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Abstract

We show that the m-dimensional Euler-Manakov top on so*(m) can be
represented as a Poisson reduction of an integrable Hamiltonian system on a
symplectic extended Stiefel variety V(k,m), and present its Lax representation
with a rational parameter.

We also describe an integrable two-valued symplectic map B on the 4-
dimensional variety V(2,3). The map admits two different reductions, namely,
to the Lie group SO(3) and to the coalgebra so*(3).

The first reduction provides a discretization of the motion of the classical
Euler top in space and has a transparent geometric interpretation, which can
be regarded as a discrete version of the celebrated Poinsot model of motion and
which inherits some properties of another discrete system, the elliptic billiard.

The reduction of B to so*(3) gives a new explicit discretization of the Eu-
ler top in the angular momentum space, which preserves first integrals of the
continuous system.

1 Introduction

In most publications the integrable m-dimensional Euler top is represented as a flow
on the cotangent bundle 7*SO(m) or on the coalgebra so*(m).

Recently, an alternative description of this problem as a system on a symplectic
subvariety of the group product SO(m) x SO(m) was proposed in [4, 5].
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A first discretization of the free m-dimensional top on 7*SO(m) was constructed
in [24, 21] by the method of factorization of matrix polynomials. This discretization
is represented by a second order Lagrangian correspondence, which does not explic-
itly involve a time step, it is determined by initial data (a choice of two subsequent
points on SO(m)).

On the other hand, in [23], Suris introduced a concept of an integrable discreti-
sation of a finite-dimensional Hamiltonian system as a one parameter family of
integrable Poisson maps parameterized by a time step €, which differ from the iden-
tity map by O(e), and whose Poisson structure and the integrals of motion differ at
most by O(e) from those of the continuous-time system.

In the special case where the discretization preserves exactly both the Poisson
structure and the integrals of motion, one speak of an “exact discretization”: one
has a family of Backlund transformations, which map solutions into solutions and
are interpolated by a hamiltonian flow generated by some function of the integrals
of motion of the continuous system.

A class of implicitly defined Poisson maps so*(3) — so*(3) discretizing the clas-
sical Euler top in the space of the angular momentum was indicated in [6]. The
maps preserve the energy and momentum integrals of the continuous problem and
contain explicitly a time step parameter. It was shown that such a map preserves
the standard Lie—Poisson structure on so*(3) if and only if its restriction onto com-
plex invariant manifolds, open subsets of elliptic curves, is a shift, which is constant
on each curve.

Recently, another integrable discretization of the top on so*(3), which is explicit,
but does not preserve the integrals of the continuous problem was found in [14] by
applying the Hirota method.

Contents of the paper. Our aim is twofold. First, in Section 2, we propose
yet another description of the continuous n-dimensional Euler—-Manakov top as a
reduction of a Hamiltonian system on so called extended Stiefel variety V(k,m), a
symplectic submanifold of dimension km — k?/2 in R¥™, where 2 < k < n is an even
integer. We present a Lax representation of this system with a rational parameter,
which, in a sense described below, is dual to Manakov’s Lax pair found in [17].

The system possesses k/2 commuting symmetry fields R; generated by Hamilto-
nians H;. Its Marsden—Weinstein reduction with respect to the action of the fields
gives rise to a Hamiltonian system on a rank k£ coadjoint orbit S}(lk) in the coalge-
bra so*(m), whereas the original Poisson structure in V(k,m) is a pull-back of the
standard Lie—Poisson structure of so*(m) restricted onto the orbit. The reduced
Hamiltonian system coincides with the Euler-Manakov system on S}(lk). In case of
the maximal rank k, the level variety {H; = ¢;} C V(k,m) is the group SO(m),
and the restriction of the original system onto the group yields a flow describing the
motion of the n-dimensional top in space.

Second, in Section 3, we present an intertwining relation (discrete Lax pair)
generating a explicit A*-depended family of two-valued complex Backlund transfor-
mations B3 of the variety V(2,3), which preserve the above Poisson structure and
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the first integrals of the continuous Hamiltonian system.

The restricton of B} onto the group SO(3) provides a discretization of the motion
of the classical Euler top in space and has a transparent geometric interpretation,
which, in turn, can be regarded as a discrete version of the celebrated Poinsot model
of motion and which inherits some properties of another discrete integrable system,
the elliptic billiard (Figure 1).

On the other hand, the reduction of B} onto the coalgebra so*(3) gives a new ex-
plicit discretization of the classical Euler top, which also preserves its first integrals.

Like the Moser—Veselov correspondence, the both discretizations do not explicitly
involve a time step and their continuous limits depend on the parameter \*.

