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Abstract

We present q-discretizations of a second order differential equation in two independent
variables that not only go to the differential counterpart as q goes to 1 but admit
Moutard-Darboux transformations as well.

1 Introduction

One of the important components of the theory of nonlinear S-integrable differential equa-
tions [1] is Darboux transformations, the story of which starts with the paper by Moutard
[2] and therefore, contrary to the common tendency, we will call them Moutard-Darboux
transformations. An example of an equation which admits Moutard-Darboux transforma-
tions is the second order linear differential equation in two independent variables

Lψ = 0
L := a∂2

x + b∂2
y + 2c∂x∂y + (a,x +c,y +w)∂x + (c,x +b,y +z)∂y − f

(1.1)

where ψ is dependent variable ψ : R
2 ⊃ D ∋ (x, y) 7→ ψ(x, y) ∈ R while a, b, c, w, z and

w are given C1 functions of independent variables x and y (we use the standard notation
a,x := ∂a

∂x
, b,y := ∂b

∂y
etc.). The goal of this paper is to introduce such q-discretizations of

the equation (1.1) that not only go to the equation (1.1) as q goes to 1 but admit Moutard-
Darboux transformations as well. The literature concerning such discretizations is rich,
see e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], but almost all of the mentioned papers
concern 4-point difference schemes. The main result of this paper is the Moutard-Darboux
transformations introduced for a 7-point self-adjoint scheme [16] and a 6-point difference
scheme [17] can easily be extended to q-difference equations.

The q-difference schemes we discuss here are the 6-point scheme

L6Ψ = 0
L6 := aD

q
xD

q
x + bD

q
yD

q
y + cD

q
xD

q
y + gD

q
x + hD

q
y − f

(1.2)
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and the self-adjoint 7-point schemes (a q-discretization of formally self-adjoint eq. (1.1)
i.e. equation with w = 0 = z)

L7Ψ = 0

L7 := D
q
xaD

1

q

x +D
q
ybD

1

q

y +D
q
xcD

1

q

y +D
q
ycD

1

q

x − f
(1.3)

where the q-derivative of a function f : R ∋ x 7→ f(x) ∈ R is defined by

Dqf : R ∋ x 7→ Dqf(x) :=
f(qx) − f(x)

(q − 1)x

with R ∋ q 6= ±1, 0. We will express formulas mostly in terms of q-shift operators

T qxf(x, y) := f(qx, y) T qy f(x, y) := f(x, qy)

It is convenient to use the following notation for them

f1 := T1f := T qxf f12 := T12f := T qxT
q
y f

f−1 := T−1f := T
1

q

x f etc.

The paper is organized as follows. In section 2 we derive Moutard-Darboux transfor-
mations for the 2D second order differential equation (1.1). Applying the procedure from
the continuous case we introduce Moutard-Darboux transformations for the q-difference
6-point scheme in subsection 3.1 and for the q-difference 7-point scheme in subsection 3.2.
We end the paper with concluding remarks (section 4) indicating differences between the
discrete and continuous cases and raising some open problems.

2 Moutard-Darboux Transformation for 2D second order

differential equation

The goal of this section is to derive Moutard-Darboux transformations for 2D general
second order differential equation

Lψ = 0
L := a∂2

x + b∂2
y + 2c∂x∂y + (a,x +c,y +w)∂x + (c,x +b,y +z)∂y − f

(2.1)

where a, b, c, w, z and w are given C1 functions of independent variables x and y such
that ∀(x, y) ∈ D a2 +b2 +c2 6= 0. To do that we need a solution φ of the equation formally
adjoint to eq. (2.1)

L†φ = 0
L† := ∂xa∂x + ∂yb∂y + ∂xc∂y + ∂yc∂x − ∂xw − ∂yz − f

(2.2)

Then the equation

φLψ − ψL†φ = 0 (2.3)
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which can be written explicitly in the form

