traveling fronts with a well-defined scaling behavior (see below for details);
our goal is to provide an analytical explanation for this.

In order to do this we firstly recall standard notions from symmetry analysis of differ-
ential equations (Sec. 2), and then extend them to the asymptotic framework (Sec. 3). We
are then able to propose a general approach to extract the asymptotic behavior of equa-
tions based on maps to equations with known asymptotic symmetry properties (Sec. 4);
the basic idea is, in the language of the renormalization group, to identify an equation in
the same universality class amenable to asymptotic analysis.

This approach is used to analyze the asymptotic behavior of our class of anomalous
reaction-diffusion equations in terms of the known asymptotic behavior of the FKPP
(Fisher-Kolmogorov-Petrovskii-Piskunov) equation. Our results provide a sound theoreti-
cal explanation of the behavior observed in numerical experiments [15] and recalled below.

Copyright c© 2005 by G Gaeta and R Mancinelli



Asymptotic Scaling in ARD Equations 551

2 Symmetries of differential equations

We assume the reader to be familiar with the main concepts and definitions for symmetries
of differential equations (see e.g. [10, 17, 19, 21] for general treatments of these), which
are to be later extended to asymptotic symmetries. In this section we fix some general
notation to be freely used below, and recall general results we need later; as in this note
we only consider scalar PDEs, we specialize formulas to this case.

2.1 General notation

We consider an evolution PDE of order n for a real dependent variable, u = u(x, t), with x
and t independent real variables. We denote by M = R2×R the total space of independent
and dependent variables and by J (n)M the jet space of order n over M . Given a function

u = f(x, t) we denote its graph as γf ⊂ M , and its prolongation as γ
(n)
f ⊂ J (n)M .

Consider a vector field

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u
(2.1)

in M . For ε sufficiently small the function u = f(x, t) is mapped by exp(εX) into a new
function u = f̃(x, t); one obtains with standard computations that this new function is
given by

f̃ = f + ε

[
ϕ −

(
∂f

∂x

)
· ξ −

(
∂f

∂t

)
· τ
]

u=f(x,t)

+ o(ε). (2.2)

The action of X in J (n)M is described by its prolongation X(n). We say that X is a
symmetry of a given equation if it maps any solution into a (generally, different) solution
[11, 17, 19, 21]. If the equation is given by Φ = 0, this is equivalent to [X(n)(Φ)]Φ=0 = 0.

Geometrically ∆ identifies a solution manifold S in J (n)M ; the function u = f(x, t)

is a solution to ∆ if and only if γ
(n)
f ⊂ S, and X is a symmetry of ∆ if and only if

X(n) : S → TS.

2.2 Invariant solutions

If ∆, which we write as Φ(x, t, u, ...) = 0, is a PDE for u = u(x, t) admitting a vector field
X as symmetry, there is a well known procedure to determine X-invariant solutions to ∆;
this represents an extension of the familiar method of characteristics to solve quasilinear
PDEs (for more details, see e.g. the discussion in Chap. 3 of [17]).1

Firstly we pass to symmetry-adapted coordinates (y, v, σ) in M ; the (y, v) are X-
invariant coordinates, while σ is acted upon by X. We see (y, σ) as independent variables
and v as the dependent one; we can then use the chain rule to express x and t derivatives of
u in terms of the σ and y derivatives of v and write ∆ in terms of the (σ, y, v) coordinates,
i.e. in the form Φ̂(σ, y, v, ...) = 0. As X is a symmetry of ∆, it follows that the function
Φ̂, when subject to the side condition ∂v/∂σ = 0, is independent of σ.

If we are able to determine a solution v = f̂(y) to the reduced equation, by writing this
in terms of the (x, t, u) coordinates we get a X-invariant solution to ∆.

1This method requires a transversality condition, generically satisfied for scalar equations as those we
wish to consider; see [1, 13] for discussion and a more general approach.



552 G Gaeta and R Mancinelli

2.3 Equivalent equations

Consider a map χ : M → M which is not a symmetry of ∆ := ∆0; we write χ : (x, t, u) 7→
(y, s, w) and χ(n) : ∆ 7→ ∆̂.

If ∆ is of the form ∆ ≡ ut − F (x, t, u, ux, uxx) = 0 and χ is projectable [11], i.e. such
that s = s(t), y = y(x, t), then ∆̂ is of the same type: ∆̂ ≡ ws − G(y, s, w,wy , wyy) = 0.
Moreover, if χ is projectable, it maps γf ⊂ M into a manifold which also is the graph of a

function w = g(y, s), say χ(γf ) = γg ⊂ M ; this extends to prolongations, i.e. χ(2) : γ
(2)
f →

γ
(2)
g . Hence solutions u = f(x, t) to ∆ are mapped into solutions w = g(y, s) to ∆̂. We

say therefore that χ is a solution preserving map [20].
If χ is invertible (with a Cn inverse), we can repeat these considerations for χ−1. In this

case the equations ∆ and ∆̂ of order n are equivalent, in that there is a Cn isomorphism
between solutions to ∆ and solutions to ∆̂.

2.4 Conditional and partial symmetries

As we mentioned above, X is a symmetry if it maps any solution to a (generally, different)
solution. However, there can be cases for which this is true only for some solution; one
can formulate correspondingly weaker notions of symmetry. (For a review of different
“extended” notions of symmetry, see [18]; see also [5] for a recent and shorter discussion.)

