
Journal of Nonlinear Mathematical Physics Volume 12, Supplement 2 (2005), 63–76 SIDE VI

Orthogonal matrix polynomials satisfying first

order differential equations: a collection of

instructive examples

Mirta M CASTRO a and F Alberto GRÜNBAUM b
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Abstract

We describe a few families of orthogonal matrix polynomials of size N ×N satisfying
first order differential equations. This problem differs from the recent efforts reported
for instance in [7] (Orthogonal matrix polynomials satisfying second order differential
equations, Internat. Math. Research Notices, 2004 : 10 (2004), 461–484) and [15]
(Matrix valued orthogonal polynomials of the Jacobi type, Indag. Math. 14 nrs. 3, 4
(2003), 353–366). While we restrict ourselves to considering only first order operators,
we do not make any assumption as to their symmetry. For simplicity we restrict to
the case N = 2. We draw a few lessons from these examples; many of them serve to
illustrate the fundamental difference between the scalar and the matrix valued case.

1 Introduction

The subject of matrix valued orthogonal polynomials was introduced by M.G. Krein, see
[16, 17] more than fifty years ago. If one thinks of their scalar valued analogs it is clear
that these polynomials could play a very important role in many areas of mathematics and
its applications. If history is to be any guide it is natural to focus on those matrix valued
orthogonal polynomials that satisfy some extra property, an issue raised in [6] following
similar considerations in the scalar case in [2]. The results in [2, 6] deal with the case
of operators of order two, and a general approach to the case of higher order stems from
[5, 12].
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In this paper we give examples of orthogonal matrix polynomials (Pn)n satisfying right
hand side first order differential equations of the form:

P ′
n(t)A1(t) + Pn(t)A0(t) = ΛnPn(t), n ≥ 0, (1.1)

where A1 and A0 are matrix valued coefficients (independent of n) and Λn are appropriate
matrices, i.e. each matrix polynomial Pn is an eigenvector of the right hand side first order
differential operator

ℓ1,R = D1A1(t) + D0A0(t). (1.2)

All matrices have a common size N × N and D stands for the usual differentiation
operator. For simplicity our selection of examples is restricted to the case of 2×2 matrices
with real entries , but the method that we use to find these examples is not restricted to
this case. The examples are chosen to illustrate a number of issues that are completely

absent in the scalar case.
It is clear that we could consider left hand side operators

ℓ1,L = A1D
1 + A0D

0.

instead of right hand side operators as above. In that case (1.1) gets replaced by the
equation obtained from it by taking adjoints on both sides.

Given a selfadjoint positive definite matrix valued weight function W (t) we can consider
the skew symmetric bilinear form defined for any pair of matrix valued functions P (t) and
Q(t) by the numerical matrix

〈P,Q〉 = 〈P,Q〉W =

∫

R

P (t)W (t)Q∗(t)dt,

where Q∗(t) denotes the conjugate transpose of Q(t). It can be shown (see e.g. [15, Section
2]) that there exists a sequence (Pn)n of matrix polynomials orthogonal with respect to W ,
with Pn of degree n and monic. Just as in the scalar case, a sequence of monic orthogonal
matrix polynomials (Pn)n satisfies a three term recurrence relation

AnPn−1(t) + BnPn(t) + Pn+1(t) = tPn(t), (1.3)

where P−1 is the zero matrix and P0 is the identity matrix. We stress that we will take
(1.3) as our starting point: we will consider a family of (monic) polynomials defined
by (1.3) that also satisfies (1.1). Issues such as the positivity of an orthogonality matrix
valued weight function going with these polynomials will be a secondary one, some of our
examples will go with a positive measure and some will not.

We recall that if P̃n(t) is a sequence of orthonormal polynomials with respect to a
positive definite weight matrix then the recursion relation reads

Ã∗
nP̃n−1(t) + B̃nP̃n(t) + Ãn+1P̃n+1(t) = tP̃n(t), (1.4)

with Ãn non singular matrices and B̃n Hermitian. Conversely, this relation characterizes
the orthonormality of a sequence of matrix polynomials with respect to a positive definite
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matrix of measures, see [9, Section 2] and [10, Theorem 6.1]. Using this one can see that
for a monic sequence given by (1.3), the existence of a positive definite weight of matrices
is equivalent to the existence of a sequence (Dn)n≥0 of nonsingular matrices, such that,
for Sn = DnD∗

n the following conditions are fulfilled,

An = SnS−1
n−1, BnSn is Hermitian. (1.5)

Indeed, writing Pn(t) = DnP̃n(t) in (1.3) while assuming (1.5), one obtains the new
recurrence relation (1.4) with Ãn = D−1

n−1Dn and B̃n = D−1
n BnDn Hermitian.