2 Hamiltonian Systems on Extended Stiefel Varieties
and Rank k£ Solutions of Frahm—Manakov top

Recall that the free motion of an m-dimensional rigid body is described by the
Euler-Frahm equations ([11])

M = [M,Q), (2.1)

where Q0 € so(m) is the angular velocity, M € so*(m) the angular momentum of
the body in the moving frame. Following [19, 22], these equations are Hamiltonian
with respect to the degenerate Lie—Poisson bracket on so*(m)

{Mij, My} so(my = SuMjp — 0 Myj + 6 Mjy — S My (2.2)

The restriction of {-,}so(,) onto orbits of coadjoint action of SO(m) in so*(m)
is nondegenerate. A generic orbit Sj, parameterized by [m/2] independent Casimir
functions of the bracket is thus a symplectic variety of dimension m(m—1)/2—[m/2].

Equations (2.1) are known to be integrable provided M and Q are related as
[M,a] = [Q,b], where a,b are constant commuting matrices, and all the eigenvalues
of a and b are distinct. The integrability follows from the Lax representation with
a rational spectral parameter found by Manakov in [17], or from a hyperelliptic Lax
pair indicated in [8]. These Lax pairs provide a complete set of integrals of motion,
whose involutivity can be proved by applying r-matrix theory.

For the concreteness, in the sequel we consider the case a = diag(aq,...,am),
b=a? Then Q = AM + M A, and equations (2.1) take the form

M = [M,aM + Ma] (2.3)

Apart from this “basic” system, there exists a whole hierarchy of “higher Man-
akov systems”, which are defined by different relations between €2 and M, and which
commute with (2.3).

Below we show that the restrictions of the Frahm—Manakov system on rank k
orbits of coadjoint representation of SO(m) in so*(m) are closely related to certain



80 Yu N Fedorov

Hamiltonian dynamical systems on extended Stiefel varieties. Recall that the stan-
dard Stiefel variety V(k,m) is the variety of ordered sets of k orthogonal vectors in
R™ (C™) having fixed squares. It is a smooth variety of dimension km — k(k +1)/2
(see e.g., [7]).

Namely, as follows from (2.1), the angular momentum in space is a constant
matrix. Hence, due to the Darboux theorem, in the case rank M = k there exist k
mutually orthogonal and fized in space vectors x(l),y(l) eR™ I =1,...,k/2 such
that [zV|? = |y|?> = h; and the momentum M can be represented in form

k/2
M=> 20 nAyD thatis, M=xTy-YTx, (2.4)
=1

AT = (@0 W2y YT () /)y

Under the above conditions, the set of kxm matrices Z = (z(1) y(1) ... g(k/2) (/2T
forms the extended Stiefel variety V(k,m). In contrast to the standard Stiefel
variety, for each index I, the absolute values |z()| = |y)| are not fixed. Thus,
V(k,m) is of dimension km — k?/2, and the k x m components of Z play the role of
excessive coordinates on it.

Let i
w=tr(dX AdYT) = Z Z dacgl) A dyi(l)
I=1 i=1
be the canonical symplectic structure on the space RF™ = (x(l), y@ e g (k/2) y(k/Q))

and let @ denote the restriction of 2-form w onto V(k,m) C R*¥™. The latter subva-
riety is defined by conditions

(@0,20) = (0, y) =0, (@D, 2)) = (V,y¥) =0, yaT =0, (25)
l,s=1,...,k/2,

which consist of k?/2 independent scalar equations fy(z,y) = 0. The matrix of
standard Poisson brackets of the constraint functions f, in R¥™ is nondegenerate.
It follows that 2-form @ is also nondegenerate and the extended Stiefel variety is
symplectic.

Since the vectors are fixed in space, in the frame attached to the top they satisfy
the Poisson equations &) = —Qz®, ) = —Qy(®, Q so(m), which imply

X=x0, Y=)Q. (2.6)

As above, we put Q = aM + Ma, a = diag(aq,...,a,) and define a dynamical
system on V(k,m), which is generated by (2.6), (2.4):

X = X[a(XTY - YTx) + 2T Ya),
Y =YaX'y-y'x) - y"xd].

Theorem 2.1. 1) Under the substitution (2.4) solutions of the system (2.7) give
rank k solutions of the Frahm-Manakov system (2.3) on so*(m).

2.7)
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2) Up to the action of the discrete group generated by reflections (X,Y) — (=X, =),
the system (2.7) is described by k x k Lax pair with rational parameter X\

L) =[L(\),AN)], L,Acsp(k/2), MeC, (2.8)

L= ( ;fgll B C)l)lg%T _;fﬁl__ N 13?) i o (2.9)

= (5 i)

= (S S
where 7 = (a0, 2} (respectively 7 = (2",....al"/?)") is ith

column of X (respectively of ), and I is the unit m x m matriz.

