On A Group Of Automorphisms Of The Noncommutative Burgers Hierarchy

Boris A KUPERSHMIDT
The University of Tennessee Space Institute
Tullahoma, TN 37388, USA
E-mail: bkupersh@utsi.edu
Received February 5, 2005; Accepted in Revised Form May 18, 2005

Abstract

Bäcklund transformations are constructed for the noncommutative Burgers hierarchy, generalizing the commutative ones of Weiss, Tabor, Carnevale, and Pickering. These transformations are shown to be invertible and form a group.

1 The Burgers Hierarchy and Its Basic Properties

The original Burgers equation on a function $u(x, t)$ has the form:

$$
\begin{equation*}
u_{t}+u u_{x}=\nu u_{x x}, \quad \nu=\text { const } ; \tag{1.1}
\end{equation*}
$$

the subscripts t and x, here and everywhere, denote the corresponding partial derivatives, with respect to the time coordinate t and space coordinate x, respectively.

Rescalings of u, x, t allow one to bring the coefficients entering the Burgers equation (1.1) into any desirable form; from now on, we shall be dealing with the following one:

$$
\begin{align*}
& u_{t}=2 u u_{x}+u_{x x}= \tag{1.2a}\\
& =\left(u^{2}+u_{x}\right)_{x} . \tag{1.2b}
\end{align*}
$$

Over the years, various Bäcklund transformations were found for the Burgers equation. Thus, Fokas [2; 8, p. 523] found that if u is a solution of the Burgers equation (1.2) then so is

$$
\begin{equation*}
\bar{u}=u+(\ln u)_{x} . \tag{1.3}
\end{equation*}
$$

More generally, Weiss, Tabor and Carnevale [9] showed that if φ satisfies

$$
\begin{equation*}
\varphi_{t}=2 u \varphi_{x}+\varphi_{x x} \tag{1.4}
\end{equation*}
$$

and u is a solution of the Burgers equation, then

$$
\begin{equation*}
\bar{u}=u+(\ln \varphi)_{x} \tag{1.5}
\end{equation*}
$$

is again a solution of the Burgers equation. When $\varphi=u$, formula (1.5) yields formula (1.3).

Finally, Pickering [7] generalized formulae $(1.4,5)$ to the whole Burgers hierarchy. The latter was defined by the Choodnovsky brothers [1] as follows. Let

$$
\begin{align*}
& v_{t}=v^{(n)}, \quad n \in \mathbf{Z}_{>\mathbf{0}}, \tag{1.6}\\
& (\cdot)^{(n)}=\partial^{n}(\cdot), \tag{1.7}\\
& \partial=\partial / \partial x, \tag{1.8}
\end{align*}
$$

be the hierarchy of "higher heat equations."
Then

$$
\begin{equation*}
u_{t}=\partial\left(L_{n}(u)\right), \quad n \in \mathbf{Z}_{>\mathbf{0}} \tag{1.9}
\end{equation*}
$$

for the variable

$$
\begin{equation*}
u=(\ln v)_{x} \tag{1.10}
\end{equation*}
$$

is the Burgers hierarchy. Pickering's formula is this: if u satisfies the $n^{\text {th }}$ Burgers equation (1.9) and φ satisfies

$$
\begin{equation*}
\varphi_{t}=\frac{D L_{n}}{D u}\left(\varphi_{x}\right) \tag{1.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{u}=u+(\ln \varphi)_{x} \tag{1.12}
\end{equation*}
$$

again satisfies the $n^{\text {th }}$ Burgers equation (1.9); here $\frac{D F}{D u}$ is the Fréchet derivative of F.
Two problems have remained open: How to find all solutions of the auxiliary equation (1.11) on φ ? Is the Bäcklund transformation (1.12) invertible? Both of these problems are solved below, and in a more general context of the noncommutative Burgers hierarchy.

2 The Noncommutative Burgers Hierarchy

The variable u of the Burgers equation (1.2) and the Burgers hierarchy (1.9) is scalar. Over the years, this restriction has been weakened in various directions: first, to allow u be a matrix, by Levy, Ragnisco, and Bruschi [6]; and last, by allowing u to be an element of an arbitrary left-symmetric algebra by Svinolupov [8]. The left-symmetric algebras are, however, nonassociative; as a result, no Bäcklund transformations have been ever found for the Svinolupov-Burgers systems.