We say that X is a partial symmetry for ∆ if there is a nonempty set SX of solutions
to ∆ which is mapped to itself by X. The set SX could be made of a single solution and
more generally that there could be solutions which are left invariant by X. In this latter
case we say that X is a conditional symmetry for ∆.

It follows from (2.2) that u = f(x, t) is invariant under X if and only if

∆X := ϕ[x, t, f(x, t)] − uxξ[x, t, f(x, t)] − utτ [x, t, f(x, t)] = 0; (2.3)

thus X-invariant solutions to ∆ are solutions to the system made of ∆ and ∆X . In other
words X is a conditional symmetry of ∆ if and only if it is a symmetry of this system
(and is not a proper symmetry of ∆).

Partial symmetries can be seen in a similar way. As was discussed in [7], a function f
in the globally invariant set of solutions to ∆ : Φ = 0 (f ∈ SX in the notation used above)
is a solution to a system

Φ(0) = 0 , Φ(1) = 0 , ...... , Φ(p) = 0,

where Φ(0) ≡ Φ and Φ(k+1) := Y [Φ(k)]. The integer p, i.e. the order of the system, is
determined as the lowest order such that Φ(p) vanishes identically on common solutions
to all the previous equations. Each equation Φ(k) = 0 can, and should, be simplified by
taking into account the previous equations; for concrete examples, see [7].

If ∆ and ∆̂ are equivalent via a solution-preserving map χ, this entails a corresponding
relation between their conditional and/or partial (as well as ordinary) symmetries.

3 Asymptotic symmetries of PDEs

The concept of symmetry of a differential equation can be extended to that of asymptotic
symmetry; we again confine ourselves to scalar second-order evolution PDEs. Asymp-
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totic symmetries (in the present sense) were introduced and discussed in quite a general
framework in [10], see also [6].

As is suggested by their names, asymptotic symmetries of a differential equation ∆ are
vector fields X which, albeit in general not symmetries of ∆, satisfy X(2) : S∆ → TS∆

asymptotically (see below for the precise sense of this). Any exact symmetry is also
(trivially) an asymptotic symmetry.

We write the equation ∆ in the form

Φ ≡ ut − F (x, t, u, ux, uxx) = 0 (3.1)

and denote by F the space of maps F : (x, t, u, ux, uxx) → R which are polynomial in
(u, ux, uxx) and rational in (x, t). Note that this space, which corresponds to the space of
equations in the form we are considering, is invariant under scaling transformations and
under translations.

Vector fields are written as in (2.1). The second prolongation of X is denoted as
Y ≡ X(2); as seen above, if X is projectable, then Y acts in F [11].

We write the flow (in the space of functions f : R2 → R) issued by f0(x, t) as fλ(x, t) =
exp[λX̂ ], with dfλ/dλ = X̂[fλ] = [ϕ − fxξ − ftτ ]u=f(x,t), see (2.2). We say that f0(x, t) is

X-invariant if it is a fixed point for the flow of X̂ , i.e. if X̂ [f0] = 0.
It may happen that f0 is not X-invariant, but the flow fλ is asymptotic to an invariant

function f∗, i.e.

lim
λ→∞

|fλ(x, t) − f∗(x, t)| = 0, X̂[f∗] = 0. (3.2)

When (3.2) is satisfied, we say that f is asymptotically X-invariant under the flow of X̂.
We now consider the action of X, more precisely of Y , on the space of equations in the

form (3.1), i.e. in F . We write

∆λ = eλY ∆0 := σ(λ) [ut − Fλ(x, u, ux, uxx)] (3.3)

for the Y flow issued from ∆ = ∆0; by construction this satisfies d∆λ/dλ = Y (∆λ). In
this way X induces a vector field W in the space F (W is nothing else than the restriction
of Y to F); thus (3.3) is equivalent to dF/dλ = W (F ).

As was recalled above, X is a symmetry of ∆ if and only if Y : S → TS. This
condition is now rephrased in terms of F by saying that X is a symmetry of ∆0 given by
∆0 := ut − F0(x, t, u, ...) if and only if F0 is a fixed point for the flow of W .

Suppose now that X is not a symmetry of ∆0, i.e. F0 is not a fixed point for the flow
of W in F , but that the flow Fλ issued by F0 under eλW satisfies

lim
λ→∞

|Fλ − F∗| = 0, W (F∗) = 0 .

In this case we say that X is an asymptotic symmetry for F0, i.e. for the equation ∆0.
By construction and by the invertibility of the map exp(λX), hence of exp(λY ), for

λ finite, if u = f(x, t) is a solution to ∆0, then u = fλ(x, t) is a solution to ∆λ; and
conversely, if u = fλ(x, t) be a solution to ∆λ, then u = f(x, t) is a solution to ∆0.

In the limit λ → ∞ the invertibility of (3.3) fails if the flow goes to a limit point; we
can nevertheless still say that solutions to the original equation flow into solutions to the
asymptotic equation, provided both limits f∗ and ∆∗ exist.

