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Abstract

A fully nonlinear family of evolution equations is classified. Nine new integrable equa-
tions are found, and all of them admit a differential substitution into the Korteweg-de
Vries or Krichever-Novikov equations. One of the equations contains hyperelliptic
functions, but it is transformable into the Krichever-Novikov equation by a differen-
tial substitution that only involves elliptic functions.

1 Introduction

The family of partial differential equations of the form

wt = H(t, x, w,wx, wxx, wxxx), (1.1)

includes the mathematical object that led to the birth of modern integrability and soliton
theory [4], the Korteweg-de Vries (KdV) equation (cf. (1.3)). Many efforts (just some
of them are [1–3, 5, 8, 10, 14, 16]) have been dedicated to study (1.1) during the last 30
years. Today there is the impression that this research is almost complete: many specific
subfamilies have been fully classified and the result has been always the same, namely,
that the following conjecture [6] holds:

Conjecture. All integrable equations in the family (1.1) are related via either a classical
(pointorcontact) transformation or a more complex differential substitution, to the three
fundamental integrable equations

wt = wxxx + α(x)wx + β(x)w, (1.2)

wt = wxxx + wwx, (1.3)

wt = wxxx − 3
2w

−1
x w2

xx + (4w3 + g1w + g2)w
−1
x + cwx, (1.4)

that is, the linear equation, the KdV equation and the Krichever-Novikov (KN) equation.
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Nevertheless the conjecture is far from being proven and there is still plenty of room to
find interesting results within this family of equations, may be even a new integrable equa-
tion. The computational complexity of the calculations can be treated by contemporary
computer capabilities. The full classification is very long and its sheer length forces us to
perform it in several pieces. It appears though that every new piece is more interesting
than the previous one.

As in the Conjecture we assume equivalence relations between equations to be classical
transformations, i.e. special pointlike or contact transformations

t̄ = χ(t), x̄ = φ(x,w,wx), w̄ = ψ(x,w,wx) (1.5)

with Dx(φ)∂ψ
/

∂wx = Dx(ψ)∂φ
/

∂wx relating equivalent evolution equations

wt = F (x,w,wx, wxx, wxxx) and w̄t = F̄ (x̄, w̄, w̄x̄, w̄x̄x̄, w̄x̄x̄x̄). (1.6)

When one considers some subfamily of equations, there exists a subclass of (1.5), called
“allowed transformations”, that preserves the functional form of the subfamily. For ex-
ample, considering evolution equations of the form (1.1) we cannot make the new time
depend on x or u, because the evolution character of the resulting equation would be lost.
Thus, the most general form of allowed transformation for (1.1) is of the form (1.5).

We also use more general differential substitutions

t̄ = χ(t), x̄ = φ(x,w,wx, wxx, . . .), w̄ = ψ(x,w,wx, wxx, . . .), (1.7)

which may relate different integrable equations, although in a noninvertible manner. For
example Miura-type or Cole-Hopf-type [15] transformations are of this kind. The existence
of a differential substitution relating two equations is not a trivial fact because it can be
considered a restricted type of Bäcklund transformation, an object typical of integrable
equations. If we are able to relate an equation with an integrable equation by means of a
differential substitution, then the original equation is integrable [13]. Ample information
about differential substitutions can be found in [12,15].

In this paper we continue the classification [5,7] of integrable equations of the form (1.1).
In the papers cited we established a scheme to perform the classification and in Sec. 2 we
sketch that analysis and the underlying theory of integrability (the formal symmetry ap-
proach). We divide the family (1.1) into three types of equations comprising quasilinear
and fully nonlinear equations in the highest derivative wxxx. The quasilinear integrable
equations have been classified, listed in [10] and the most complicated cases studied in [7].
All three totally nonlinear categories are basically unknown, except for some special equa-
tions of Harry-Dym type or results like as [9]. In Sec. 4 we study one of the three categories
and find nine new fully nonlinear equations that satisfy necessary integrability conditions.
Some of these equations would be very difficult to pinpoint using alternative integrabil-
ity techniques, but the one we use here is able to do it. In Sec. 5 we prove that all the
new equations are related to the KdV or the KN equations through (quite complicated)
differential substitutions, thus proving their integrability and reinforcing the conjecture.

One of the new integrable equations, (4.8), is remarkable. It possesses hyperelliptic
functions of the variables x and w.
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2 The symmetry approach and non-standard variables

The symmetry approach to integrability, developed by Shabat et al [10], defines an inte-
grable equation in family (1.1) as one admitting an infinite set of higher symmetries. This
ultimately translates into a set of integrability conditions that are an infinite overdeter-
mined system of partial differential equations over the functionH in the rhs of (1.1). These
integrability conditions are expressible in the form of so-called canonical conservation laws

Dtρi = Dxσi, i = 1, 2, 3, . . . . (2.1)

For example the first two canonical densities, ρi, are

ρ1 =

(

∂H

∂wxxx

)

−1/3

, ρ2 =

(

∂H

∂wxxx

)

−1 ∂H

∂wxx
(2.2)

With the use of just two conditions Dtρi = Dxσi, i = 1, 2, the first classification result
was obtained [9]: the integrable equations of the form (1.1) must have one of the following
dependencies on the third-order derivative wxxx:

wt = f1wxxx + f2, (2.3)

wt = (f1wxxx + f2)
−2 + f3, (2.4)

wt = (2f1wxxx + f2)(f1w
2
xxx + f2wxxx + f3)

−1/2 + f4, (2.5)

where fi = fi(x,w,wx, wxx).
To find all the solutions of (2.1) it is necessary to analyze a whole casuistic tree of

parameters appearing in intermediate calculations. In [5] we gave an approach that cuts
significantly the number of possibilities, merging intermediate subfamilies of equations
and effectively delaying the branching process. The idea is to exploit the fact that the
integrability conditions are almost evolution equations themselves and one may use them
as an alternative representation of the original equation. The first necessary condition for
integrability is that the separant1,

u = u(x,w,wx, . . . , w
(n)) = ρ1 =

(

∂

∂wxxx
H(x,w,wx, wxx, wxxx)

)

−1/3

, (2.6)

of (1.1) must be a conserved density, i. e., there must exist a differential function, σ̃1(x,w,
. . . , w(n+2)), such that

ut = Dx[σ̃1(x,w, . . . , w
(n+2))]. (2.7)

This is also an evolution relation. Using (2.6) we can express w(n) as a function of u, x,
w, . . . , w(n−1). Often, when one uses this substitution (and its consequences for w(n+1),
w(n+2) and w(n+3)), (2.7) becomes a genuine evolution equation for u because all depen-
dencies on w,. . . ,w(n−1) disappear. For example the equation

wt = −2wx

(

wxxx

wx
− 3

2

w2
xx

w2
x

)−1/2

transforms onto ut = Dx

(

uxx

u3
− 3

2

u2
x

u4

)

.