We shall deal below with the most general universal associative Burgers systems introduced in [3]; more details can be found in $\S 2.5$ of [4]. The set-up is as follows. Consider all the variables as noncommuting but associative. We start off the heat picture, with the $n^{\text {th }}$ flow

$$
\begin{equation*}
X_{n}(v)=\frac{\partial v}{\partial t_{n}}=v^{(n)}, \quad n \in \mathbf{Z}_{>\mathbf{0}} \tag{2.1}
\end{equation*}
$$

where X_{n} is the evolutionary derivation of the differential ring

$$
\begin{equation*}
C_{v}=\mathbf{C}\left[v, v^{-1} ; v^{(1)}, v^{(2)}, \ldots\right] \tag{2.2}
\end{equation*}
$$

Now set

$$
\begin{align*}
& v^{(1)}=v u \tag{2.3}\\
& u=v^{-1} v^{(1)} . \tag{2.4}
\end{align*}
$$

Then,

$$
\begin{equation*}
v^{(n)}=v Q_{n}(u) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{n}(u)=\left(\partial+\hat{L}_{u}\right)^{n}(1) \tag{2.6}
\end{equation*}
$$

where \hat{L}_{f} and \hat{R}_{f} are the operators of left and right multiplication by f, respectively:

$$
\begin{equation*}
\hat{L}_{f}(a)=f a, \quad \hat{R}_{f}(a)=a f, \quad \forall a, f \tag{2.7}
\end{equation*}
$$

Formula (2.6) follows from the following calculation:

$$
\begin{align*}
& v Q_{n+1}=v^{(n+1)}=\partial\left(v^{(n)}\right)=\partial\left(v Q_{n}\right)=v^{(1)} Q_{n}+v Q_{n}^{(1)}= \\
& =v u Q_{n}+v Q_{n}^{(1)}=v\left(Q_{n}^{(1)}+u Q_{n}\right) \Rightarrow \tag{2.8}\\
& Q_{n+1}=\left(\partial+\hat{L}_{u}\right)\left(Q_{n}\right) \tag{2.9}
\end{align*}
$$

The derivations X_{n} 's (2.1) obviously commute in the ring $C_{v}(2.2)$. Therefore, they will still commute in any differential subring of C_{v}, such as C_{u}, and we have:

$$
\begin{align*}
& X_{n}(u)=X_{n}\left(v^{-1} v^{(1)}\right)=X_{n}\left(v^{-1}\right) v^{(1)}+v^{-1} X_{n}\left(v^{(1)}\right)= \\
& =-v^{-1} X_{n}(v) v^{-1} v^{(1)}+v^{-1}\left(X_{n}(v)\right)^{(1)}=-v^{-1} v^{(n)} u+v^{-1} v^{(n+1)}= \\
& =-Q_{n} u+Q_{n+1}[\operatorname{by}(2.9)]=Q_{n}^{(1)}+u Q_{n}-Q_{n} u: \tag{2.10}\\
& X_{n}(u)=\left(\partial+a d_{u}\right)\left(Q_{n}\right), \quad n \in \mathbf{Z}_{>\mathbf{0}} . \tag{2.11}
\end{align*}
$$

This is our noncommutative Burgers hierarchy. Since

$$
\begin{equation*}
Q_{0}=1, \quad Q_{1}=u, \quad Q_{2}=u^{(1)}+u^{2} \tag{2.12}
\end{equation*}
$$

for $n=2$ we find from formula (2.11) that

$$
\begin{align*}
& X_{2}(u)=\left(\partial+a d_{u}\right)\left(Q_{2}\right)=u^{(2)}+u^{(1)} u+u u^{(1)}+u u^{(1)}+u^{3}- \\
& -u^{(1)} u-u^{3}=u^{(2)}+2 u u^{(1)}: \tag{2.13}\\
& u_{t}=u_{x x}+2 u u_{x} \tag{2.14}
\end{align*}
$$

is the noncommutative Burgers equation, with u and u_{x} no longer commuting. Had we started with u being defined not as $v^{-1} v^{(1)}$ but as

$$
\begin{equation*}
u=v^{(1)} v^{-1} \tag{2.15}
\end{equation*}
$$

instead, equation (2.14) would have been

$$
\begin{equation*}
u_{t}=u_{x x}+2 u_{x} u, \tag{2.16}
\end{equation*}
$$

etc: all formulae being mirror-inverted.