[aφψ,x +cφψ,y +(wφ− aφ,x−cφ,y )ψ],x +[bφψ,y +cφψ,x +(zφ− bφ,y −cφ,x )ψ],y = 0

(2.4)

guarantees the existence of a potential r

r,x = bφψ,y +cφψ,x +(zφ− bφ,y −cφ,x )ψ
r,y = −aφψ,x−cφψ,y −(wφ− aφ,x−cφ,y )ψ

(2.5)

When we write the potential r in the form r = ψ̄γ − φθpψ
θ

(the role of new functions ψ̄,
γ, θ and p will become clear in a moment) then we obtain

(ψ̄γ),x = θ[(p+ c)φ(ψ
θ

),x +bφ(ψ
θ

),y ] + [(φθp),x−θ
2(b(φ

θ
),y +c(φ

θ
),x−z

φ
θ
)]ψ
θ

(ψ̄γ),y = θ[(p− c)φ(ψ
θ

),y −aφ(ψ
θ

),x ] + [(φθp),y +θ2(a(φ
θ
),x +c(φ

θ
),y −w

φ
θ
)]ψ
θ

(2.6)

The crucial point is to assure that the map ψ 7→ ψ̄ is an invertible map between two
equations of the second order. We demand that the factor multiplying ψ

θ
in eq.(2.6)

vanish i.e.

(φθp),x = θ2[b(φ
θ
),y +c(φ

θ
),x−z

φ
θ
]

(φθp),y = −θ2[a(φ
θ
),x +c(φ

θ
),y −w

φ
θ
]

(2.7)

and φ2θ2(p2 − c2 + ab) does not vanish in the domain. In virtue of (2.2) compatibility
conditions of eqs. (2.7) reads

Lθ = 0 (2.8)

So finally we have theorem

Theorem 1. Assume that Lθ = 0, L†φ = 0, p is defined by eqs. (2.7), d := φθ(p2 − c2 +
ab) 6= 0 in the domain and ψ is the kernel of the operator L then formulas

[

(γψ̄),x
(γψ̄),y

]

= φθ

[

c+ p b

−a p− c

]





(

ψ
θ

)

,x
(

ψ
θ

)

,y



 (2.9)

constitute transformation ψ 7→ ψ̄ from solution space of the equation (2.1) to the solution
space of the equation

L̄ψ̄ = 0
L̄ := ā∂2

x + b̄∂2
y + 2c̄∂x∂y + (ā,x +c̄,y +w̄)∂x + (c̄,x +b̄,y +z̄)∂y − f̄

(2.10)

Where the coefficients of (2.10) are given by

ā = aγδ
d

b̄ = bγδ
d

c̄ = cγδ
d

w̄ = (
aγx+cγy

d
− (p

d
)yγ)δ − aγ

d
δx −

cγ
d
δy z̄ = (

bγy+cγx

d
+ (p

d
)xγ)δ − bγ

d
δy −

cγ
d
δx

f̄ = {−
aγxx+bγyy+2cγxy

d
− [(a

d
)x + ( c−p

d
)y]γx − [( b

d
)y + ( c+p

d
)x]γy}δ

(2.11)

where γ and δ are arbitrary (of class C2) functions.
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3 Moutard-Darboux transformation for q-difference schemes

3.1 The 6-point case

We consider the following q-difference equation

L6Ψ = 0
L6 := AT11 +BT22 + 2CT12 +GT1 +HT2 − F

(3.1)

which relates the points of the rectangular lattice shown on the Figure 1.

t
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Figure 1. The 6-point scheme

Similarly like in theorem 1 we think of Ψ as the kernel of the operator L6 while Θ and
Φ are given elements of the kernels of L6 and L

†
6 respectively i.e.