1
w

(i) denotes ∂
i
w
/

∂x
i. Note that, if n < 3, then the equation is quasilinear.
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If the expression of ut after substituting w(n),. . . ,w(n+3) still depends on w, . . . , w(n−1),
we can resort to the theory of constrained dynamical systems as explained in [11]. Equa-
tion (2.7) is a system

(vi)x = Φi(x, v1, . . . , vn, u), (2.8)

(vi)t = Gi(x, v1, . . . , vn, u, ux, . . . ), (2.9)

ut = F (x, v1, . . . , vn, u, ux, uxx, uxxx), (2.10)

where v1,. . . , vn denote w, . . . , w(n−1) respectively. Equation (2.10) is interpreted as
an evolution equation over the main variable u, with some additional low-order variables,
v1,. . . ,vn, subjected to the differential constraints (2.8,2.9). The variables (x, v1, . . . , vn, u)
are what we call nonstandard variables. Now an interesting fact is that the symmetry
approach provides almost the same integrability conditions [11] for a constrained equa-
tion (2.10) as for a pure evolution equation. The conditions that we are going to use in
this paper are the first five canonical laws with densities

ρ1 = u, ρ2 = u3 ∂F

∂uxx
,

ρ3 =

(

2u−2ux + u2 ∂F

∂uxx

)

x

+ u−3u2
x +

1

3
u5

(

∂F

∂uxx

)2

+ uux
∂F

∂uxx
−

− u2 ∂F

∂ux
+ uσ1,

ρ4 = −1

3
uxx

∂F

∂uxx
− ux

∂F

∂ux
+ u

∂F

∂u
+ u−1u2

x

∂F

∂uxx
− 1

3
u4 ∂F

∂ux

∂F

∂uxx
+ (2.11)

+
1

3
u3ux

(

∂F

∂uxx

)2

+
2

27
u7

(

∂F

∂uxx

)3

+
1

3
uσ2,

ρ5 = uσ3 − ρ3σ1 − 3
∂Φ

∂u
(F ).

Note that the first two densities are the same as (2.2) and that we have used the fact that
the equation in the new variables, (2.10), has precisely the form

ut =
uxxx

u3
+ lower order terms.

This is already a very big advantage of the new representation because the separant u is
of low order and we have to study equations of the type (2.3) (albeit with constraints).

Using the new representation and the first integrability conditions Dtρi = Dxσi, i =
1, 2, 3, we found [5] that all integrable equations (2.8)-(2.10) have the general form

vx = Φ(v),

vt =

(

uxx

u3
− 3

2

u2
x

u4
− 3

4
P−1∂P

∂u

u2
x

u3
− 3

2
P−1Φ(P )

ux

u3
+ E

ux

u3

)

∂Φ

∂u
− (2.12)

− 1

2

u2
x

u3

∂2Φ

∂u2
− ux

u3

[

Φ,
∂Φ

∂u

]

+ r(v, u),

ut = Dx

(

uxx

u3
− 3

2

u2
x

u4
− 3

4
P−1∂P

∂u

u2
x

u3
− 3

2
P−1Φ(P )

ux

u3
+ E

ux

u3
+ q(v, u)

)

,
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where v is the vector (x, v1, v2, . . . , vn), Φ denotes the vector field

Φ = ϕn(x,v, u)
∂

∂vn−1
+ vn−1

∂

∂vn−2
+ · · · + v2

∂

∂v1

and P = P (v, u), E = E(v, u). There are compatibility conditions:

∂3Φ

∂u3
+

3

2
P−1∂P

∂u

∂2Φ

∂u2
= 0,

[

Φ,
∂2Φ

∂u2

]

+

(

1

2
P−1∂P

∂u
− 1

u

)[

Φ,
∂Φ

∂u

]

+

(

P−1∂P

∂u
− 2

3
E

)

∂2Φ

∂u2
= 0, (2.13)

∂r

∂u
=
∂q

∂u

∂Φ

∂u
+

1

u3

[

Φ,

[

Φ,
∂Φ

∂u

]]

+
3

2u3

(

P−1∂P

∂u
− 2

3
E

)[

Φ,
∂Φ

∂u

]

,

[Φ, r] − Φ(q)
∂Φ

∂u
= 0.

Studying the compatibility equations, as in [5], one finds several families of integrable
equations. We proved in [7] that for classifying (1.1) it is enough to study the three types
of equations characterized by (Φ2 6= 0)

Φ = u2Φ2(v) + Φ0(v), P = 1, E = 0, (2.14)

Φ = SΦ2(v) + Φ0(v), P = α(v)u2−1, S = P 1/2, E = 0, (2.15)

Φ = uΦ1(v) + Φ0(v), P = α(v)u2, [Φ1,Φ0] 6= 0, E = E(v), (2.16)

for which n can take any value of 0, 1, 2 or 3. These equations give the relationship
between the highest derivative w(n) in the separant u and u because w(n) = Dxw

(n−1) =
Dxvn = Φ(vn). To n = 0, 1 or 2 there correspond different types of integrable quasilinear
equations (2.3), which have been all listed in [10]. In this paper we are interested in starting
to research fully nonlinear equations and so n = 3. In this case type (2.14) corresponds to
equations (2.5) with f1 = 0, type (2.15) to equations (2.5) with f1 6= 0 and type (2.16) to
equations (2.4).