3 Powers Of The Operator $\partial+\hat{\boldsymbol{L}}_{u}$

In order to write down the noncommutative version of the evolution equation on $\varphi,(1.11)$, we need first to establish a few useful formulae.

Proposition 3.1

$$
\begin{equation*}
\left(\partial+\hat{L}_{u}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \hat{L}_{Q_{n-k}} \partial^{k}, \quad n \in \mathbf{Z}_{\geq 0} . \tag{3.2}
\end{equation*}
$$

Proof. Formula (3.2) is obviously true for $n=0,1$. Induction on n then finishes the job.

Proposition 3.3

$$
\begin{equation*}
X_{n}\left(Q_{k}\right)=\left(\left(\partial+\hat{L}_{u}\right)^{k}-\hat{R}_{Q_{k}}\right)\left(Q_{n}\right) . \tag{3.4}
\end{equation*}
$$

Proof. For $k=0$ formula (3.4) is obviously true, and for $k=1$ it becomes equation (2.11). Inducting on k, we have:

$$
\begin{aligned}
& X_{n}\left(Q_{k+1}\right)=X_{n}\left(Q_{k}^{(1)}+u Q_{k}\right)=\partial\left(X_{n}\left(Q_{k}\right)\right)+u X_{n}\left(Q_{k}\right)+ \\
& +X_{n}(u) Q_{k}=\left(\partial+\hat{L}_{u}\right)\left(X_{n}\left(Q_{k}\right)\right)+\hat{R}_{Q_{k}}\left(\partial+\hat{L}_{u}-\hat{R}_{u}\right)\left(Q_{n}\right)= \\
& =\left\{\left(\partial+\hat{L}_{u}\right)\left(\left(\partial+\hat{L}_{u}\right)^{k}-\hat{R}_{Q_{k}}\right)+\hat{R}_{Q_{k}} \partial+\hat{R}_{Q_{k}} \hat{L}_{u}-\hat{R}_{u} Q_{k}\right\}\left(Q_{n}\right),
\end{aligned}
$$

so that we need to verify that

$$
\begin{equation*}
-\left(\partial+\hat{L}_{u}\right) \hat{R}_{Q_{k}}+\hat{R}_{Q_{k}} \partial+\hat{R}_{Q_{k}} \hat{L}_{u}-\hat{R}_{u Q_{k}}=-\hat{R}_{Q_{k+1}}, \tag{3.5}
\end{equation*}
$$

which amounts to

$$
-Q_{k}^{(1)}-u Q_{k}=-Q_{k+1},
$$

and this is equation (2.9).

Corollary 3.6.

$$
\begin{equation*}
X_{n}\left(Q_{k}\right)=\left(\left(\partial+\hat{L}_{u}\right)^{n}-\hat{L}_{Q_{n}}\right)\left(Q_{k}\right) \tag{3.7}
\end{equation*}
$$

Proof. By formulae (3.4) and (2.6),

$$
\begin{aligned}
& X_{n}\left(Q_{k}\right)=\left(\left(\partial+\hat{L}_{u}\right)^{k}-\hat{R}_{Q_{k}}\right)\left(\partial+\hat{L}_{u}\right)^{n}(1)= \\
& =\left(\partial+\hat{L}_{u}\right)^{n}\left(\partial+\hat{L}_{u}\right)^{k}(1)-Q_{n} Q_{k}=\left(\left(\partial+\hat{L}_{u}\right)^{n}-\hat{L}_{Q_{n}}\right)\left(Q_{k}\right)
\end{aligned}
$$

4 Symmetries

If v satisfies the $n^{t h}$ heat equation

$$
\begin{equation*}
X_{n}(v)=v_{t}=v^{(n)} \tag{4.1}
\end{equation*}
$$

then so does

$$
\begin{equation*}
\tilde{v}=v^{(k)}, \quad \forall k \in \mathbf{Z}_{\geq 0} \tag{4.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\tilde{u}=\tilde{v}^{-1} \tilde{v}^{(1)} \tag{4.3}
\end{equation*}
$$

satisfies the $n^{\text {th }}$ Burgers flow (2.11):

$$
\begin{equation*}
X_{n}(u)=\left(\partial+a d_{u}\right)\left(Q_{n}(u)\right) \tag{4.4}
\end{equation*}
$$