L6Θ = 0 (3.2)

L
†
6Φ = 0

L
†
6 := 1

q2
A−1−1T−1−1 + 1

q2
B−2−2T−2−2

+2 1
q2
C−1−2T−1−2 + 1

q
G−1T−1 + 1

q
H−2T−2 − F

(3.3)

One can consider the operator L†
6 as the operator formally adjoint to the operator L6 since

the Green’s identity fL6g − gL
†
6f = D

q
xM(f, g) + D

q
yN(f, g) holds. From the above we

conclude that there exists a function S such that

D
q
yS = x{1

q
(GΘ1 +AΘ11 + CΘ12)−1Φ−1 + 1

q2
A−1−1ΘΦ−1−1 + 1

q2
C−1−2ΘΦ−1−2}

D
q
xS = −y{1

q
(HΘ2 +BΘ22 + CΘ12)−2Φ−2 + 1

q2
B−2−2ΘΦ−2−2 + 1

q2
C−1−2ΘΦ−1−2}

Next we define

P :=
1

xy(q − 1)

S12

Θ12Φ
(3.4)

Starting with the equation

ΦL6Ψ − ΨL†
6Φ = 0 (3.5)

one obtains
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Theorem 2. Let Ψ be the kernel of the operator L6 and Θ and Φ be given solutions
of the equations L6Θ = 0 and L

†
6Φ = 0 respectively, P is given by (3.4) and D :=

x2y2Φ−1Φ−2Θ1Θ2[A−1B−2 − (C + P )−2(C − P )−1] 6= 0 in a domain, then the equation

[

D
q
x(Ψ̄Γ)

D
q
y(Ψ̄Γ)

]

=

[

xy(C + P )−2Φ−2Θ1 y2B−2Φ−2Θ2

−x2A−1Φ−1Θ1 xy(P − C)−1Φ−1Θ2

] [

D
q
x(Ψ

Θ)

D
q
y(

Ψ
Θ)

]

defines a map Ψ 7→ Ψ̄ and Ψ̄ is the kernel of bared L̄6 operator i.e.

ĀΨ̄11 + B̄Ψ̄22 + 2C̄Ψ̄12 + ḠΨ̄1 + H̄Ψ̄2 − F̄ Ψ̄ = 0

with the new potentials

Ā = ∆Γ11Θ11ΦA
D1

B̄ = ∆Γ22Θ22ΦB
D2

C̄ =
(

Θ11Φ1−2(C+P )1−2

D1
+ Θ22Φ

−12(C−P )
−12

D2

)

∆Γ12

2

Ḡ =
(

−Θ11Φ1−2(C+P )1−2+Θ11ΦA
D1

− Θ2Φ
−1(C−P )

−1+Θ1Φ
−1A−1

D

)

∆Γ1

H̄ =
(

−Θ22Φ
−12(C−P )

−12+Θ22ΦB
D2

− Θ1Φ
−2(C+P )

−2+Θ2Φ
−2B−2

D

)

∆Γ2

F̄
Γ = Ā

Γ11
+ B̄

Γ22
+ 2 C̄

Γ12
+ Ḡ

Γ1
+ H̄

Γ2

where ∆ and Γ are arbitrary functions.

3.2 The 7-point self-adjoint case

A similar procedure can be applied to the following 7-point scheme

L7Ψ = 0
L7 := AT1 + 1

q
A−1T−1 + BT2 + 1

q
B−2T−2 + C1T1−2 + C2T−12 −F

(3.6)

which relates the points of a rectangular lattice shown on the Figure 2. We take only one
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Figure 2. The 7-point scheme

function satisfying L7Φ = 0, instead of two functions. Actually, we may define the second
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function, for example: L7Θ = 0, but the reasoning from the 6-point case can be applied
here if Θ ≡ Φ. The continuous limit of the equation is Moutard (self-adjoint) reduction
[16] of the general Moutard-Darboux transformation we have presented in section 2.