The problem considered in this paper is related to one that has received quite a bit of
attention recently, namely the study of second order differential operators under the
extra assumption that the corresponding operator

ℓ2,R = D2A2(t) + D1A1(t) + D0A0(t). (1.6)

is symmetric with respect to the orthogonality weight matrix W (t) going along with the
family of polynomials (Pn)n. This is to say that

〈ℓ2,RP,Q〉W = 〈P, ℓ2,RQ〉W

for all matrix valued polynomial functions P and Q. For a number of recent results along
this line see [7, 8, 14, 15].

It is well known that in the case of second order difference or differential operators with
real coefficients acting on scalar functions it is always possible to make them symmetric.
The difficulties brought about by situations when this is not originally the case are the
main concern of, for instance, [3] and [1]. In the matrix valued case this reduction is
not possible, and symmetry is an extra condition which we will not insist on here.

This lack of any symmetry assumption on the part of ℓ1,R makes the use of the tools
in [7, 14, 15] inappropriate. We also observe that in those papers one assumes from
the beginning that the coefficients of our second order differential operator are matrix
polynomials satisfying a degree condition that insures that the space of matrix polynomials
of a given degree is invariant under the action of the differential operator.

We resort here to the tools originally developed for the purely differential scalar valued
case in [5], adapted to the case of scalar valued orthogonal polynomials in [12] and recently
used in the matrix valued case in [13]. In this last paper one does not assume that one is
dealing with orthogonal polynomials, rather one deals with a bispectral situation consisting
of a doubly infinite second order difference operator of the form L = E + Bn + AnE−1,
where E is the customary shift operator Ef(n) = f(n + 1), and a differential operator
having a common set of eigenfunctions f(n, t).

We are now in a position to state the purpose and method of this paper: using the
extra assumption that we are dealing with orthogonal polynomials we adapt the tools in
[13] to produce some nontrivial examples of matrix valued orthogonal polynomials that
are common eigenfunctions of a first order differential operator.

In closing this section it may be appropriate to observe that the bispectral problem

considered here is the matrix or noncommutative version of a situation that does not
arise in the scalar case, where the first interesting example already involves differential
operators of order two. In that case the characters in the plot are the well known poly-
nomials going with the names of Hermite, Laguerre and Jacobi, as well as Bessel. Within
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the confines of the scalar case, as soon as one relaxes the constraint on the order of the
differential operator and allows for higher order ones, the plot thickens and the description
of the solutions involves the Toda flows as well as their master symmetries, the Darboux
process, and several other apparently unrelated pieces of mathematics. Notice that here we
are going in the opposite direction, by assuming that the order of the differential operator
is one.

It is only natural to conjecture that an equally rich situation arises in the matrix case,
and that a huge collection of examples could play a useful role in future developments.

2 The ad-conditions

The method discussed in [5, 12, 13] shows that one needs to look at solutions of the
equation

ad2(L)(Λ) = 0 (2.1)

where ad(X)(Y ) = [X,Y ] = XY − Y X is the usual commutator of the operators X and
Y . Specifically, we have ad2(L)(Λ) = [L, [L,Λ]].

Here L is the block tridiagonal semi-infinite matrix

L =











B0 I 0 . . .
A1 B1 I
0 A2 B2 I
...

. . .
. . .

. . .











, (2.2)

going with the three term recurrence relation (1.3) satisfied by the matrix valued orthog-
onal polynomials (Pn)n and Λ = diag{Λ0,Λ1,Λ2 . . .} stands for the block diagonal matrix
of eigenvalues associated to the differential operator (when written as a right-hand-side
operator).

This leads to a set of five equations, one for each diagonal of the matrix

ad2(L)(Λ).

The first one is very simple,

Λn+1 − 2Λn + Λn−1 = 0

with solution

Λn = nP + Q.

Here P and Q are arbitrary matrices.
Using this, the second one can be rewritten as

Λn+1Bn − BnΛn = Λn−1Bn−1 − Bn−1Λn−2.