But

$$
\begin{align*}
& \tilde{u}=\tilde{v}^{-1} \tilde{v}^{(1)}=v^{(k)-1} v^{(k+1)}=\left(v Q_{k}(u)\right)^{-1} v Q_{k+1}(u)= \\
& =Q_{k}(u)^{-1} Q_{k+1}(u)=Q_{k}(u)^{-1}\left(Q_{k}(u)^{(1)}+u Q_{k}(u)\right): \\
& \tilde{u}=Q_{k}^{-1} Q_{k}^{(1)}+Q_{k}^{(-1)} u Q_{k} \tag{4.5}
\end{align*}
$$

By formula (3.7),

$$
\begin{equation*}
X_{n}\left(Q_{k}\right)=\left(\left(\partial+\hat{L}_{u}\right)^{n}-\widehat{L}_{Q_{n}}\right)\left(Q_{k}\right) \tag{4.6}
\end{equation*}
$$

Now, k above is arbitrary. We therefore shall be not too reckless to assume

Theorem 4.7. If u satisfies the $n^{\text {th }}$ Burger equation (4.4) and φ satisfies

$$
\begin{equation*}
X_{n}(\varphi)=\left(\left(\partial+\hat{L}_{u}\right)^{n}-\hat{L}_{Q_{n}(u)}\right)(\varphi), \tag{4.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{u}=\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi \tag{4.9}
\end{equation*}
$$

again satisfies the $n^{\text {th }}$ Burgers flow (4.4).
Proof. The idea is this: we imagine that

$$
\begin{equation*}
\bar{u}=\bar{v}^{-1} \bar{v}^{(1)} \tag{4.10}
\end{equation*}
$$

and then show that

$$
\begin{equation*}
X_{n}(\bar{v})=\bar{v}^{(n)} . \tag{4.11}
\end{equation*}
$$

Thus, \bar{v} satisfies the $n^{\text {th }}$ heat flow, and therefore \bar{u} satisfies the $n^{\text {th }}$ Burgers flow.
Now for the details. Given the differential ring C_{u}, we enlarge it by a new variable v :

$$
\begin{equation*}
C_{u, v}=\mathbf{C}\left[u, u^{(1)}, \ldots ; v, v^{-1}\right] . \tag{4.12}
\end{equation*}
$$

We make $C_{u, v}$ into a differential ring by setting

$$
\begin{equation*}
\partial(v)=v u, \quad \partial\left(v^{-1}\right)=-u v^{-1} . \tag{4.13}
\end{equation*}
$$

We then extend the evolutionary (i.e., commuting with ∂) derivation X_{n} of C_{u} onto $C_{u, v}$, by setting

$$
\begin{equation*}
X_{n}(v)=\partial^{n}(v)=v Q_{n}(u) . \tag{4.14}
\end{equation*}
$$

The calculation (2.10) shows that this extension of X_{n} is self-consistent
We can do the same extensions starting with another variable \bar{u}, even though we don't know yet but suspect that $X_{n}(\bar{u})$ satisfies the $n^{\text {th }}$ Burgers equation (4.4).

But if our suspicion were correct, then formula (4.9) could be rewritten as

$$
\begin{align*}
& \bar{v}^{-1} \bar{v}_{x}=\bar{u}=\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi=\varphi^{-1}\left(\varphi_{x}+v^{-1} v_{x} \varphi\right)= \\
& =\varphi^{-1} v^{-1}\left(v \varphi_{x}+v_{x} \varphi\right)=(v \varphi)^{-1}(v \varphi)_{x} . \tag{4.15}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\bar{v}=C v \varphi, \tag{4.16}
\end{equation*}
$$

where C is a "constant" : $\partial(C)=0 ; C$, therefore, can be absorbed into v without affecting u. Hence, the relations

$$
\begin{align*}
\bar{v} & =v \varphi \tag{4.17}\\
\varphi & =v^{-1} \bar{v} \tag{4.18}
\end{align*}
$$

from the essence of the symmetry formula (4.9). To make this statement precise, we use formula (3.2) and calculate:

$$
\begin{align*}
& X_{n}(v \varphi)=X_{n}(v) \varphi+v X_{n}(\varphi)=v^{(n)} \varphi+v\left(\left(\partial+\hat{L}_{u}\right)^{n}-\hat{L}_{Q_{n}}\right)(\varphi)= \\
& =v^{(n)} \varphi+v \sum_{k=1}^{n}\binom{n}{k} Q_{n-k} \varphi^{(k)}=v^{(n)} \varphi+\sum_{k=1}^{n}\binom{n}{k} v^{(n-k)} \varphi^{(k)}= \\
& =\sum_{k=0}^{n}\binom{n}{k} v^{(n-k)} \varphi^{(k)}=(v \varphi)^{(n)}=\bar{v}^{(n)} . \tag{4.19}
\end{align*}
$$