If the limit ∆∗ exists, it captures the behavior of ∆ for large λ, i.e. for large (or small,
depending on the sign of a and b) t and |x|.
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3.1 Solution-preserving maps and asymptotic symmetries

The use of this construction, combining with solution-preserving maps, is the following.
If there is an equation ∆̂, the asymptotic behavior of which is well understood, such that

there exists a solution-preserving map χ with χ(2) : ∆ → ∆̂, we can study the asymptotic
behavior of solutions u(x, t) to ∆ by means of the asymptotic behavior of solutions w(y, s)
to ∆̂.

If χ has a smooth inverse and W is mapped by χ(2) into Ŵ , we can study the flow of
W using

eλW = [χ(2)]−1
F

◦ eλŴ ◦ χ(2). (3.4)

Note that (3.4) remains valid also in the limit λ → ∞, i.e. for the asymptotic regime.
Needless to say this approach is particularly convenient when the asymptotic behavior

of the solutions w(y, s) to ∆̂0, i.e. the behavior of solutions to ∆̂∗, is simple and/or in

some way universal (even better if ∆̂0 is a fixed point under Ŵ ).
If we denote as w∗(y, s) the limit expression for the solutions to ∆̂0, the asymptotic

behavior of the solution u(x, t) to ∆0 is given by

u∗(x, t) = χ−1 [w∗(y, s)] . (3.5)

More precisely, considering γf and γg corresponding to u = f(x, t) and w = g(y, s) (see
Sec. 2), and going asymptotically into γ∗

f and γ∗
g respectively, we have

γ∗
f = χ−1

(
γ∗

g

)
. (3.6)

3.2 Conditional and partial asymptotic symmetries

It is also possible to consider asymptotic versions of conditional and partial symmetries.
Let the function u = f0(x, t) (more precisely, the corresponding graph γ0 ⊂ M) flow

under eλX to a fixed point u = f∗(x, t) (more precisely, a X-invariant graph γ∗ ⊂ M)
albeit ∆0 does not flow to a fixed point.

In such a situation the solution manifold Sλ ⊂ J (2)M does not go to a limit manifold,
but there is a submanifold SX

λ ⊂ Sλ, with γλ ⊆ SX
λ ⊂ Sλ, which flows to a fixed limit

submanifold SX
∗ , with γ∗ ⊆ SX

∗ . In this case we say that X is a conditional asymptotic
symmetry for ∆.

The same construction, with suitable and rather obvious modifications, applies for what
concerns partial symmetries. Suppose that ∆ ≡ ∆(0) does not flow to a fixed point under
W and consider the equations

∆(1) := Y [∆(0)] , ... , ∆(r) := Y [∆(r−1)]

up to an r – if it exists – such that ∆(r) does admit a fixed point ∆
(r)
∗ under the W flow,

while the ∆(k) with k < r do not. Then the manifold

S
(0)
λ ∩ ... ∩ S

(r)
λ := Sλ

(with S
(k)
λ ⊂ J (2)M the solution manifold for ∆

(k)
λ ) flows to a limit submanifold S∗ and

solutions u = f0(x, t) to the system ∆(k) (k = 0, ..., r) flow to functions u = f∗(x, t) such
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that the prolongation γ
(2)
∗ ⊂ J (2)M of the corresponding graph γf∗ = {(x, t, f∗(x, t))} lie

in S∗. In this case we say that X is a partial asymptotic symmetry for ∆.

If ∆ and ∆̂ are related by a solution-preserving map χ(2), then χ also relates their
conditional and partial symmetries. In particular, if χ is invertible and ∆̂ admits X as
a conditional symmetry, then ∆ admits χ−1

∗ (X) as a conditional symmetry with χ−1
∗ the

extension of χ−1 to vector fields. This is of use below.

4 Asymptotic symmetries as a tool to test asymptotic

behavior

In many physically relevant cases one has to study nonlinear PDEs which are not amenable
to an exact treatment, or at least for which such a treatment is not known, and for which
a numerical study shows an asymptotic behavior which appears to be well described by
some kind of invariance. Usually the latter corresponds to a scale invariance (self-similar
solutions), a translation invariance (travelling waves) or a combination of both of these.

The discussion conducted so far can be implemented into a procedure allowing on the
one hand to test if the observed asymptotic behavior is a characteristic of the equation
(rather than an artifact of the numerical experiments conducted on it) and on the other
hand to formulate simpler equations extracting the asymptotic behavior.

We now describe the procedure in operational terms; as a (rather simple, but relevant)
example to illustrate our procedure we consider here the heat equation and then anomalous
diffusion equations, while in later sections we apply the procedure on anomalous reaction-
diffusion equations.

We denote by X the vector field describing the observed invariance and consider a
second-order equation for u = u(x, t) of the form ∆ := ut − F (x, t, u, ux, uxx) = 0 (hence
M = {(x, t;u)}).

• Step 1. Pass to symmetry-adapted coordinates in M , i.e. coordinates (σ, y; v) such
that X(y) = X(v) = 0; thus in these coordinates X = f(σ, y, v)(∂/∂σ). 2

• Step 2. Identify v as the new dependent variable, i.e. v = v(σ, y). This allows
one to write x and t derivatives of u as σ and y derivatives of v, hence to write the
differential equation ∆(x, t;u(2)) as ∆̂(σ, y; v(2)).