The third equation, coming from the main diagonal in ad2(L)(Λ) = 0 can be rewritten
as

[Bn−1, [Bn−1,Λn−1]] = (Λn+1An − AnΛn−1) − (Λn−1An−1 − An−1Λn−3)
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The fourth one is

ΛnBnAn + ΛnAnBn−1 − 2BnΛnAn + BnAnΛn−1 − 2AnΛn−1Bn−1 + AnBn−1Λn−1 = 0.

Finally the fifth equation is

Λn+1An+1An − 2An+1ΛnAn + An+1AnΛn−1 = 0.

Note that if all the matrices involved here commute with each other then the last two
equations are consequences of the previous ones, namely (when written in its original form)
the fourth one follows from the second one by factoring An out of it, and the fifth one is
just the first one multiplied by An+1An. In this case, if one assumes that P is non-singular,
the second equation implies Bn = Bn−1, the third one gives that all An vanish, and the
fourth equation becomes trivial. Incidentally, this explains why in the scalar case one
does not encounter examples of the bispectral problem involving semi-infinite three term
recursions and first order differential operators.

The last paper referenced above, [13], poses these equations and finds some particular
solutions that do not correspond to polynomials, since the matrix A0 in the doubly-infinite
matrix L in [13] does not vanish.

The examples that we display below are obtained by solving the equations given above.
The examples are chosen to illustrate a variety of possible behaviors.

3 A Chebyshev example

In this example we have, using the same notation as above,

B0 =
1

2

(

0 1
1 0

)

, Bn =

(

0 0
0 0

)

, n ≥ 1

and

An =
1

4
I, n ≥ 1.

The monic orthogonal polynomials given by (1.3) satisfy the differential equation writ-
ten in the form of a left-hand-side operator acting on P ∗

n(t)

[(

1 t
−t −1

)

d

dt
+

(

0 0
−1 0

)]

P ∗
n(t) = P ∗

n(t)

(

0 n
−n − 1 0

)

. (3.1)

This is not the only first order differential equation satisfied by our P ∗
n . One also has

[(

t 1
−1 −t

)

d

dt
+

(

1 0
0 0

)]

P ∗
n(t) = P ∗

n(t)

(

n + 1 0
0 −n

)

. (3.2)

The differential operators appearing on the left hand side of (3.1) and (3.2) do not commute
with each other. However, the operators

Da =

(

1 t
−t −1

)

d

dt
and Db =

(

t 1
−1 −t

)

d

dt



68 M M Castro and F A Grünbaum

anti-commute, this is, DaDb = −DbDa.

It is easy to express these polynomials in terms of Chebyshev polynomials and it is also
easy to see that the orthogonality matrix is given by

W (t) =
1√

1 − t2

(

1 t
t 1

)

, −1 < t < 1.

Let us denote by Un(t) the Chebyshev polynomials of the second kind, which satisfy

Un+1(t) + Un−1(t) = 2tUn(t), with U−1(t) = 0 and U0(t) = 1.

These matrix valued polynomials were introduced for a different purpose in [4, Page 585].
The relation between Pn(t) and the Chebyshev polynomials Un(t) is given by

Pn(t) =
1

2n

(

Un(t) −Un−1(t)
−Un−1(t) Un(t)

)

.

Remark. To bring these expressions more in line with those that appear in the examples
below in section 6, notice that for instance in (3.1)

Λ∗
n = nP ∗ + Q∗

≡ n





0 1

−1 0



 +





0 0

−1 0





and the differential operator is

ℓ1,L = (tP ∗ + R)
d

dt
+ Q∗

with

R =





1 0

0 −1



 .

Remark. The polynomials Pn(t) also satisfy a zero-th order equation, a phenomenon that
would be devoid of any interest in the scalar case. Here we have

[

0 1
1 0

]

P ∗
n(t) = P ∗

n(t)

[

0 1
1 0

]

. (3.3)

4 A Jacobi type example

The next example is inspired by a remark contained in [15]. In that paper one obtains an
example of a sequence of matrix valued orthogonal polynomials satisfying a one parameter
family second order differential equations. Here we exploit this free parameter to produce
a situation that solves the ad-conditions described above.
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In this case the block tridiagonal matrix is given by (2.2) with

Bn =
1

2
I − cn





(β − α)(α + β + 3) 2(α + 1)

2(β + 1) (β − α)(α + β + 1)



 ,

where

cn =
α + β + 1

2(α + β + 2)(2n + α + β + 1)(2n + α + β + 3)
.