Proof. The first statement follows directly from the derivation of the system (2.7).
Further, we calculate the derivative L()\) by virtue of equations (2.7). In view of
matrix relations (A\I —a) ta = A(AI—a)™! =T and YXT = XYT = 0, the derivative
coincides with the commutator in (2.8). |

Remark 2.1. Notice that the entries of matrices
S(AN)L(N), DPANA(N), where PN =AN—a1) - (A—ay)
are polynomials in A, and, under the substitution (2.4), the coefficients of the char-

acteristic polynomial |®(\)L(A) — wI| can be expressed in terms of M;; only as
follows

k
Wl = L) = w* + > wF I N LA M), 1=2,4,..k,
=2

Z - ”)(A_w)yM\f, (2.11)
T 21 1]

where |[M|] are diagonal minors of order [ corresponding to multi-indices I =
{i1,...ig} € {1,...,m}, 1 < i3 < --- < 4; < m. Notice that the leading coeffi-
cients Hy (M) = ST |M|- form a complete set of Casimir functions on so*(m).

The k x k matrix L(A) in (2.9) belongs to a wide class of Lax operators of the
form

where Y € gl(k) is a constant matrix and Gy, F; are k; x k matrices. SuchNLaX
matrices can be regarded as images of moment maps to the loop algebra gl(k),
and integrable systems generated by them have been studied in the series of papers
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[1, 1, 2, 3] in connection with the duality to so called rank k& perturbations of constant
diagonal matrices of dimension n x n (following Moser [20]). In particular, the k x k
Lax matrix (2.9) is dual to the n x n Lax matrix in the Manakov representation,

L(p) =a+ i(XTy ~VX)=a+ iM, (2.12)

in the sense that under the relation (2.4) the spectral curves |L(A) — pI| = 0 and
|£(p) — wI| = 0 are birationally equivalent and the parameter A plays the role of
the eigenvalue parameter for (2.12). The characteristic polynomials of the dual Lax
matrices are related by the Weinstein—Aronjan formula (see [1]).

Remark 2.2. The matrix A()) in (2.10) can be represented in form

0 XXT>

AN = [ATP2ONLN) |4 + (ag + - + an) Lo, Lo = <_ny 0

where [ ]+ denotes the polynomial part in A of the expression. Notice that the Lax
equation L = [L, Ly] describes the vector flow

x(l) = ('I(l)a:ﬂ(l))y(l)’ y(l) = _(y(l), y(l))x(l)a l = 15 ey k/2 (213)
For each index R;, equations (2.13) generate rotations R; in 2-planes spanned by

the vectors ),y which leave the momentum M invariant.

Let {-,-} be the Poisson bracket on V(k,m) obtained as the Dirac restriction of
the standard bracket in R¥™. Symplectic properties of our system are descibed by

Proposition 2.2. The dynamical system (2.7) on V(k,m) is Hamiltonian with re-
spect to {-,-} with the Hamilton function H(X,Y) = —tr(M?*(X,Y)A). In the
abundant coordinates X, it admits the canonical representation

w2 ) 1y
0y, 1V(k,m) Ox;” 1V (k,m)

i=1,...,n, l=1,...,k/2.

Proof. The equivalence of equations (2.14) and (2.7) on V(k, m) is verified by direct
calculations. Next, according to the Dirac formalizm, the standard bracket and {-,-}
are different by terms containing { fs, H}. The latter equal zero since the constraint
functions f, given by (2.5) are invariants of the flow generated by H(X,)) on RF™.

Hence, equations (2.7) or (2.14) are Hamiltonian with respect to {-,-}. [

Rotations R; given by (2.13) are generated by the Hamiltonians H;(x,y), the
restrictions of the functions %(az(l) , W) (y®,yO) on V(k,m). Clearly, these functions
are first integrals of the system (2.7) and moreover they commute with H.

Let us fix the values of the Hamiltonians by putting

(:U(l),x(l)) = (y(l),y(l)) =h;, hy=const#0, l=1,... k/2.
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These conditions define the customary Stiefel variety V(k,m). Under the substitu-
tion (2.4), the factor variety V(k,m)/{R1,...,Ry/2} coincides with a rank k coad-

joint orbit S,(lk) C so0*(m) of dimension k (m — %) — k, which is parameterized by
the constants hq, ..., hy /. Notice that M?=h2+.. + hi/?