Conversely, if

$$
X_{n}(\bar{v})=\bar{v}^{(n)}
$$

then

$$
\begin{align*}
& X_{n}(\varphi)=X_{n}\left(v^{-1} \bar{v}\right)=-v^{-1} v^{(n)} v^{-1} \bar{v}+v^{-1} \bar{v}^{(n)}= \\
& =-Q_{n}(u) \varphi+v^{-1} \partial^{n}(v \varphi)=-Q_{n} \varphi+\left(v^{-1} \partial v\right)^{n}(\varphi)= \\
& =\left(\left(\partial+\hat{L}_{u}\right)^{n}-\hat{L}_{Q_{n}}\right)(\varphi), \tag{4.20}
\end{align*}
$$

because

$$
\begin{equation*}
v^{-1} \partial v=\partial+v^{-1} v^{(1)}=\partial+u \tag{4.21}
\end{equation*}
$$

All our claims have been now verified. In addition, formula (4.18) shows that every solution of the φ equation (4.8) is the noncommutative "ratio" of two arbitrary solutions of the $n^{\text {th }}$ heat equation.

Remark 4.22 The symmetry formula $\bar{u}=\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi$ - like all known formulae about the Burgers equation outside of Svinolupov's work - is misleading in its simplicity. The true nature of the Burgers equation - that it is a natural part of various finiteand infinite-component systems - has yet to be recognized. I leave this task for another occasion, and restrict myself here to a simple illustration.

Let

$$
\begin{align*}
& u_{t}=u_{x x}+2 u u_{x} \tag{4.23a}\\
& a_{t}=a_{x x}+2 a u_{x} \tag{4.23b}
\end{align*}
$$

be a noncommuntative version of the dark Burgers extension (10.47) $\left.\right|_{\rho=0}$ from [5]. Let φ and ψ satisfy

$$
\begin{align*}
& \varphi_{t}=\varphi_{x x}+2 u \varphi_{x} \tag{4.24a}\\
& \psi_{t}=\psi_{x x}+2 a \varphi_{x} \tag{4.24b}
\end{align*}
$$

Then the pair

$$
\begin{align*}
& \bar{u}=\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi \tag{4.25a}\\
& \bar{a}=a \varphi+\psi_{x}-\psi \varphi^{-1}\left(u \varphi+\varphi_{x}\right) \tag{4.25b}
\end{align*}
$$

again satisfies the two-component system (4.23).

5 The Bäcklund Transformation Is An Automorphism

The Bäcklund transformation (4.3):

$$
\begin{equation*}
\bar{u}=\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi \tag{5.1}
\end{equation*}
$$

is invertible: it can be rewritten as

$$
\begin{equation*}
u=\varphi\left(\bar{u}-\varphi^{-1} \varphi_{x}\right) \varphi^{-1}=-\varphi_{x} \varphi^{-1}+\varphi \bar{u} \varphi^{-1} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
-\varphi_{x} \varphi^{-1}=\varphi\left(\varphi^{-1}\right)_{x} \tag{5.3}
\end{equation*}
$$

The same conclusion follows directly from formula (4.18): if $\varphi=v^{-1} \bar{v}$ then

$$
\begin{equation*}
\varphi^{-1}=\bar{v}^{-1} v \tag{5.4}
\end{equation*}
$$

The direct form of this fact is far from being obvious: if u satisfies the $n^{t h}$ Burgers equation (4.4) and φ satisfies equation (4.8), then φ^{-1} satisfies the equation

$$
\begin{equation*}
X_{n}\left(\varphi^{-1}\right)=\left(\left(\partial+\hat{L}_{\bar{u}}\right)^{n}-\hat{L}_{Q_{n}(\bar{u})}\right)\left(\varphi^{-1}\right) \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{u}=\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi \tag{5.6}
\end{equation*}
$$