3 Integrable equations of the form (2.14)

To find all the fully nonlinear (n = 3) integrable differential equations of type (2.14) we
write them in the form

wt = − 2
√

A−3/2wxxx −B
+ C (3.1)

where A, B and C are functions of v = (x,w,wx, wxx). Thus

u = (A−1/2wxxx −AB)1/2

Φ2 = A1/2 ∂

∂wxx
, Φ0 = A3/2B

∂

∂wxx
+ wxx

∂

∂wx
+ wx

∂

∂w
+

∂

∂x
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The third integrability condition in ρ3 together with the compatibility conditions imply
that now our system of equations takes the form

ut = Dx

(

uxx

u3
− 3

2

u2
x

u4
+
Q(v)

u2
+ T (v) + l(v)u2 +m(v)u

)

, (3.2)

vt =

(

2
uxx

u2
− 4

u2
x

u3

)

Φ2 + 2
ux

u2
[Φ2,Φ0] +

(

4
Q(v)

u
+m(v)u2 +

4

3
l(v)u3

)

Φ2+

+ 2 [Φ0, [Φ2,Φ0]]
1

u
− 2 [Φ2, [Φ2,Φ0]]u+ s(v) (3.3)

and the compatibility conditions, (2), are

Φ2(l) = 0, (3.4)

Φ0(T ) − Φ2(Q) = 0, (3.5)

Φ2(m) = 0. (3.6)

[Φ2, [Φ2, [Φ2,Φ0]]] +
2

3
l[Φ2,Φ0] +

(

Φ2(T ) +
1

3
Φ0(l)

)

Φ2 = 0, (3.7)

[Φ0, [Φ0, [Φ2,Φ0]]] − 2Q[Φ2,Φ0] + Φ0(Q)Φ2 = 0, (3.8)

[Φ2, s] −m[Φ2,Φ0] − Φ0(m)Φ2 = 0, (3.9)

[Φ0, s] = 0. (3.10)

The integrability condition of ρ3 is far from being satisfied. The following conditions are
necessary and sufficient for that:

0 = Φ2Φ2Φ2(T ) − 3Φ2Φ2Φ0(l) +
8

3
Φ2(T )l, (3.11)

0 = 15Φ0Φ2Φ0(Q) − 10Φ0Φ0Φ2(Q) − 6Φ2Φ0Φ0(Q) + 8Φ2(Q)Q, (3.12)

Φ2(E) = Φ0Φ2Φ2(T ) + Φ0Φ2Φ0(l), (3.13)

Φ0(E) = 2Φ0Φ0Φ2(T ) + Φ2Φ2Φ0(Q) − 2Φ2Φ0Φ2(Q) +
2

3
Φ0Φ0Φ0(l), (3.14)

s(l) = − 3Φ2Φ2Φ0(m) − 2Φ0(m)l +mΦ0(l), (3.15)

s(T ) = 3Φ0Φ2Φ0(m) − 3Φ2Φ0Φ0(m) +mΦ2(Q), (3.16)

s(Q) = − Φ0Φ0Φ0(m) + Φ0(Q)m+ 2QΦ0(m), (3.17)

where E = E(v, u) is the function

E(v, u) =
5

3
Φ0Φ0(l) +

7

3
Φ0Φ2(T ) +

4

3
Φ2Φ0(T ) +

1

6
T 2 − lQ.

The integrability conditions written above suffice for the classification we intend to make
here.

4 Nine nonlinear integrable equations

Theorem. Any equation of the form (3.1) satisfying (3.4-3.17) can be transformed, using
a contact transformation, x̄ = φ(x,w,wx), ū = ψ(x,w,wx), into one of the following nine
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equations.

wt = −2w−1/2
xxx + c1(x

2wx − 2xw) + c2(xwx − w)+

+ c3wx + c4x
2 + c5x+ c6. (4.1)

wt = −2λ3/2

(

w−3
x wxxx − 3

2
w−4

x w2
xx

)

−1/2

+ c1x
2 + c2xwx + c3wx + c4w

2+

+ c5w + c6. (4.2)

wt = −2
(

z−3wxxx −B
)

−1/2
+ c1wx + c2. (4.3)

B = 8wx − 12w3
xz

−1 − 6λ2wxz
−1 − 3λ1z

−1+

+ (4w7
x + 6λ2w

5
x + 5λ1w

4
x + 2λ2

2w
3
x + 4λ0w

3
x+

+ 3λ1λ2w
2
x + λ2

1wx + 2λ0λ2wx + λ1λ0)z
−3,

z = (wxx + w4
x + λ2w

2
x + λ1wx + λ0)

1/2.

wt = −2
(

z−3wxxx − 2λ2
1w

3
xz

−3 + 6λ1wxz
−1 − λ

)

−1/2
+

+ c1
(

λ1x
2wx−x

)

+c2xwx+c3wx+c4. (4.4)

z = (wxx + λ1w
2
x)1/2.

wt = −2
(

z−3wxxx − 2λ2w3
xz

−3 − 6λ exp (−4λw)wxz
−3 + 6λwxz

−1
)

−1/2
+

+ c1
(

λx2wx − x
)

+ c2 (2λxwx − 1) + c3wx. (4.5)

z = (wxx + λw2
x + exp (−4λw))1/2, λ 6= 0.

wt = −2
(

z−3wxxx + wxz
−3
)

−1/2
+ c1wx + c2 sinx+ c3 cosx, (4.6)

z = (wxx +w)1/2.