Theorem 2.3. 1) Under the map V(k,m) — S,(lk), the Lie—Poisson bracket on
S,(f) C so*(m) is the push-forward of the bracket {-,-}.

2) The Poisson (Marsden—Weinstein) reduction of the system (2.7) obtained by
fizing values of Hi(z,y) and by factorization by Ry, | = 1,...,k/2 coincides
with the restriction of the Frahm—Manakov system with Hamiltonian

., ok
H(M) = %Zigj(ai + aj)Ml?j onto the orbit S,(L ).

Proof. 1). In view of (2.2), (2.4),

{Mij(Xay)a Mkl(X’y)} = {Mij, Mkl}so(n)(X’y)’

i.e., the canonical bracket on R¥™ is the pull-back of the bracket {-, -}so(n) on S,(Lk) C
s0*(m). On the other hand, on V(k,m),

{M;5(X,Y), M (X, )} = {M;;(X, V), M (X, D)},

since for any 1,7, s, {M;;(X,Y), fs(X,Y)} = 0. This proves item 1).

2). By item 1) and Proposition 2.2, the Poisson reduction of system (2.7) onto
S}(lk) is described by the Lie-Poisson bracket {-,-},(») and the Hamiltonian H (M) =
H(X,Y) = Zigj(ai + aj)MZ?j, i.e., it is the corresponding restriction of the Frahm—
Manakov system. |

The reduced system on the orbit S,gk) is integrable and its generic invariant man-
ifolds are tori of dimension dim S,gk) (see, e.g., [19]). On the other hand, the preim-
age of a generic point M € S,(lk) in V(k,m) is a k/2-fold product of circles S x---x S!
(in the complex case C* x - - - x C*). This implies that the original system on V(k, m)
has generic invariant tori of dimension 1dim S}(lk) +k/2=(m—k/2)k/2, ie., a half
of dimension of the symplectic manifold V(k, m). Hence, the original system (2.7)
is also integrable.

To get a global view on the above manifolds, we represent them in the following
diagram, with the dimension indicated above, where arrows denote the correspond-
ing relations (restrictions or factorizations).

fs:()

_ 2O 2=y D 2=,

V(k, m) —RLsW

kxm k m—E k m—E —E k m—E -k
2 2 2 2




84 Yu N Fedorov

Remark 2.3. In the case of maximal rank k& (k = m or k = m — 1), when S,(f) is

a generic coadjoint orbit S, the Stiefel variety V(k,m) is isomorphic to the group
SO(m). Then the following commutative diagram holds

|z 2=y |2=p,
_—

V(k,m SO(m)
7| 7
50*(m) Hym—1(M)=c Sy

where the values {¢;} of nonzero Casimir functions H; ,,—;(M) correspond to the con-
stants {h; }. The mapping SO(m) R S}, can be regarded as a multi-dimensional
analog of the Hopf fibration S0O(3) _ S g2. The restriction of the system (2.7)
onto V(k,m) yields an integrable flow on the group SO(m) which describes the
motion of the Frahm—Manakov top in space for the chosen angular momentum.

For m = 3 such a flow was considered in [15, 16] from the point of view of its
hydrodynamical interpretation.

A generalization of the Chasles theorem. If the rank & is not maximal, then
the components of X',) themselves are not sufficient to form a complete set of
coordinates on SO(m) and to determine the position of the top in space uniquely.
However, in this case one can make use of the following geometric property described
in [8]. Let us fix a part of constants of motion by putting in (2.11)

Ti(s, M) =co(s—c1) (s — k), €0y Cly - -+ y Cm—k = const (2.15)
and consider family of confocal cones in R™ = (X1,..., X,,)
- X? X2
Q) = { A E ol (2.16)
s—a s —ap

Let A C R™ be a k-plane spanned by the orthogonal vectors (), y1) . z(k/2) 4(k/2),
Proposition 2.4. ([8]).

1). Under the motion of the Frahm—Manakov top with constants (2.15) the k-plane
A is tangent to the fized cones Q(c1),...,Q(Cm_k)-

2). Let ¢\ be a normal vector of the cone Q(cq) at a point of the contact line AN
Q(c). Then the vectors ¢, ... ¢k together with (D, y(D) . zk/2) 4(k/2)
form an orthogonal frame in R™ which is fixed in space.

For fixed polynomial fk(s,M ), the vectors #") can be calculated in terms of
) y(8) and, thereby, the position of the top in space is completely determined.
Proposition 2.4 defines a single-valued map V(k,m) — SO(m) under which generic
invariant tori of dimension (m — k/2)k/2 on V(k,m) become tori of the same di-
mension on the group SO(m).