Starting with the equation

ΦL7Ψ − ΨL7Φ = 0 (3.7)

one obtains

Theorem 3. Let Ψ be the kernel of the operator L7, Φ be a particular solution of L7Φ = 0
and function D = x2y2ΦA−1B−2 + x2y2Φ−1CA−1 + x2y2Φ−2CB−2 do not vanish in a
domain then the equation

[

D
q
x(Ψ̄Φ)

D
q
y(Ψ̄Φ)

]

=

[

xyCΦ−1Φ−2 −y2(B−2ΦΦ−2 + CΦ−1Φ−2)
x2(A−1ΦΦ−1 + CΦ−1Φ−2) −xyCΦ−1Φ−2

]





D
1

q

x (Ψ
Φ )

D
1

q

y (Ψ
Φ )





defines a map

Ψ 7→ Ψ̄

where Ψ̄ is the kernel of bared L̄7 operator i.e.

ĀΨ̄1 +
1

q
Ā−1Ψ̄−1 + B̄Ψ̄2 +

1

q
B̄−2Ψ̄−2 + C̄1Ψ̄1−2 + C̄2Ψ̄−12 − F̄Ψ̄ = 0

with the new potentials

Ā = ΦΦ1A−1

qΦ
−2D

B̄ = ΦΦ2B−2

qΦ
−1D

C̄ = C
−1−2Φ

−1Φ−2
Φ

−1−2D−1−2

F̄ = Φ(Ā 1
Φ1

+ 1
q
Ā−1

1
Φ

−1
+ B̄ 1

Φ2
+ 1

q
B̄−2

1
Φ

−2
+ C̄1

1
Φ1−2

+ C̄2
1

Φ
−12

)

4 Concluding remarks

The q-discretizations of Moutard-Darboux transformations we have shown in this paper
do not differ essentially from discretizations of Moutard-Darboux transformations. But
the world of both discretizations is essentially different from their continuous counterpart.
We will end this paper with a brief review of the differences indicating open problems.

The Moutard-Darboux transformations we have just presented can be reduced or spec-
ified i.e. one can impose such constraints on transformations that allow the preservation
of particular forms of the equations. In the continuous case one can:

• specify the gauge e.g. one can choose the affine gauge i.e. put f = 0 in the eq.
(1.1) and demand that f̄ in eq. (2.11) to be equal zero as well. It can be achieved
by imposing constraints on function γ. The simplest way (but not the only one) is
to put γ = 1

• specify the operator; due to simple transformation rules for coefficients a, b and
c one can put e.g. a = 0 = b or c = 0
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• reduce the transformation; in the case of a reduction it is necessary to relate
functions ψ and θ e.g. in the Moutard reduction p = 0, w = 0 = z and ψ = θ

Both for 6-point scheme and for 7-point scheme specifications to affine gauge (F = A +
B + 2C + G + H and F = A + A−1 + B + B−2 + C1 + C2 respectively) are admissible.
For the 6-point scheme there is a specification of Moutard-Darboux transformation to
4-point scheme (A = 0 = B) and C = 0 does not yield specification while for the 7-
point scheme there exist specification to 5-point scheme (C = 0) and one can not put
(A = 0 = B). The situation is less investigated as far as reductions are concerned.
The self-adjoint 7-point scheme obviously can not be a reduction of the 6-point scheme.
A Moutard reduction for 6-point scheme is not known (there exists Moutard reduction
for 4-point scheme specification [8] and it is not self-adjoint reduction anymore [18]). A
generalization of the 7-point scheme to a scheme that goes to the general 2D second order
differential equation is not known as well. We finally observe that 6-point scheme is
appropriate to solve quite different boundary problems (Figure 3.) than 7-point scheme
does (Figure 4). It makes the problems of existence of Moutard reduction of the 6-point
scheme and generalizations of 7-point scheme especially interesting.

Figure 3.
An initial-boundary problem for the 6-point scheme.

Having given the initial conditions at dark blue (black) points on two solid lines and
boundary conditions at yellow (grey) points one can propagate the solution inside the
domain (white points). Wave fronts are drawn with the doted lines
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Figure 4.
A Dirichlet problem for the 7-point scheme.

Having given boundary conditions for the hexagonal lattice at dark blue (black) points
one can find unique solution at all internal (white) points.
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