• Step 3. Reduce the equation ∆̂(σ, y; v(2)) to the space of X-invariant functions, i.e.
to v(σ, y) satisfying vσ = 0. For X an exact symmetry, the reduced equation ∆̂X

does not depend on σ at all. For X a conditional or partial symmetry, σ still appears
parametrically in the reduced equation.

• Step 4. Study the asymptotic behavior of the solutions to the reduced equation
∆̂X for σ → ∞.

• Step 5. Return to the original variables.

2We stress that we are not requiring f = 1; actually when we deal with scaling symmetries it is
appropriate to require f(σ, y, v) = σ.



556 G Gaeta and R Mancinelli

4.1 Elementary example: the heat equation

We illustrate our procedure by applying it to the heat equation ut = uxx. Its asymptotic
solutions are of the form

u(x, t) =
A√
2t

exp

[
−4x2

t

]
(4.1)

and are invariant under the scaling vector field

X = x∂x + 2t∂t − u∂u , (4.2)

which is also a symmetry of the equation.
The symmetry-adapted coordinates are σ = t, y = x2/t and v = xu. In these variables,

the heat equation is

σ vσ = 4 y vyy + (2 + y) vy + v . (4.3)

Note that (4.3) necessarily requires that for σ → ∞, vσ = 0: this shows in a simple way
that the full asymptotic behavior of (4.3) is captured by (4.1).

When we impose vσ = 0 in (4.3), σ disappears completely. Needless to say, the equation
obtained in this way has solutions v(y) = Â

√
y exp[−y/4], which when mapped back to

the original coordinates produce the gaussian (4.1).

4.2 Example: anomalous diffusion equations

The procedure described above can also be applied to what is our model class of anomalous
diffusion equations and was studied numerically in [15]; these are written as

ut =
x1−α/2

t1−να

∂

∂x

[
x1−α/2ux

]
. (4.4)

To focus ideas we mention two examples of equations in this class: (i) For α = 2 we have
the generalized gaussian process; (ii) For α = 2/3, ν = 3/2 we deal with the Richardson
equation describing the evolution of the distance between two particles in developed tur-
bulent regime; we refer to [15] for a discussion of the interest of the class of anomalous
RD equations (4.4).

One can check that the map

s = tαν , y = xα/2 , w = t(2−α)(ν/2)u (4.5)

is solution preserving from (4.4) to the heat equation ws = wyy. Using the inverse change of

coordinates, the universal asymptotic solution w(y, s) ≃ s−1/2e−y2/s of the heat equation
is mapped back into

u(x, t) ≃ 1

tν
exp [−xα / tν ] , (4.6)

which represents therefore the universal asymptotic solution to (4.4). This result is con-
firmed by numerical experiments [15].
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5 The FKPP equation: asymptotic solutions, and

symmetries

In the same way as in the previous example the heat equation played the role of tar-
get for solution-preserving maps applied to anomalous diffusion equations, in the case of
(our model class of) anomalous reaction-diffusion (ARD) equations we look for a solution-
preserving map to the well known Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equa-
tion [9, 14, 16]. This is

ut = Duxx + εu(1 − u),

with ε and D real positive constants, and one requires that u(x, t) ≥ 0 for all x and
t. There are two stationary homogeneous states, i.e. u = 0 and u = 1; the latter is
stable while the former is unstable against small perturbations. In this section we study
asymptotic symmetries of the equation and of its solutions.

It is well known [14] that, if the initial datum is suitably concentrated, e.g. u(x, 0) = 0
for |x − x0| > L or more generally u(x, 0) < A exp[−x/L], then asymptotically for t → ∞
and x → ∞ the solution is of the form u = f(x, t) ≃ exp[−(x − vt)/λ], with λ =

√
D/ε

and v =
√

4εD. This represents a front of width λ traveling with speed v; it connects the
stable state u = 1 and the unstable state u = 0.

In the discussion of the FKPP equation it is convenient to pass to rescaled coordinates
t̃ = εt, x̃ = (

√
ε/D)x. ¿From now on we use these coordinates and omit the tildas for

ease of notation. In these coordinates the FKPP equation is

ut = uxx + u(1 − u). (5.1)

As for the asymptotic solution described above, the asymptotic solution is now

u = f0(x, t) ≃ A exp [−(x − 2t)] ; (5.2)

note the front has speed v = 2 and width λ = 1.
It should be stressed that the f(x, t), or f0(x, t), given above provides the solution for

x → ∞, i.e. in the region of small u; in this region (5.1) is well approximated by its
linearization around u = 0, i.e.

ut = uxx + u; (5.3)

the ansatz u(x, t) = w(z) := w(x − 2t) takes this into the ODE

w′′ + 2w′ + w = 0 (5.4)

for w = w(z), with solution

w(z) = c1e
−z + c2ze−z. (5.5)

We denote by W the set of solutions described by (5.5); note that W = R2, and (c1, c2)
provide coordinates in W.

The f0 given above, see (5.2), corresponds to c2 = 0. This can be characterized in terms
of symmetry properties as discussed below. It is convenient to consider linear combinations
of the shifts, given by X± = X1 ∓ (1/2)X2; note that z = x − 2t is invariant under X−

and that X+ = ∂z. We also have X0 = w∂w. Needless to say [X0,X+] = 0.
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Lemma 1. The symmetry algebra of the linearized equation (5.3) is generated by the scal-
ing X0 = u∂u and by the translations X1 = ∂x and X2 = ∂t. The quotient equation (5.4)
admits only X0 as scaling symmetry; it also admits the translation symmetry generated by
X+, while X− has been removed by passing to the z variable.