Note that the above proposition generalizes the celebrated Chasles theorem on
the propery of the tangent line to a geodesic on a quadric.



Flows and Backlund transformations on extended Stiefel varieties 85

The rank 2 case. In the simplest case £k = 2 the angular momentum can be
represented in form

)T

M=zxAuy, x:m(l):(aﬁl,...,xm , y:y(l):(yl,...,ym)T (2.17)

and equations (2.7) describe a Hamiltonian system on the extended Stiefel variety

p(.m) = { (@) lel = ol (o) =0},

&= —(y,ax)r + (2,ax)y + ay(z, ),

Z) = —(y, ay)x + (x, ay)y — ax(y, y) (218)

with the Hamiltonian

1 1 &

= 3 a2)(5.9) — (@) 9) + 5 0p),0) = 5 Do+ a) M3,
1<j

Equivalently, this system describes the evolution of fixed orthogonal vectors x,y
in a frame attached to the m-dimensional body. The system admits the following
2 x 2 Lax pair arising from (2.8),

BO) = (200, A0, 219)
L) = o) (‘ 2 e~ 2 A) ,
VAP Sy

(=Y A+ a)Tys — Y (A4 ag)a?
A = ( Zﬁf@\ +a;)y; Z?Q(;\ + az)ﬁﬂiyi) ’
PN =A—a1) - (A—am),

The Lax representation (2.19) was first indicated in [3], where it was shown to
be dual to an n x n Lax pair for the rank 2 case found by Moser in [20].

In view of relation (2.17), the characteristic polynomial [L()) — pI| for (2.19) can
be written in form ®(\)Za(\, M) + u?, where Zo(\, M) is the family of quadratic
integrals defined in (2.11),

o)

T\ M) = M
;j A =ai)(A—a;) Y
= )\m72H2,m—2(M) + )‘m73H2,m—3(M) +o Tt HQO(M) (220)

Notice that Hom—2(M) = > 1%, MZQJ = (y,y)(z,x) is a Casimir function of the
standard LiePoisson bracket on so*(m). With respect to the Poisson bracket {, }
on V(2,m), this function generates permanent rotations of the top in the fixed 2-
plane A = span(y, x), which leave the components of M invariant.

Let us fix the constants of motion by putting

fg()\,M) =co(A—c1) - (A= em—2), €0yCly -+, Cm_o = const. (2.21)
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This defines hyperelliptic spectral curve in C? = (X, 1) of genus g = m — 2
C={p?=—-co®NA=c1)--(A—cmo)}. (2.22)

As noticed in [9], the real generic (g + 1)-dimensional invariant tori of the system
can be extended to open subsets of generalized Jacobian varieties Jac(C, oo ), which
are extensions of the customary g-dimensional Jacobian Jac(C) by C* and which can
be regarded as the factor of C2 by the lattice generated by (2g+ 1) independent pe-
riod vectors of g holomorphic differentials @ ..., &, and a meromorphic differential
of the third kind (2., having a pair of simple poles at the infinite points co4 on
the curve C.

The coefficients of the matrix polynomial L(\) are meromorphic functions on
Jac(C, 004 ), whereas the components of the momentum M;; and the normal vectors
$® are meromorphic on a covering of the Jacobian Jac(C) itself (the C*-extension
is factored out by the action of R = S0O(2)).

In the classical case m = 3 the curves C become elliptic ones and generic invariant
tori in V(2,3) and in SO(3) are 2-dimensional. Since now rank M =2 in the generic
case, the above commutative diagram takes the form

_ z|?2=|y|2=
v(2,3) L= 503
so<2)l 50(2)l
12
s0*(3) LM)=R, 52

52}, being the coadjoint orbit (2-dimensional sphere) corresponding to the constant

h.

3 Bicklund transformation on V(2,3), SO(3)
and discretization of the clasical Euler top

A first integrable discretization of the m-dimensional Euler-Manakov top was con-
structed in [24, 21] by the method of factorization of matrix polynomials. It was
represented by the correspondence (2, M) — (Q,M), Q € SO(m),M € so*(m),
which, in our notation reads

M=0TA-AQ, M=QMQT. (3.1)

Given M , the new matrix Q is found from equation M=QTA— AS~2, whose solution
is not unique.

In given section we describe a symplectic map By, : V(2,3) — V(2,3), Bao(2,y) =
(z,y) governed by an arbitrary parameter \* € C, which preserves the first integrals
of the continuous system (2.18) and whose restriction to each generic complex torus,
generalized Jacobian Jac(C, 0oy ), is given by shift by the 2-dimensional vector

E+
S = ((D, Qooi)Ta Ei = ()‘*,:l::u*)’
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E. being involutive points on the elliptic spectral curve, the simplest case of (2.22),
C={1?=—co(A—a1)(A —az)(A —az) (A = e1)}.