Moreover, formula (4.18) implies that the automorphisms (5.1) form a group. Indeed, let

$$
\begin{equation*}
w=\bar{v}^{-1} \quad \overline{\bar{v}} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\bar{u}}=w^{-1} w_{x}+w^{-1} \bar{u} w . \tag{5.8}
\end{equation*}
$$

Then

$$
\begin{align*}
& \overline{\bar{u}}=w^{-1} w_{x}+w^{-1}\left(\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi\right) w= \\
& =w^{-1} w_{x}+w^{-1} \varphi^{-1} \varphi_{x} w+(\varphi w)^{-1} u(\varphi w)= \\
& =(\varphi w)^{-1}(\varphi w)_{x}+(\varphi w)^{-1} u(\varphi w) . \tag{5.9}
\end{align*}
$$

Thus, the composition map

$$
\begin{equation*}
u \mapsto \bar{u} \longmapsto \overline{\bar{u}} \tag{5.10}
\end{equation*}
$$

is effected by the cumulative parameter

$$
\begin{equation*}
\varphi w=\left(v^{-1} \bar{v}\right)\left(\bar{v}^{-1} \overline{\bar{v}}\right)=v^{-1} \overline{\bar{v}} . \tag{5.11}
\end{equation*}
$$

6 Intrinsic Proof

The symmetry formulae

$$
\begin{align*}
& \bar{u}=\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi, \tag{6.1}\\
& X_{n}(u)=\left(\partial+a d_{u}\right)\left(Q_{n}(u)\right), \tag{6.2}\\
& X_{n}(\varphi)=\left(\left(\partial+\hat{L}_{u}\right)^{n}-\hat{L}_{Q_{n}(u)}\right)(\varphi), \tag{6.3}\\
& X_{n}(\bar{u})=\left(\partial+a d_{\bar{u}}\right)\left(Q_{n}(\bar{u})\right), \tag{6.4}
\end{align*}
$$

make no reference to the extrinsic heat flows; one therefore ought to be able to deduce formula (6.4) directly from formulae (6.1-3). Such a derivation follows. Denote $X_{n}(\varphi)$ by $\dot{\varphi}$, and $X_{n}(u)$ by \dot{u}. Then

$$
\begin{align*}
& X_{n}(\bar{u})=X_{n}\left(\varphi^{-1}\left(\varphi_{x}+u \varphi\right)\right)=-\varphi^{-1} \dot{\varphi} \varphi^{-1}\left(\varphi_{x}+u \varphi\right)+ \\
& +\varphi^{-1}\left(\dot{\varphi}^{(1)}+u \dot{\varphi}+\dot{u} \varphi\right)= \\
& =\varphi^{-1}\left\{-\dot{\varphi}\left(\varphi_{x}+\varphi^{-1} u \varphi\right)+\left(\partial+\hat{L}_{u}\right)(\dot{\varphi})+\dot{u} \varphi\right\} \tag{6.5}
\end{align*}
$$

Proposition 6.6

$$
\begin{equation*}
Q_{n}\left(\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi\right)=\varphi^{-1}\left(\partial+\hat{L}_{u}\right)^{n}(\varphi) . \tag{6.7}
\end{equation*}
$$

Proof. We have:

$$
\begin{align*}
& \partial+\hat{L}_{\bar{u}}=\partial+\hat{L}_{\varphi^{-1} \varphi^{(1)}}+\hat{L}_{\varphi^{-1} u \varphi}=\hat{L}_{\varphi-1}\left(\hat{L}_{\varphi} \partial+\hat{L}_{\varphi^{(1)}}+\right. \\
& \left.+\hat{L}_{u \varphi}\right)=\hat{L}_{\varphi}^{-1}\left(\partial \hat{L}_{\varphi}+\hat{L}_{u} \hat{L}_{\varphi}\right)=\hat{L}_{\varphi}^{-1}\left(\partial+\hat{L}_{u}\right) \hat{L}_{\varphi} . \tag{6.8}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left(\partial+\hat{L}_{\bar{u}}\right)^{n}=\hat{L}_{\varphi}^{-1}\left(\partial+\hat{L}_{u}\right)^{n} \hat{L}_{\varphi}, \tag{6.9}
\end{equation*}
$$

and formula (6.7) follows.