Proof. This follows from standard (and elementary) computations. �

Lemma 2. The propagating front solutions correspond to a subspace of W invariant under
the action of the group generated by the vector fields X0 and X+.

Proof. A general element of the group generated by X0 and X+ is written as g(α, β) :=
exp[αX0 + βX+] and acts on W by

g(α, β) : (c1, c2) →
(
eα+β(c1 + βc2) , eα+βc2

)
.

The subspace c2 = 0 is invariant under this action. As was remarked above, the propa-
gating front solutions (5.2) correspond to c2 = 0. �

It is immediately seen that the only scaling or shift symmetries of the full FKPP equa-
tion (5.1) are those, with generators X1 = ∂x and X2 = ∂t, corresponding to translations
in x and t; these reflect the fact that (5.1) is a homogeneous equation.

The situation is different for what concerns asymptotic symmetries, and in particular
scaling ones, as we now discuss.

Lemma 3. Let X be a scaling vector field such that limλ→∞ exp(λX) extracts the behavior
for large |x| and t. Let ∆0 be the FKPP equation and ∆λ = eλY ∆0 with Y the prolongation
of X. Then limλ→∞ ∆λ = ∆∗ is the heat equation ut − uxx = 0.

Proof. We consider the most general scaling generator, i.e. a vector field in the form (2.3),
X = ax∂x + bt∂t + cu∂u. We can always set one of the constants (a, b, c) equal to unity
(provided it is nonzero); this amounts to a redefinition of the scaling group parameter.

Applying the procedure described in previous sections, with of course ∆0 := ut −uxx −
u(1 − u) = 0 the FKPP equation, we obtain at once that

∆λ = λc−b
[
ut − λb−2auxx − λbu + λb+cu2

]
. (5.6)

We choose c = b and a = b/2. In order for limλ→∞ exp(λX) to extract the behavior for
large |x| and t, we must choose a < 0, b < 0. We can set the modulus of one of the
constants, say b for definiteness, equal to unity; i.e. b = −1. With these choices we have

∆λ = ut − uxx − λ−1u + λ−2u2 . (5.7)

The limit, ∆∗ := limλ→∞ ∆λ, is the heat equation ut − uxx = 0, as claimed. �
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6 Anomalous reaction-diffusion equations

The FKPP is a (relevant) representative of a more general class of anomalous reaction-
diffusion equations which we write as

ut = L̂[u] + h(u); (6.1)

here L̂ is the linear operator describing passive transport of the field u, hence anomalous
diffusion, while h(u) describes its growth. Logistic growth, which we consider, corresponds
to the choice h(u) := u(1 − u). With this choice and considering the L̂ associated to
anomalous diffusion in our model class, see the r.h.s. of (4.4), we get the equation

ut =
x2−α

t1−να

[
uxx +

(2 − α)

2x
ux

]
+ u (1 − u). (6.2)

One is usually interested in solutions with initial data u(x, 0) which are suitably regular
and with compact support. A detailed numerical study of systems of the form (6.2) with
such initial data was conducted in [15].

We summarize the findings of these numerical experiments as follows:

• (i) asymptotically for large x and t the solution is described by a travelling front
with varying speed c(t) and width λ(t); the form of this front for small u is well
described by

u(x, t) ≃ A exp

[
−x − c(t) · t

λ(t)

]
; (6.3)

• (ii) the (asymptotic) time dependencies of c(t) and λ(t) are described by

c(t) ≃ c0 · tδ, λ(t) ≃ λ0 · tδ, (6.4)

where c0 and λ0 are dimensional constants;

• (iii) the scaling exponent δ is given by

δ := ν + (1/α) − 1. (6.5)

Thus we rewrite (6.3) in the form

u(x, t) ≃ A exp

[
−x − (c0t

δ)t

λ0tδ

]
. (6.6)

Note that for δ = 0, i.e. for ν = 1− (1/α), the front travels with constant speed and width
as for the FKPP equation.

We want now to describe precisely the invariance properties of the observed asymptotic
solution (6.6), in particular for what concerns scaling transformations.

Lemma 4. The scaling invariance of (6.6) is described by the generalized scaling group

x → (λδ) x , t → λ t , u → [exp ((λ − 1)K t)] u, (6.7)

with λ the group parameter.
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Proof. The generator of the one-parameter group described by (6.7) is

X = δ x ∂x + t ∂t − Kt u∂u. (6.8)

The invariance of (6.6) under this can be easily checked using (2.2). It can be shown that
this is the only scaling type symmetry of (6.6). �

Theorem 1. The vector field (6.8) is not a symmetry of the equation (6.2), but it is an
asymptotic symmetry of the same equation.

Proof. Denote (6.2) by ∆0 and (6.8) by X; applying Y ≡ X(2) on ∆0 and restricting
to the solution manifold S0 of ∆0 (this amounts to substituting for wσ according to ∆0

itself), we obtain

∆1 := [Y (∆0)]S0
= [(1 − α)tαδ (x/t)2−α]uxx+

+
[
(1/2)(α − 1)(α − 2)tαδ−1 (x/t)1−α

]
ux−

− u(1 + K − u + Kut).