Below z = (wxx + S)1/2 and ∇ = S
∂

∂wx
− wx

∂

∂w
− ∂

∂x

wt = −2
(

A−3/2wxxx −B
)

−1/2
+ c1wx + c2, (4.7)

A = w1/2
x z2,

B = λ2w
−2
x + λ1 +

3

2
w−7/4

x z +
3

2
Sw−7/4

x z−1−

− 3w−3/4
x

∂S

∂wx
z−1 + w−3/4

x ∇(S)z−3

S = γ1w
1/2
x + γ2w

3/2
x + γ3w

5/2
x +

1

16
λ2

1w
7/2
x +

1

16
λ2

2w
−1/2
x .
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For the last two equations A = β−1/2w
1/2
x z2 and

B =
3

2
β3/4w−7/4

x z +
3

2
β3/4

[

Sw−7/4
x +

βw

β
w1/4

x +
βx

β
w−3/4

x − 2
∂S

∂wx
w−3/4

x

]

z−1+

+ ∇(S)β3/4w−3/4
x z−3.

wt = −2
(

A−3/2wxxx −B
)

−1/2
, (4.8)

S = β3/2w1/2
x + 10(f+g)β1/2w3/2

x + β3/2w5/2
x −

− βxβ
−1wx + βwβ

−1w2
x,

β = f − g, f = f(x+ w), g = g(x− w),

where f and g satisfy: (y′)2 = −16y5 − c1y
3 − c2y

2 − c3y − c4.

wt = −2
(

A−3/2wxxx −B
)

−1/2
+ c1(x

2wx + w2) + c2(xwx − w) + c3(wx + 1), (4.9)

S = β1/2
(

λw3/2
x + 2wx − 2w2

x

)

,

β = (x+ w)−2.

Proof. The coefficient in ∂
/

∂wx of (3.7) together with (3.4) imply

l = −3

4

∂2A

∂w2
xx

, A = γ2w
2
xx + γ1wxx + γ0. (4.10)

A contact transformation x̄ = φ(x,w,wx), w̄ = ψ(x,w,wx) can linearize the function A,
so γ2 = l = 0. The coefficient in ∂

/

∂wxx of (3.7) gives

∂T

∂wxx
= A−1Φ0Φ2Φ2(A

1/2) + 3A−1Φ2Φ2Φ0(A
1/2)−

− 3A−1Φ2Φ0Φ2(A
1/2) −A−1Φ2Φ2Φ2(A

3/2B). (4.11)

¿From the coefficients of relation (3.8) in ∂
/

∂wxx, ∂
/

∂wx and ∂
/

∂w we obtain

3Φ0Φ2Φ0(A
3/2B) − Φ2Φ0Φ0(A

3/2B) − 8Φ0Φ0Φ0(A
1/2)+

+ 4QΦ0(A
1/2) − Φ0(Q)A1/2 = 0, (4.12)

Q =
1

2
A−1/2Φ2Φ0(A

3/2B) − 3A−1/2Φ0Φ0(A
1/2), (4.13)

Φ2(A
3/2B) − 3Φ0(A

1/2) = 0. (4.14)

¿From (3.9), (3.10) and (3.6) we obtain

s = H
∂

∂w
+ Φ0(H)

∂

∂wx
+ Φ0(Φ0(H))

∂

∂wxx
(4.15)

with H = H(x,w,wx). From the remaining conditions we find the relations:

m =
∂H

∂wx
, (4.16)

s(A3/2B) = Φ0Φ0Φ0(H), (4.17)

s(A1/2) = Φ2Φ0Φ0(H) − 2mΦ0(A
1/2) −Φ0(m)A1/2. (4.18)
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The classification now starts to branch in subcases. Using the general conditions (4.11)
to (4.18) we proceed to find a “classification tree” of integrable equations. The first
division depends on the following fact. The function A was found (4.10) to be a quadratic
polynomial in wxx and linearizable by means of a contact transformation. If A has a double
root the linearization can bring it to the form A = a(x,w,wx). The resulting equations
are called type 1 equations. If A has not a double root, we obtain type 2 equations
with A = a(x,w,wx)2 [wxx + S(x,w,wx)].

4.1 Type 1: A = a(x, w, wx)

Conditions (4.14), (4.13), (4.11) and (3.5) imply that

B =
3

4
a−5/2 ∂a

∂wx
w2

xx +
3

2
a−5/2

(

wx
∂a

∂w
+
∂a

∂x

)

wxx + b(x,w,wx),

Q = −3

8

[

1

a

∂2a

∂w2
x

− 1

2a2

(

∂a

∂wx

)2
]

w2
xx−

− 3

4

[

1

a

(

wx
∂2a

∂wx∂w
+

∂2a

∂wx∂x

)

− 1

2a2

∂a

∂wx

(

wx
∂a

∂w
+
∂a

∂x

)]

wxx+

+
1

2
a3/2 ∂b

∂wx
+

9

8a2

(

wx
∂a

∂w
+
∂a

∂x

)2

− 3

4a

(

w2
x

∂2a

∂w2
+ 2wx

∂2a

∂w∂x
+
∂2a

∂x2

)

,

T = −3

4
a−1/2 ∂a

∂wx
.

Formula (4.12) implies that a takes the form a = (γ2w
2
x + γ1ux + γ0)

2, where γi = γi(x,w)
and γ2

1 − 4γ0γ2 = const. Point transformations x̄ = φ(x,w), w̄ = ψ(x,w) allow us to
transform a to a = 1 (class 1A equations) if the polynomial γ2w

2
x + γ1wx + γ0 has a

double root. If the roots are different, we can put a = λ2w2
x (class 1B equations).

4.1.1 Class 1A: a = 1

In this case we have B = b(x,w,wx), Q = 1
2∂b
/

∂wx and T = 0. From (4.12) it follows that
b = 2α(x)wx+α′(x)w+β(x). Gauging with point transformations x̄ = φ(x), w̄ = φ′xw+ψx
we can make b = 0. From (4.17) and (4.18) we can see thatH = C1(x

2wx−2xw)+C2(xwx−
w) +C3wx + C4x

2 + C5x+ C6 and we have obtained Eq. (4.1). �

4.1.2 Class 1B: a = λ2w2
x

We have B = 3
2λ

−3w2
xxw

−4
x + b(x,w,wx) and Q = 1

2λ
3w3

x + ∂b
∂wx

, T = −3
2λ. From (4.12)

it follows that b = α(x)w−2
x + β(w). A point transformation of the form x̄ = φ(x),

w̄ = ψ(w) allows to take b = 0. ¿From (4.17) and (4.18) we obtain that for class 1B H =
(C1x

2+C2x+C3)wx +C4w
2 +C5w+C6 and the resulting equation is Eq. (4.2). �
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4.2 Type 2: A = a(x, w, wx)
2 [wxx + S(x, w, wx)]

Let z = (wxx + S)1/2. Then A = a2z2. From (4.14), (4.13), (4.11) and (3.5) we find that