Thus, the RHS of formula (6.4) is:

$$
\begin{align*}
& \left(\partial+a d_{\bar{u}}\right)\left(Q_{n}(\bar{u})\right)= \\
& =\left(\partial+\hat{L}_{\bar{u}}-\hat{R}_{\bar{u}}\right)\left(\varphi^{-1}\left(\partial+\hat{L}_{u}\right)^{n}\right)(\varphi)= \\
& =\left(\varphi^{-1}\left(\partial+\hat{L}_{u}\right) \varphi-\hat{R}_{\varphi^{-1}} \varphi^{(1)}+\varphi^{-1} u \varphi\right)\left(\varphi^{-1}\left(\partial+\hat{L}_{u}\right)^{n}(\varphi)\right)= \\
& =\varphi^{-1}\left(\partial+\hat{L}_{u}\right)^{n+1}(\varphi)-\varphi^{-1}\left(\partial+\hat{L}_{u}\right)^{n}(\varphi) \cdot \varphi^{-1}\left(\partial+\hat{L}_{u}\right)(\varphi) . \tag{6.10}
\end{align*}
$$

Formula (6.4) therefore becomes:

$$
\begin{align*}
& -\dot{\varphi}\left(\varphi^{-1} \varphi_{x}+\varphi^{-1} u \varphi\right)+\left(\partial+\hat{L}_{u}\right)(\dot{\varphi})+\dot{u} \varphi \stackrel{?}{=} \tag{6.11a}\\
& \stackrel{?}{=}\left(\partial+\hat{L}_{u}\right)^{n+1}(\varphi)-\left(\partial+\hat{L}_{u}\right)^{n}(\varphi) \cdot \varphi^{-1}\left(\partial+\hat{L}_{u}\right)(\varphi) \tag{6.11b}
\end{align*}
$$

By formulae $(6.2,3)$, the LHS of this identity is:

$$
\begin{align*}
& -\left(\left(\partial+\hat{L}_{u}\right)^{n}(\varphi)-Q_{n} \varphi\right) \varphi^{-1}\left(\varphi_{x}+u \varphi\right)+ \\
& +\left(\partial+\hat{L}_{u}\right)\left(\left(\partial+\hat{L}_{u}\right)^{n}(\varphi)-Q_{n} \varphi\right)+\left(Q_{n}^{(1)}+u Q_{n}-Q_{n} u\right) \varphi \tag{6.12}
\end{align*}
$$

Canceling the like-terms, formula (6.11) reduces to

$$
\begin{equation*}
Q_{n} \varphi_{x}-\left(\partial+\hat{L}_{u}\right)\left(Q_{n} \varphi\right)+\left(Q_{n}^{(1)}+u Q_{n}\right) \varphi \stackrel{?}{=} 0 \tag{6.13}
\end{equation*}
$$

or

$$
\begin{equation*}
Q_{n} \varphi_{x}-\left(Q_{n}^{(1)} \varphi+Q_{n} \varphi_{x}\right)-u Q_{n} \varphi+\left(Q_{n}^{(1)}+u Q_{n}\right) \varphi \stackrel{?}{=} 0 \tag{6.14}
\end{equation*}
$$

which is obviously true.

References

[1] Choodnovsky D V and Choodnovsky G V, Pole Expansions of Nonlinear Partial Differential Equations, Nuovo Cimento B 40 (1977), 339-352.
[2] Fokas A S, Invariants, Lie-Bäcklund Operators, and Bäcklund Transformations, Ph.D. Thesis, Caltech, 1979.
[3] Kupershmidt B A, Noncommutative Integrable Systems, in Nonlinear Evolution Equations and Dynamical Systems, NEEDS 1994, Editors: Makhankov V G, Bishop A R and Holm D D, World Scientific, 1995, 84-101.
[4] Kupershmidt B A, KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, American Mathematical Society, Providence, 2000.
[5] Kupershmidt B A, Dark Equations, J. Nonlinear Math. Phys. 8 (2001), 363-445.
[6] Levi D, Ragnisco O, and Bruschi M, Continuous and Discrete Matrix Burgers' Hierarchies, Nuovo Cimento B 74 (1983), 33-51.
[7] Pickering A, The Weiss-Tabor-Carneval Painlevé Test and Burgers' Hierarchy, J. Math. Phys. 35 (1994), 821-833.
[8] Svinolupov S I, On The Analogues of the Burgers Equation, Phys. Lett A 135 (1989), 32-36.
[9] Weiss J, Tabor M, and Carneval G, The Painlevé Property for Partial Differential Equations, J. Math. Phys. 24 (1983), 522-526.