Note that S is a correctly defined vector in the generalized Jacobian: under a change
of integration path on C it increases by a period vector of Jac(C,oo1). We also
emphasize that here A\* is a constant parameter, whereas the conjugated coordinate
u* depends on the equation of the curve.

Bicklund transformation on V(2,3). As shown in [10] by applying an addition
theorem for a class of meromorphic functions on generalized hyperelliptic Jacobians,
such a map admits intertwining relation (discrete Lax pair)

LM AIN) = M(AIN)L(N), 32
o [(—a(A=X) + 3 1
M(AX) = ( 3 —a(A =A%) - ﬁ) ’
o _ W HLu(N) _ pt+ajasai(z, (a — ND)"y)
BAY) = L) ajasal(z, (a — A I)~lx) 7 (3.3)
_ 35()\) af =a; — \* |
N oy’ T

where L()) is defined in (2.19) and L()\) depends on the new variables Z,7 in the
same way as L(A) depends on z,y. In view of (2.20) for m = 3,

3
k=1

Now putting in (3.2) subsequently A = a1, a3,a3 and calculating the matrices
M (a;)L(a;|z,y)M~*(a;), we find

~2 (yi + Bri + ala; — X*)x;)?

i a2(ai _ )\*)2 )
5 (Byi + PPy — aa; — N)y;)?
Yi = OZQ(CLZ' _ )\*)2 ) (35)
= (Yt Bri + alai — A)zi) (Byi + Bai — ala; — \)y;)
iYi = QQ(CLZ' _ )\*)2 ’

i From here the new variables can be recovered up to the action of the group gener-
ated by reflections (z;,y;) — (—Z;, —y;). Imposing the condition of the existence of
a continuous limit (see below), we choose the following relations

. yi+Bri - Blyi + Bx;) ,

| — Ty = — =Yy =, =1,2,3. 3.6

xz xz CY((ZZ‘ _ )\*)7 yZ yZ CY((ZZ‘ _ )\*) ? ( )
These expressions together with (3.3), (3.4) describe the map By, : V(2,3) — V(2,3)
in an explicit form. Since a generic parameter A* corresponds to two values of u*,
the map is generally two-valued.
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Geometric model. The restriction of the map onto the group SO(3) admits a
transparent geometric interpretation, which can be regarded as a “discrete version”
of the kinematic Poinsot model (see, e.g., [25]). Namely, let |z| = |y| = 1 and let

R=|lzy Ayl € SO(3)

be rotation matrix defining a position of a rigid body in space. We attach to the
body a cone Ko = {(X,(a — A*I)"'X) = 0}, which is fixed in the body frame
(X1, X9, X3), and assume that

O0<ar<as<ag, a <N <ays or as <\ <as. (3.7)

Under these conditions the cone is real and regular. Let II be 2-plane spanned by
x,1y, which is thus fixed in space and orthogonal to the momentum vector M = xAy.
Assume also that z,y are such that II has a nonempty real intersection with the
cone K9 along lines L1, Ly. One can show that under this condition the coordinates
w* defined in (3.4) and the parameters «, 3 are real.

Theorem 3.1. Let K1 = {(X,(a — hI)"'X) = 0}, h = const be a unique cone
attached to the body such that it is confocal to Ko and tangent to the fixed plane II.
Then then new position of the body defined by the rotation matriz R = llzy =AYl
and expressions (3.6) is obtained from the original position by rotating the cones
K1, Koy about axis L1 or Lo until K1 again touches II.

This geometric construction is illustrated on Figure 1. In the new position R
determined by rotation about Lo, the cone K5 intersects II along Ly and another
line L3. Then the next iteration is generated by rotation about Lo or Ls. The
two-valuedness of the map By, is now related to the possibility of rotation about
two different axes in R3. It follows that N-th iteration of the map is only (N + 1)-
valued, not 2V-valued. By fixing a sign of p* in (3.4), By, becomes single-valued
and generates a sequence of points on SO(3).

Figure 1
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This geometric model was first proposed in [10] as a certain limit of a kinematical
model of motion of 4-dimensional Frahm—Manakov top in space.

Remark 3.1. As follows from (3.6), the map B, admits particular solutions, for
which the vector M = x A y remains to be an eigenvector of the inertia tensor
A = diag(a1, az,a3), whereas z,y themselves rotate by a fixed angle in the plane A.
Such solutions can be regarded as analogs of stationary permanent rotations of the
classical Euler top about its principal intertia axes.