This is not zero, i.e. X is not a symmetry of (6.2).

Going further with our procedure we have to compute ∆2 := [Y (∆1)]S0∩S1
. It gives

∆2 :=
[
2 − 4Kt + K2t2 − α(1 − Kt)

]
u2 − [(1 + K)(α − 2)] u = 0.

This has the trivial solution u = 0, which is also solution to ∆0 and ∆1, and the nontrivial
solution

u(t) =
(2 − α)(1 + K)

(2 − α) − (4 − α)Kt + K2t2
.

The latter, as easily checked by explicit computation, is in general not a solution to ∆0

and ∆1: inserting this into ∆0 and ∆1 we have respectively

∆̃0 = [(α − 2)K(1 + K)]

(
Kt2 + (2K − 4 + α)t + (2α − 6)

(K2t2 + (α − 4K)t + (2 − α))2

)
,

∆̃1 =
[
(α − 2)K(1 + K)2

] ( Kt2 − 2t

(K2t2 + (α − 4K)t + (2 − α))2

)
.

For K 6= 0,−1, both of these expressions are not zero (unless α = 2, corresponding to
gaussian processes). However, both of these go to zero (like 1/t2) for all α and K in the
limit t → ∞. �

Having determined that X is an asymptotic (partial) symmetry for our equation ∆0, we
now apply our general procedure. The first step consists in passing to symmetry adapted
coordinates; these are

σ = t , y = x/tδ , w = ueKt. (6.9a)
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In these coordinates the vector field (6.8) is simply X = σ∂σ and the (obviously X-
invariant) asymptotic solution (6.6) is w = A exp[y/λ0]. With standard computations we
obtain

ut = [wσ − δ(y/σ)wy − Kw] e−Kσ,

ux =
[
(1/σδ)wy

]
e−Kσ, (6.9b)

uxx =
[
(1/σδ)2 wyy

]
e−Kσ.

Using (6.9a) and (6.9) we express ∆0 in the new coordinates; this gives

wσ =

[
y2−α

σχ

]
wyy +

[(
2 − α

2

)(
y1−α

σµ

)
+ α

( y

σ

)]
wy+

+ (K + 1)w − e−Kσw2, (6.10)

where we have defined µ = α(δ − ν + 1/α) for ease of writing.
The expression (6.10) holds for the general map (6.9); however, we are specially inter-

ested in the choice δ = (ν − 1 + 1/α), see (6.5). With this we have µ = (2−α) and finally
(6.2) is

wσ =
( y

σ

)2−α
wyy +

[(
2 − α

2σ

)( y

σ

)1−α
+ α

y

σ

]
wy+

+ (K + 1)w − e−Kσ w2. (6.11)

In the limit σ → ∞ the last term disappears (faster than any power in σ) and (6.11)
reduces to a linear equation.

Theorem 2. The equation (6.11) has no nontrivial X-invariant solutions, but admits
nontrivial asymptotically X-invariant solutions.

Proof. The X-invariant solutions to (6.11) are obtained by requiring that wσ = 0; with
this the equation reduces to

( y

σ

)2−α
wyy +

[(
2 − α

2σ

)( y

σ

)1−α
+ α

y

σ

]
wy+

+ (K + 1)w − e−Kσ w2 = 0. (6.12)

Note that σ appears parametrically here and (6.12) splits into the equations corresponding
to the vanishing of coefficients of different powers of σ (this is a general feature of partial
or “weak” symmetries, see [5]). The only common solution to these is w = 0, which proves
the first part of the statement.

We return to the consideration of (6.11). In order to study its asymptotic behavior for
σ → ∞, we disregard the term which is exponentially small for large σ. The resulting
linear equation for w = w(y), i.e.

( y

σ

)2−α
wyy +

[(
2 − α

2σ

)( y

σ

)1−α
+ α

y

σ

]
wy + (K + 1)w = 0,
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yields as solution

w(y) = C1 K[0, 0] +
(√

2(K + 1)σ2(y/σ)α
)

C2 K[1/2, 1], (6.13)

where C1, C2 are arbitrary constants and

K[x, y] := F11

[
(K + 1)σ/α2 + x; 1/2 + y;−σ(y/σ)α

]

with F11 ≡ 1F1 being the Kummer confluent hypergeometric function

F11[a; b; z] := 1F1(a; b; z) =
Γ(b)

Γ(b − a) Γ(a)

∫ 1

0
ezt ta−1 (1 − t)b−a−1 dt.

The asymptotic solution could now be expressed in terms of the original variables using
(6.9); this yields an explicit but involved and not specially illuminating expression. �

7 Other asymptotic partial symmetries of ARD equations

The scaling symmetry (6.8) is not the only symmetry of the observed asymptotic solution
(6.6) to (6.2). In this section we identify different symmetries and apply our approach on
the basis of these.