B = 6
∂a

∂wx
a−4z + b(x,w,wx) + 6∇(a)a−4z−1 − 3

∂S

∂wx
a−3z−1 + ∇S a−3z−3

Q = −3

a

[

∂2a

∂w2
x

+
3

a

(

∂a

∂wx

)2
]

z4 − a2

[

3b
∂a

∂wx
+
a

4

∂b

∂wx

]

z3 + q2z
2 + q1z + q0

T = −6
∂a

∂wx
z − 3

8
a4b,

where ∇ = S∂
/

∂wx −wx∂
/

∂w− ∂
/

∂x and the functions qi are expressed in terms of a, b
and S. The condition (3.11) is automatically fulfilled and now our task is to determine the
functions a(x,w,wx), b(x,w,wx) and S(x,w,wx). It is enough to use conditions (3.12),
(3.13), (3.14) and (4.12). Starting with (3.13), we easily see that Φ2(E) = 0, i.e. E =
E(x,w,wx). Then Φ0(E) = z2 ∂E

/

∂wx − ∇(E). Using the conditions derived from the
coefficients of z4, z3 and z of (3.14) we obtain the following system of equations:

∂3a

∂w3
x

+
9

a

∂a

∂wx

∂2q

∂w2
x

+
6

a2

(

∂a

∂wx

)3

= 0, (4.19)

∂2b

∂w2
x

+
12

a

∂q

∂wx

∂b

∂wx
+

12

a
b
∂2a

∂w2
x

+
36

a2
b

(

∂a

∂wx

)2

= 0, (4.20)

∂a

∂wx

(

∂b

∂w
wx +

∂b

∂x

)

− ∂b

∂wx

(

∂a

∂w
wx +

∂a

∂x

)

− 2b
∂a

∂w
− 1

2
a
∂b

∂w
= 0. (4.21)

The general solution of the first equation is a = (γ2w
2
x +γ1wx +γ0)

1/4, γi = γi(x,w). With
point transformations x̄ = φ(x,w), w̄ = ψ(x,w) we can simplify a. If the polynomial
γ2w

2
x + γ1wx + γ0 has a multiple root, we can put a = 1, featuring equations of class

2A, and, if it has two different roots, we can put a = α(x,w)w
1/4
x , which characterizes

equations of class 2B.

4.2.1 Class 2A: a = 1

Equations (4.20) and (4.21) are rewritten as ∂2b
/

∂w2
x = 0, bw = 0. Allowed point trans-

formations are x̄ = φ(x), w̄ = w + ψ(x) and we write b = λwx + n(x), where λn = 0,
n′′ = 0. Conditions (3.13) and (3.14) imply E = E(x,w) and

∂E

∂w
wx +

∂E

∂x
= S

(

3

16
b
∂b

∂wx
− 1

2

∂3S

∂w3
x

)

− 3

16
b
∂b

∂x
+

+
1

4

∂2S

∂wx∂w
+

1

2

(

∂3S

∂w2
x∂w

wx +
∂S

∂w2
x∂x

)

.
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Condition (4.12) implies that ∂5S
/

∂w5
x = 0 and

5
∂2S

∂wx∂w
+ 2∇

(

∂2S

∂w2
x

)

− 3

4
b∇(b) = 0, (4.22)

∇2(b) − ∂S

∂wx
∇(b) + 4b

∂S

∂w
= 0, (4.23)

∇
(

∂S

∂w

)

− 2
∂S

∂w

∂S

∂wx
= 0. (4.24)

If we write S = 1
64λ

2w4
x +α(x,w)w2

x + β(x,w)wx + γ(x,w) relation (3.12) is equivalent to
βww−2αwx = 0. Dividing class 2A into subcases, we firstly find that for λ 6= 0 there is only
one equation that satisfies all the previous conditions. This is Eq. (4.3). �

The remaining subcases have b = b(x) and either b = λ or we can use an appropriate
point transformation to make b = x. This last subcase cannot satisfy conditions (4.22)-
(4.24). Consider then b = λ 6= 0. From (4.23) and (4.22) it follows that ∂S

/

∂w = 0 and
α′ = 0. Allowed point transformations, x̄ = φ(x), w̄ = w + ψ(x), put the equation in the
form Eq. (4.4). �

When b = 0 and ∂S
/

∂w 6= 0 (if ∂S
/

∂w = 0 then we can transform the equation to
(4.4)), conditions (4.22)-(4.24) and the allowed transformations lead to two different equa-
tions. The first with b = 0, S = λw2

x+exp(−4λw), is Eq. (4.5). �

The second has b = 0 and S = w and is equation Eq. (4.6). �

4.2.2 Class 2B: a = α(x,w)w
1/4
x

¿From condition (4.20) we obtain that b = λ2(x,w)w−2
x + λ1(x,w). Then from the coeffi-

cients of w
−11/4
x , w

−7/4
x , w

−3/4
x and w

1/4
x in (4.21) we obtain

8αxλ2 + (λ2)xα = 0, (4.25)

(λ2)w = 0, (λ1)x = 0, (4.26)

8αwλ1 + (λ1)wα = 0. (4.27)

Thus (4.26) implies that b = λ2(x)w
−2
x + λ1(w). Condition (4.12) is a polynomial of fifth

order in z. Equating to zero the coefficient of z5 we obtain that

S = γ1w
5/2
x + γ2w

3/2
x + γ3w

1/2
x +

1

16
α6λ2

1w
7/2
x +

1

16
α6λ2

2w
−1/2
x + 4

αx

α
wx − 4

αw

α
w2

x

with γi = γi(x,w). Now we can distinguish two subcases.