Continuous limit. Note that when z,y are chosen such that IT is (almost) tangent
to the cone K (¢ — A*), Ky and K3 confluent and, according to the above model,
the cone K7 = Ko is rolling without sliding over the fixed plane thus giving a
continuous limit motion on the group SO(3).

From the algebraic geometrical point of view, in the above limit the points E_, F,
on the spectral curve C come together to a branch point Ey = (¢,0) and the shift
vector S on the generalized Jacobian tends to zero. Let ¢ be a small complex
parameter. Setting u* = e, A — A\* = const - €2 in (3.3), we have the expansions
_ PN

1
+O(E)’ o = —%(:c,a_lx)—{—O(l), = 5
€ o2 N N

(z,a”'y)
(x,a 1x)

B=-
where 3¢ is a real nonzero constant. Now we set
T=x+ae+0(), §J=uy+ye+ O().

Substituting the above expansions into (3.6), then matching the coefficients at € in
both sides and taking into account relation

(, (") 'y)* = (2, () "'2)(y, () "'y) + O(e?),

we obtain the following differential equations describing the limit flow on a subset
of V(2,3)

. deta* - - o o 1 ¥
b= 2 (o) @) @) ) | = Lo nae )
. deta* o o o o 1 «
= S @) ) @) ) ] = Sy nat(eng)
(3.8)
a*=a— N1
These equations are Hamiltonian with the Hamilton function
3
_deta* s\—1 $\—1 *\—1,\2 _i . * 2
= S o @) 0 ) ) = 00 = g e

Notice that this function equals zero on the limit continuous flow. The restriction
of this flow on Jac(C, 004 ) is tangent to the curve C C Jac(C,004) at the point Ej.

The above asymptotic of «, 8 explains the specific choice of sign of Z,y made in
the passage from relations (3.5) to the map (3.6).
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Proof. (theorem 3.1). The condition for IT to be tangent to the cone
K1 ={(X,(a—hI)"1X) = 0} has the form

3
> (b= ar)(@iy; — wjy:)* = Ta(h, M) = 0.
k=1

Comparing this with the family of integral (2.21) for m = 3, we conclude that
h = ¢1, which is constant under the map, hence the plane spanned by z,y is again
tangent to K.

Next, any translation in SO(3) is represented as a finite rotation about an axis
in R3. As follows from relations (3.6), ¥ + 32 = y + (B, hence the line along the
vector £ = y + [z is invariant of the action of By, on R? and therefore represents
the axis of such a rotation. Finally, in view of (3.3), we have

1y - p* + L (A7) -
(€, (a*) 1) = (y, (a*) 1y>—2T§*)<x, (@) ty)

(1*)% 4 2p* Ly (X)) + L3 (\¥)
L3, (M%)

[(y, (a*)'y)(, (a*) ") — (2, (a*) " y)? + (u)?]

T (2. (a*)2)

_ 1
L2V

which equals zero by virtue of (3.4). Hence (¢, (a*)~!¢) = 0, which imply that the
vector £ lies on the cone K5. This establishes the theorem. [ |

Remark 3.2. When the attached cone K5 does not have real intersection with
IT = span(zx,y), the coordinate p* is imaginary and, according to (3.6), (3.3), the
new values 7,y are complex. As a result, under the reality conditions (3.7) the map
B, is real only on the subset R C V(2,3) defined by unequality

3
DO —ap)(wiy; — wjy:)* <0
k=1

On the boundary of R, the map tends to the identical one.

Reduction to the coalgebra so*(3). Under the factorization by rotations of
R = SO(2), the transformation B, induces a map By, : s0(3)* — so(3)* such that

M = By, M(z,y) = A 7.

The latter map is correctly defined, i.e., it does not depend on a concrete choice
of vectors z,y giving the same M. It preserves the first integrals of the classical
Euler top on so*(3) and its generic invariant manifolds are open subsets of 4-fold
unramified coverings of the complex torus Jac(C) = C. The restriction of By, onto
Jac(C) is given by shift by the holomorphic integral e = [ gj @, which thus depends
only on the constants cp,c;. According to a theorem in [6], this implies that the
map B, preserves the standard Lie-Poisson structure on so*(3).
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Proposition 3.2. Vectors M,M satisfy the following symmetric relations

M — M = 3 (M + M) Aa(M + M), (3.9)

s =1\/2(aM + aM,aM + aM) 1O J/\{)/CO , (3.10)
1+ (M,M)/co

(M,a*M) = (M,a*M) = —(M,a* M), (3.11)

where, as above, co = (M, M) = (M, ]\7)

Relation (3.9) was previously obtained by another method in [6], as an implicit
map describing a Poisson discretization of the Euler top in so*(3).