Lemma 5. The vector field X = ξ∂x +τ∂t +ϕ∂u is a symmetry of the asymptotic solution
(6.6) to the equation (6.2) if and only if it belongs to the two dimensional module (over
smooth real functions C∞(R3,R) of x, t, u) generated by

X1 = ∂x +

(
1

λ0tδ

)
∂u ; X2 =

(
λ0t

1+δ
)

∂t −
(
xδ + c0t

1+δ
)

∂u. (7.1)

Proof. This follows easily by using (2.2) and the explicit expression (6.6) of the asymptotic
solution u = f∗(x, t). Indeed applying (2.2) we get

(f̃ − f)

ε
= ϕ − A exp

[
(c0t − xt−δ)/λ0

] (xδ + c0t
1+δ)τ − tξ

λ0t1+δ
,

and the result follows immediately. �

In the following we consider in particular

X0 :=
(
xδ + c0t

1+δ
)

∂x + t∂t, (7.2)

as well as X1 and X2 themselves. Note that X0 operates in the space of independent
variables alone.

We write second-prolonged vector fields in the form

Y ≡ X(2) = X + Ψx
∂

∂ux
+ Ψt

∂

∂ut
+ Ψxx

∂

∂uxx
+ Ψxt

∂

∂uxt
+ Ψtt

∂

∂utt
; (7.3)

in view of (6.2) we actually need only the coefficients Ψx,Ψt,Ψxx. We will denote (6.2) as
∆0, as in the previous discussion.
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Theorem 3. The vector fields X0, X1 and X2 are partial symmetries of ∆0.

Proof. We denote by Yi the second prolongations of Xi. We start by considering X1. In
this case the coefficients of the second-prolonged vector field Y1 are:

Ψx = 0 , Ψt = −(δ/λ0)t
−(1+δ)) , Ψxx = 0 , Ψxy = 0,Ψtt = (δ/λ0)(1 + δ)t−(2+δ).

We define ∆1 = [Y1(∆0)]S0
; ∆2 = [Y1(∆1)]S0∩S1

. By explicit computation we obtain

[Y1(∆2)]S0∩S1∩S2
= 0;

this shows that X1 is a partial symmetry for ∆0.
For the other vector fields note that the relevant coefficients of Y2 are

Ψx = − δ

λ0t1+δ
, Ψt =

(1 + δ)δx

λ0t2+δ
, Ψxx = 0,

and those of Y0 are

Ψx = −δux , Ψt = −(1 + δ)c0t
δux − ut , Ψxx = −2δuxx.

With the use of these, the theorem follows by explicit computation. �

It turns out that reduction and invariant solutions under the vector field X0 are of spe-
cial interest. This is due to the following theorem, which provides an analytic explanation
of the numerically observed behavior.

Theorem 4. The equation (6.2) admits an asymptotically X0-invariant solution described
by (6.6).

Proof. In this case the symmetry-adapted coordinates are

σ = t , y = (x/tδ) − c0t , w = u;

the relevant u derivatives are expressed in the new coordinates as

ut = wσ −
(

δy + c0(1 + δ)σ

σ

)
wy , ux =

1

tδ
wy , uxx =

1

t2δ
wyy.

In these coordinates the equation (6.2) is

wσ = Awyy + B wy + f(w), (7.4)

with

A =

(
y + c0σ

σ

)2−α

; B =

(
c0 + δ

y + c0σ

σ
+ ǫ

(
y + c0σ

σ

)2−α 1

y + c0σ

)
.

The vector field X0 is simply X0 = σ∂σ; its second prolongation is

Y0 = σ
∂

∂σ
− wσ

∂

∂wσ
− wσy

∂

∂wσy
− 2wσσ

∂

∂wσσ
.
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For σ → ∞ (7.4) is

wσ = c2−α
0 wyy + c0(1 + δ)wy + f(w).

The X0-invariant solutions satisfy wσ = 0 and are thus obtained as solution to

c2−α
0 wyy + c0(1 + δ)wy + w = 0, (7.5)

where we have used w ≪ 1 in the region we are investigating (i.e. for σ → ∞) so that
f(w) ≃ w.

Solutions to (7.5) are of the form

w(y) = c1e
−ω+y + c2e

−ω−y,

where

ω± =
(1 + δ)

2c1−α
0

[
1 ±

√
1 − 4

cα
0 (1 + δ)2

]
.

If we require the solutions to be non-oscillating, this implies a lower bound on the param-
eter c0, i.e. c0 ≥ (2/(1 + δ))2/α.

The solution e−ω+z is unstable against small perturbations, while e−ω−z is stable [14].
As was proved by Kolmogorov, the asymptotic solution is the stable one with the lowest
speed giving nonoscillating behavior, i.e. c0 = [2/(1 + δ)]2/α. This means w(y) ≃ e−ω0y

with ω0 = [2/(1 + δ)]1−2/α. Going back to the original variables we get

u(x, t) ≃ A exp

[
−x − v(t)t

λ(t)

]
= A exp

[
−ω0

x − c0t
1+δ

tδ

]
.

This is precisely the numerically observed asymptotic behavior (6.6). �

8 Conclusions and discussion

We provided suitable definitions of asymptotic symmetries – both in proper and in condi-
tional or partial sense – and proposed a method for the analysis of asymptotic symmetry
properties of PDEs and their solutions.

We applied our general method to a model class of anomalous reaction-diffusion (ARD)
equations, discussed and studied numerically in [15]. We firstly considered the standard
FKPP equation and described in detail its asymptotic symmetry properties; we have also
shown that our approach recovers the well known asymptotic properties of FKPP solutions.