Subcase (log α)xw = 0. Using the transformations x̄ = φ(x), ū = ψ(u), we can put
α = 1. Then from (4.25)-(4.27) and (4.12) λ1, λ2, γ1, γ2 and γ3 must be constants. Using
(4.17) and (4.18) we find the equation Eq. (4.7):

wt = −2(A−3/2 −B)−
1
2 + c1wx + c2 (4.28)

with A = w
1/2
x z2, z = (wxx + S)1/2 and

B =
3

2
w−7/4

x z +
3

2

(

Sw−7/4
x − 2

∂S

∂wx
w−3/4

x

)

z−1 + S
∂S

∂wx
w−3/4

x z−3 + λ2w
−2
x + λ1,

S = γ1w
5/2
x + γ2w

3/2
x + γ3w

1/2
x +

1

16
λ2

1w
7/2
x +

1

16
λ2

2w
−1/2
x . �
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Subcase (log α)xw 6= 0. ¿From (4.25)-(4.27) we have that λ1 = λ2 = 0 and besides A =

w
1/2
x α2z2, z = (wxx + S)1/2 and

B =
3

2
w−7/4

x α−3z +

(

6αwα
−4w1/2

x + 6αxα
−4w−1/2

x −

− 3

2
Sα−3w−7/4

x + 3
∂S

∂wx
α−3w−3/4

x

)

z−1 + α−3w−3/4
x S∇(S)z−3,

S = γ1w
5/2
x + γ2w

3/2
x + γ3w

1/2
x − 4

αw

α
w2

x + 4
αx

α
wx.

¿From the coefficient in z3 of (4.12) we obtain that

(γ1)w + 6α−1αwγ1 = 0, (γ3)w + 6α−1αxγ3 = 0,

(γ2)w − 5(γ1)x + 2γ2α
−1αw + 10γ1α

−1αx = 0, (4.29)

(γ2)x − 5(γ3)w + 2γ2α
−1αx + 10γ3α

−1αw = 0.

Solving the first equation we have γ1 = k1(x)α
−6. The second gives γ3 = k3(w)α−6

with k1 and k3 arbitrary functions. Using allowed point transformations we can make
both constant. There are then three possible cases: k1 = k3 = 1; k1 = 1 and k3 = 0;
k1 = k3 = 0. We study these three cases together, considering only that k1 and k3 are
arbitrary constants. It is useful to define α = β−1/4 and γ2 = γβ1/2. Thus we have

S = k1β
3/2w5/2

x + γβ1/2w3/2
x + k3β

3/2w1/2
x + βwβ

−1w2
x − βxβ

−1wx (4.30)

and system (4.2.2) is equivalent to

γx = 10k3βw, γw = 10k1βx. (4.31)

The evident compatibility condition for this system is

k1βxx − k3βww = 0. (4.32)

Using these last three equations (4.12) is equivalent to
(

β−1βxx − 3

2
β−2β2

x

)

w

+ 4k3γββw + 8k1k3β
2βx = 0, (4.33)

(

β−1βww − 3

2
β−2β2

w

)

x

+ 4k1γββx + 8k1k3β
2βw = 0. (4.34)

We can solve the system formed by these last five equations and find the expressions for
β and γ as follows.

Consider the case k1 = k3 = 1. From (4.32) we have that β = f(w+x)−g(w−x), where
f and g are arbitrary functions. ¿From (4.31) we find that γ = 10f(w+x) + 10g(w−x).
We introduce the notations z1 = w + x and z2 = w − x. The system (4.33)-(4.34) is now

f ′′′

f − g
− 4

f ′f ′′

(f − g)2
− 2

f ′g′′

(f − g)2
+ 3

(f ′2 − g′2)f ′

(f − g)3
+

+ 40(f − g)(f + g)f ′ + 8(f − g)2f ′ = 0,

g′′′

f − g
+ 4

g′g′′

(f − g)2
+ 2

g′f ′′

(f − g)2
− 3

(f ′2 − g′2)g′

(f − g)3
+

+ 40(f − g)(f + g)g′ − 8(f − g)2g′ = 0.
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Multiply the first equation by (f − g)−1. It becomes

∂

∂z1

(

f ′′ + g′′

(f − g)2
− f ′2 − g′2

(f − g)3
+ 24f2 + 32fg

)

= 0

so

f ′′ + g′′

(f − g)2
− f ′2 − g′2

(f − g)3
+ 24f2 + 32fg + κ1(z2) = 0

with κ1(z2) being an arbitrary function of z2. Analogously we obtain

f ′′ + g′′

(f − g)2
− f ′2 − g′2

(f − g)3
+ 24g2 + 32fg + κ2(z1) = 0

with κ1(z1) being an arbitrary function of z1. Adding these two equations we obtain
that κ1 = 24g2 +µ and κ2 = 24f2 +µ, where µ is an arbitrary constant. Then the system
of two equations is equivalent to one equation:

f ′′ + g′′

(f − g)2
− f ′2 − g′2

(f − g)3
+ 24f2 + 32fg + 24g2 + µ = 0. (4.35)

Consider the case f ′ 6= 0, g′ 6= 0. Multiplying (4.35) by f ′ and integrating with respect
to z1 we obtain

(f ′)2 + 16f5 + 2µf3 + (2θ1 − 64g3 − 4µg)f2+

+ (48g4 + 2µg2 − 4θ1g − 2g′′)f + 2gg′′ − (g′)2 + 2θ1g
2 = 0, (4.36)

where θ1 is an arbitrary function of z2. Analogously multiplying (4.35) by g′ and integrat-
ing with respect to z2 we have

(g′)2 + 16g5 + 2µg3 + (2θ2 − 64f3 − 4µf)g2+

+ (48f4 + 2µf2 − 4θ2f − 2f ′′)g + 2ff ′′ − (f ′)2 + 2θ2f
2 = 0, (4.37)

where θ2 is an arbitrary function of z1. Differentiating (4.2.2) with respect z1 and (4.2.2)
with respect z2 we obtain, quotienting respectively by f ′ and g′:

f ′′ + 40f4 + 3µf2 + (2θ1−64g2−4µg)f + 24g4 + µg2 − g′′ − 2θ1g = 0, (4.38)

g′′ + 40g4 + 3µg2 + (2θ2−64f2−4µf)g + 24f4 + µf2 − f ′′ − 2θ2f = 0. (4.39)

Adding we have (f − g)
{

(θ1 − θ2) + 2µ(f − g) + 32(f3 − g3)
}

= 0. ¿From here we find
that θ1 = 32g3 + 2µg + µ1, θ2 = 32f3 + 2µf + µ1, where µ1 is an arbitrary constant.
Equations (4.38) and (4.39) are equivalent to

f ′′ + 40f4 + 3µf2 + 2µ1f − g′′ − 40g4 − 3µg2 − 2µ1g = 0.