Proof. (proposition 3.2). In view of relations (3.6), we find

1
x/\y:M:x/\y—i—a(a*)*lf/\f, (3.12)

where, as above, ¢ = y+ (z, a* = a— A*I. Note that vector (a )_1 ¢ is normal to the
cone Koy at a point of the intersection line Lo or Lj. Hence M — M is orthogonal
to ( )T 14 and ¢. Next, since ¢ lies in the planes IT, II, this vector is orthogonal to
M, M. This, together with the equality [M| = |M| implies that the sum M + M is
parallel to (a*) "1 ¢ and a*(M + M) is parallel to £. As a result, (3. -12) implies (3.9).

To find factor s, we first introduce angle ¢ between vectors M and M. Since
|M| = |M| the vectors M — M and M + M are orthogonal, and we have

—~ 1 —

On the other hand, since a*(M + M) is orthogonal to M, M, from (3.9) and the
properties of the vector product we deduce

|M — M| = s|M + M| |a*(M + M)|.

Comparing the right hand sides of the above two relations, we obtain (3.10).

The first equality in (3.11) holds because the map B), preserves the first integrals
of the Euler top. Next, since the vector a*(]\7 + M) lies on the cone Ky, we have
((]\7 + M), a*(M—l— M)) = 0. Expanding this and using the first equality in (3.11)
yields the second equality. |

Remark 3.3. The fact that the difference M — M is orthogonal to (a*)"' ¢ and
¢ implies that the angle between the normal vector (a )71 £ and the plane 11 equals
the angle between (a*)~ 1¢ and TI. This property can be regarded as a projective
version of the Birkhoff condition of elastic impacts, hence the geometric construction
of Theorem 3.1 illustrated in Figure 1 describes a projective analog of the plane
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elliptic billiard. (Note that no any plane section of the cones and of the sequence of
IT gives such a plane billiard.)

To obtain the map By, : s0*(3) — so0*(3) in an explicit form, we use the fact
that the vector £ satisfies the system of homogeneous equations

(4, (a*)"')y=0, (£,M)=0.

One of its solutions, £ = (£1,#3,03)", normalized by the condition f3 = 1, has the
form

z *MlMg — \/D(Z;MQ f_ . *MgMg + \/D(ZTMl i
1= ) R, S 2 = —Qy ) s R l3=1 (3.13)
aiMi + a5 M ajMi + a5 M;
D_ ai M} + a3 M3 + agMg_ (314)

* ok ok
a1Gy0a3

Substituting this instead of ¢ into (3.12) and symmeterising obtained expressions,
we arrive at the following relations

M; — My = x(az — a3) (Al MyMs — VD (a})* M7 (a5 M3 — a§M§)>,
My — My = x(as — a1) (Do My My = VD (a3)? M5 (a3MF — aiMD)),  (3.15)
Ms — Ms = (a1 — az) (AngMg — VD (a})*M3(ai M?E — aEMQQ)),
where
A; = dja MIME — (af)? M}, (i,5,k) = (1,2,3)

and x is a common factor.
Next, multiplying the both sides of (3.15) by aj My, a’Ms, ai Ms; respectively, then
summing and using the second equality in (3.11), we find the factor x in form
2(M,a*M
Y= — (M, a” M) . (3.16)
S ai(as — az) | Ay My My Ms — /D(a})2 M (ab M3 — aiM3)

where the summation in the denominator ranges over the three terms obtained by
the cyclic permutations of indices (1,2,3).

We summarize our results on B),.

Theorem 3.3. The map By, : so*(3) — s0*(3) given by (3.15), (3.16), (5.14)
preserves the first integrals of the continuous Euler top, as well as the standard Lie—
Poisson structure on so*(3). Under reality conditions (3.7), the map is real inside

the domain )
R = {Z()\* —ap) M} < 0} :

k=1
Its restriction onto Jac(C) = C is represented by the shift by the holomorphic integral

e= fgj w. On the boundary of R the shift vector e tends to zero and the continuous
limit of By, coincides with the Euler equations M = [M,aM].
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Remark 3.4. Since generic solutions M (t), Ma(t), M3(t) of the classical Euler
top are proportional to the elliptic functions sn(u), cn(u), dn(u) with argument u
depending linearly on time ¢, the relations (3.15), (3.14), (3.16) can be regarded as
a set of explicit addition formulae for these functions, in case when their moduli
(parameters of the curve C) are not fixed.
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