We have then tackled general ARD equations in our model class, i.e. with anomalous
diffusion associated to (4.5). We recalled the features of asymptotic solutions as observed
in numerical experiments and identified the Lie generator X of the observed asymptotic
generalized scaling invariance; in Theorem 1 we showed that this is not a symmetry, rather
an asymptotic symmetry, of the ARD equation. We have then considered the solution-
preserving maps associated to this asymptotic scaling symmetry, focusing on the physical
value of the parameter δ; in Theorem 2 we have shown that in this case the ARD equation
has no solution invariant under X (which therefore is not a conditional symmetry of the
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equation), but admits solutions which are asymptotically invariant under it, that is, X is
an asymptotic conditional symmetry of the ARD equation.

Finally in Sec. 7 we passed to consider in more detail the numerically observed asymp-
totic solution (6.6). We identified the full symmetry algebra G of it; vector fields in this
algebra are asymptotic conditional symmetries of the ARD equation. We focused in par-
ticular on certain vector fields in G and showed that they are partial symmetries for the
ARD equation. Among these vector field is the scaling vector field X0 given by (7.2) and
not depending, nor acting, on the dependent variable u. We proved that the ARD equa-
tion does admit an asymptotically X0-invariant solution, which is precisely the numerically
observed one (6.6).

We have thus provided an analytic explanation for the numerically observed behavior
based on our general method.

We conclude by presenting some brief final remarks on our method.

(a) This method represents an evolution of the classical method to determine partially
invariant solutions for symmetric PDEs [17, 21] and a blend of it with the method of
conditional and partial symmetries [7] in order to analyze equations which do not have
complete (as opposed to asymptotic) symmetries. Our method is based on the abstract
approach developed in [10], based itself on ideas and previous work by several authors
[2, 3, 8, 12].

(b) The application of the method to (generalized) scaling symmetries and our model
class of ARD equations was greatly facilitated by the form of the vector fields and of the
initial equations ∆0: indeed, the W -accessible part of F was finite-dimensional.

(c) Our method deals, strictly speaking, with properties which are asymptotic in the
group parameter; these correspond to properties asymptotic in time and space only if the
considered vector field has favourable properties itself. Also our method does not intend
to tackle intermediate asymptotics [2].

(d) This work was concerned only with scale invariance (at infinity or near a travelling
front). We trust, however, that suitable generalizations of our approach can also deal with
more general asymptotic invariance properties and more general differential equations,
and that it is potentially capable to provide a sound explanation – or prediction – of the
asymptotic invariance of their solutions.

Acknowledgments. We thank D. Levi for useful discussions. The work of GG was sup-
ported in part by GNFM–INdAM under the program “Simmetrie e tecniche di riduzione”;
the work of RM was supported by INFM – Istituto Nazionale di Fisica della Materia.

References

[1] Anderson I, Fels M and Torre C, Group invariant solutions without transversality, Commun.
Math. Phys. 212 (2000), 653–686.

[2] Barenblatt G I, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge University
Press, Cambridge, 1996.

[3] Bricmont J and Kupiainen A, Renormalization group and the Ginzburg-Landau equation,
Commun. Math. Phys. 150 (1992), 193–208.



566 G Gaeta and R Mancinelli

[4] Cencini M, Lopez C and Vergni D, Reaction-diffusion systems: front propagation and spatial
structures, in The Kolmogorov Legacy in Physics, Lect. Notes Phys. 636, Editors: Vulpiani
A and Livi R, Springer-Verlag, Berlin, 2003, 187–210.

[5] Cicogna G, Weak symmetries and adapted variables for differential equations, Int. J. Geom.
Meth. Mod. Phys. 1 (2004), 23–31.

[6] Cicogna G and Gaeta G, Symmetry and Perturbation Theory in Nonlinear Dynamics, Lect.
Notes. Phys., Monogr. 57, Springer-Verlag, Berlin, 1999.

[7] Cicogna G and Gaeta G, Partial Lie-point symmetries of differential equations, J. Phys. A
34 (2001), 491–512.

[8] Collet P and Eckmann J P, Instabilities and Fronts in Extended Systems, Princeton University
Press, Princeton, 1990.

[9] Fisher R A, The Wave of Advance of Advantageous Genes, Ann. Eugenics 7 (1937), 355–369.

[10] Gaeta G, Asymptotic symmetries and asymptotically symmetric solutions of partial differen-
tial equations, J. Phys. A 27 (1994), 437–451.

[11] Gaeta G, Nonlinear Symmetries and Nonlinear Equations, Kluwer, Dordrecht, 1994.

[12] Goldenfeld N, Martin O, Oono Y and Liu F, Anomalous diffusion and the renormalization
group in a non-linear diffusion process, Phys. Rev. Lett. 65 (1990), 1361–1364.

[13] Grundland A M, Tempesta P and Winternitz P, Weak Transversality and Partially Invariant
Solutions, J. Math. Phys. 44 (2003), 2704–2722.

[14] Kolmogorov A N, Petrovskii L G and Piskunov N S, Etude de l’équation de la diffusion avec
croissance de la matière et son application à un problème biologique, Bull. Moscow Univ.
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