As f is a function of z1 only, and g a function of z2 only, it must be

f ′′ + 40f4 + 3µf2 + 2µ1f + µ2 = 0,

g′′ + 40g4 + 3µg2 + 2µ1g + µ2 = 0,
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with µ2 an arbitrary constant, thus obtaining a pair of ordinary differential equations.
Integrating once we obtain

(f ′)2 + 16f5 + 2µf3 + 2µ1f
2 − 2µ2f + µ3 = 0,

(g′)2 + 16g5 + 2µf3 + 2µ1g
2 − 2µ2g + µ4 = 0.

Using these four relations in (4.35) we can see that µ3 = µ4. So finally we have found that

β = f(w + x) − g(w − x), γ = 10f(w + x) + 10g(w − x),

where f and g are any solutions of

(y′)2 + 16y5 + λ3y
3 + λ2y

2 + λ1y + λ0 = 0

with λi arbitrary constants. This is Eq. (4.8). �

Although we assumed that f ′ 6= 0 and g′ 6= 0, it is possible to prove that these expres-
sions are also true when f ′ = 0 or g′ = 0. The case f ′ = g′ = 0 was studied above.

The case k1 = 1, k3 = 0. From (4.31) and (4.32) we can put γ = 10g(w), β =
g′(w)x + f(w), with g(w) and f(w) arbitrary functions, with g′(w) 6= 0 in order not to
fall into cases already studied. Equation (4.33) becomes g′′f − g′f ′ = 0 and it must be
that f = λg′, that is, β = g′(x + λ). Using point transformations we can put β = 1 and
this is a case studied already.

For case k1 = k3 = 0, from (4.31) it follows that γ is an arbitrary constant, while (4.33)
and (4.34) imply that

βxx

β
− 3

2

β2
x

β2
= ι1(x),

βww

β
− 3

2

β2
w

β2
= ι2(w).

Using point transformations x̄ = φ(x) and w̄ = ψ(w), we can make ι1 = ι2 = 0. The
solution of the equations yields βx = κ1(w)β3/2, βw = κ2(x)β

3/2. Compatibility conditions
imply that κ′1 − κ′2 = 0. If κ′1 = 0, allowed transformations permit to put β = 1

/

(x+w)2,
yielding Eq. (4.9). �

If κ′1 6= 0, we can put β = 1
/

(xw + λ)2, but using allowed transformations this case is
the previous one.

5 Differential substitutions into the KdV and KN equations

All the nine differential equations of the previous section are related to the KdV or KN
equations through a highly nontrivial differential substitution (1.7) (and thus are inte-
grable). When an evolution equation admits a classical symmetry, then there exists a
differential substitution to an equation with a smaller symmetry group. These are the
so-called group transformations [15]. The original KdV (1.3) admits classical symmetries,
and the substitution w = 1

/

ux, y = u plus a scaling transforms KdV into

wt = Dy

(

wyy

w3
− 3

w2
y

w4
− 3y

)

, (5.1)
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that has a null symmetry group. Similarly the nonsymmetric version of Krichever--
Novikov (1.4) is

wt = Dy

(

wyy

w3
− 3

2

w2
y

w4
+R(y)w2

)

, R(y) = y3 + ρ1y + ρ0. (5.2)

Differential substitutions (1.7) transform conserved densities ρ (so ρt = σx) into conserved
densities ρ̄ = ρ/Dxφ. Consider differential substitutions (in non-standard variables) of
the general equation (3.2). The variable u is a conserved density of (3.2). Requiring it to
transform into the conserved density w of (5.1) or (5.2), the substitution must be of the
form

y = Z, w =
u

DxZ
. (5.3)

5.1 Differential substitutions to KdV

We give here a way to find differential substitutions from equation (3.2)-(3.3) to (5.1).
Imposing that the differential substitution (5.3) must transform (3.2) into (5.1) we see
that

Zt =
DxZ

u

(

Q

u2
+ T + lu2 +mu

)

+
D3

xZ

u3
− 3D2

xZ
ux

u4
+

3

2
DxZ

u2
x

u5
+ 3

Z DxZ

u

and there are two types of substitutions, denoted as KdV1 and KdV2:

Z =
1

u
Dx

(

−ux

u2
+N(v)u

)

− 1

2

u2
x

u4
− Q

u2
− 1

3
T +

1

3
lu2, (5.4)

Z =
1

u
Dx

(

ux

u2
+
N(v)

u

)

− 1

2

u2
x

u4
− Q

u2
− 1

3
T +

1

3
lu2. (5.5)

Necessary and sufficient compatibility conditions are, for KdV1:

Φ2(N) = −2

3
l − 1

4
N2, (5.6)

0 = 6Φ2Φ2Φ0(N) + 3NΦ2Φ0(N) − 2Φ2(T )N + 2Φ2Φ2(T ) + 6Φ2Φ0(l), (5.7)

0 = 3Φ0Φ2Φ0(N) − 3Φ2Φ0Φ0(N) +
3

2
NΦ0Φ0(N) + 2Φ2(Q)N−

−3

2
QN2−2Φ0Φ2(T )−4

3
Ql + E, (5.8)

0 = Φ0Φ0Φ0(N) − 2QΦ0(N) − Φ0(Q)N + 2Φ0Φ2(Q) − Φ2Φ0(Q), (5.9)

s(N) = Φ0(N)m− Φ0(m)N + 2Φ2Φ0(m) (5.10)

and for KdV2:

Φ0(N) = 2Q− 1

4
N2, (5.11)

0 = Φ2Φ2Φ2(N)+
2

3
lΦ2(N)−Φ2Φ2(T )−Φ2Φ0(l), (5.12)
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0 = 3Φ2Φ0Φ2(N) − 3Φ0Φ2Φ2(N) +
3

2
NΦ2Φ2(N) −NΦ2(T )−

−NΦ0(l) +
1

2
lN2 − 2Φ2Φ2(Q) − 4

3
Ql + E, (5.13)

0 = 3Φ0Φ0Φ2(N) +
3

2
NΦ0Φ2(N) −NΦ2(Q) + 3Φ2Φ0(Q) − 8Φ0Φ2(Q), (5.14)

s(N) = − 1

4
N2m+NΦ0(m) + 2Qm− 2Φ0Φ0(m). (5.15)

5.2 Differential substitutions to KN

The differential substitution is also of the form (5.3) with

Zt =
DxZ

u

(

Q

u2
+ T + lu2 +mu

)

+
1

u3

(

D3
xZ − 3

2

(D2
xZ)2

DxZ

)

− R(Z)

DxZ
u.

One can see that Z = Z(v) and there are again two types of differential substitution. For
the first one, KN1, there must be a nonconstant function, Z(v), satisfying

Φ2(Z) = 0, (5.16)

0 = Φ2Φ2Φ0(Z) − 1

2

(Φ2Φ0(Z))2

Φ0(Z)
+

1

3
lΦ0(Z) − 1

3

R(Z)

Φ0(Z)
, (5.17)

0 = Φ2Φ0Φ0(Z) − Φ0Φ2Φ0(Z) − Φ2Φ0(Z)Φ0Φ0(Z)

Φ0(Z)
+

1

3
TΦ0(Z), (5.18)

0 = Φ0Φ0Φ0(Z) − 3

2

(Φ0Φ0(Z))2

Φ0(Z)
+QΦ0(Z), (5.19)

s(Z) = mΦ0(Z). (5.20)

For KN2 Z(v) must satisfy

Φ0(Z) = 0, (5.21)

0 = Φ0Φ0Φ2(Z) − 1

2

(Φ0Φ2(Z))2

Φ2(Z)
−QΦ2(Z) − 1

3

R(Z)

Φ2(Z)
, (5.22)

0 = Φ0Φ2Φ2(Z) − Φ2Φ0Φ2(Z) − Φ2Φ2(Z)Φ0Φ2(Z)

Φ2(Z)
+

1

3
TΦ2(Z), (5.23)

0 = Φ2Φ2Φ2(Z) − 3

2

(Φ2Φ2(Z))2

Φ2(Z)
− 1

3
lΦ2(Z), (5.24)

s(Z) = 0. (5.25)

5.3 The differential substitutions of equations (4.1)–(4.9)

In some case there is more than one type of substitution that transforms any of equa-
tions (4.1)–(4.9) to either KdV or KN. We give here just one transformation for each
equation.

For equations (4.1)–(4.6) a KdV1 substitution with N = 0 suffices to transform them
into KdV.

Equation (4.7) admits KdV2 with N = −λ1w
3/4
x z + 1

4λ
2
1w

5/2
x .
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Equation (4.9) admits many substitutions into the KN equation, of type KN1 and KN2.
One of type KN1 has

Z = Z(x,w,wx) = −3

4

x− α

w + α
− λ

8
,

where α is a root of c1α
2 + c2α+ c3 = 0.

The calculation of a transformation for equation (4.8) is nontrivial and it is the subject
of the following section. It is remarkable that, in spite of the appearance of general
hyperelliptic functions, the substitution relates this equation to KN, that is related to
standard elliptic functions (there is a point transformation from the form given here (5.2)
to an equation with a Weierstrassian ℘).

6 Derivation of the differential substitution for eq. (4.8)

We have found a KN-1 substitution for eq. (4.8). Condition (5.16) implies that N(x,
w,wx, wxx) = N(x,w,wx). Now condition (5.19) is a polynomial of fourth order in z2.
The coefficient in z8 implies that either

N =
d(x,w)√

wx + k(x,w)
+ n(x,w) (6.1)

or N = n(x,w)
√
wx + m(x,w). This latter possibility is discarded because then (5.18)

implies that n(x,w) = 0 and m(x,w) = k so that N = k constant, which does not
constitute a proper differential substitution.

Consider the form (6.1) of N . The coefficient of z6 in (5.19) implies

d = − 1

β3/2

∂n

∂w

(which discards ∂n/∂w = 0 as a valid solution). The conditions now translate into relations
between different partial derivatives of n(x,w) and k(x,w), involving the parameters in the
equation (4.9). For example the previous condition also yields (using subscript notation
for partial derivatives)

nxw = β3/2knx −
(

β3/2

k
− 3

2

βx

β
− 1

k
kx

)

nw.

The coefficient in (5.19) of z4 implies a relationship between nx and nwww, nww, nw, kw.
Condition (5.18) gives relations: between nwww and nww, nw, kw, between kx and kww,
kw and finally a relation between kwww and kww, kw. After we consider all the relations,
conditions (5.18)–(5.19) are satisfied.

Equation (5.17) provides four independent conditions. Denoting R(n) = n3 + ρ1n+ ρ0

(recall (5.2)) we can write them as

3n2
w = 8β2(n3 + ρ1n+ ρ0), (6.2)

3β(3βk4 + 24nk2 − 3β)2(n3 + ρ1n+ ρ0) =

= 8[3β(3n2 + ρ1)k
2 + 8(n3 + ρ1n+ ρ0)]

2k2. (6.3)
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The first relation is a differential equation that defines the function n(x,w) as an elliptic
function. The second relation is a polynomial relating the functions n(x,w) and k(x,w):
of eighth order in k and sixth order in n! These equations define a differential substitution
from equation (4.8) into the KN equation (5.2). A major computational difficulty was
to prove that they are compatible with all the previous differential relations, but modern
computer algebra systems made this possible.

7 Conclusions and further work

We have researched and classified an interesting family of fully nonlinear evolution equa-
tions of order three. We have found that any integrable equation in the family can be put,
using a contact transformation, in one of nine “normal” forms corresponding to nine given
evolution equations. One of these equations (eq. (4.8)) involves hyperelliptical functions
and that could be a sign of being a new integrable equation, because the only ones known
in this family involve polynomials (KdV) and elliptic functions (some form of KN). How-
ever the same happened with some simpler integrable quasilinear equations studied in [7],
but they finally turned out to be transformable into KN. We have shown that the same
situation arises in the fully nonlinear case.

The types of equations (2.15) and (2.16) await classification. They will surely provide
computational challenges and a good, final test to our conjecture.
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