The matrices An have a more complicated n dependence, namely

An = dn





A11
n A12

n

A21
n A22

n



 ,

with

dn =
n(n + α + β + 1)

(α + β + 2)(2n + α + β)(2n + α + β + 1)2(2n + α + β + 2)

and

A11
n = (α + β + 2)n2 + (α + β + 1)(α + β + 2)n + (αβ + 1)(α + β) + 4αβ,

A12
n = (α − β)(α + 1),

A21
n = (α − β)(β + 1),

A22
n = (α + β + 2)n2 + (α + β + 1)(α + β + 2)n + (α + 1)(β + 1)(α + β).

An easy consequence of these formulas is that as n → ∞ we have An → I/16, Bn → I/2.

The monic orthogonal polynomials Pn, corresponding to the weight matrix

W (t) = tα(1 − t)β(tF1 + F0),

with

F0 =

(

1 1
1 1

)

and

F1 =
α + β + 2

α + 1





0 −1

−1 β−α
α+1



 ,

satisfy not only the recurrence relation (1.3) but they also satisfy

ℓ1,LP ∗
n(t) = P ∗

n(t)





n α−β
α+1 n

0 −n − α − β − 2




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with ℓ1,L given by

ℓ1,L = 1

α+β+2











(α+β+2)t−(α+1)
(α2−β2+2(α−β))t−(α+1)2

α+1

α+1 α+1−(α+β+2)t











D1+









0 0

0 −(α+β+2)









D0.

The equation above can be trivially converted into a right hand side differential operator
acting on Pn(t).

Remark. To bring these expressions more in line with those that appear in the examples
below in section 6, notice that

Λ∗
n = nP ∗ + Q∗

≡ n





1 α−β
α+1

0 −1



 +





0 0

0 −α − β − 2





and the differential operator is

ℓ1,L = (tP ∗ + R)
d

dt
+ Q∗

with

R =
α + 1

α + β + 2





−1 −1

1 1



 .

Remark. By working directly on the situation discussed in [15] one arrives at the same
differential operator as above and a diagonal eigenvalue matrix, namely

Λn =

(

n 0
0 −n − α − β − 2

)

The relation between these two results is a consequence of the following general analysis.
Assume that we have

ℓ1,LP ∗
n(t) = P ∗

n(t)Λn (4.1)

and that the family of polynomials Pn(t) are orthogonal with respect to a weight matrix
W (t).

If there exists a sequence of nonsingular matrices (Tn)n≥0 such that for each n = 0, 1, . . .
we have

T−1
n ΛnTn = Θn,

then the polynomials

Qn(t) ≡ T ∗
nPn(t)

are also orthogonal with respect to W (t) and satisfy

ℓ1,LQ∗
n(t) = Q∗

n(t)Θn n = 0, 1, 2, . . . (4.2)

It follows that if the sequence of “eigenvalue matrices” Λn is made of diagonalizable
matrices, we can replace (4.1) by (4.2) without changing the operator ℓ1,L or the orthog-
onality matrix W (t). The new eigenvalue matrices are now diagonal.
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5 Squaring the first order operator

It is natural to consider squaring the operator ℓ1,L in the examples above as well in some
extra examples that will appear in the next section. In this fashion we are guaranteed
to have a family of orthogonal polynomials satisfying a second order differential equation.
The only nontrivial point here is that since we are dealing with operators with matrix
valued coefficients, we may encounter some unexpected phenomena. Notice that in the
examples above the leading coefficient of the first order differential operator is not a scalar.

For instance, in the Chebyshev example above the leading coefficient of the square of
ℓ1,L is the scalar 1 − t2. In the Jacobi type example above, the square of ℓ1,L is not the
operator that appears in [15], which has a scalar leading coefficient given by t(1 − t) but
rather it has as leading coefficient the scalar t(t − (α + 1)(3β + α))/(α + β)(α + β + 2).

In the next section we will display some extra examples where the behavior of the
coefficients Bn and An is simpler than in the examples above. These examples show an
even more surprising behavior when one goes from the appropriate first order differential
operator ℓ1,L to its square.

6 Some further examples

In this section we consider three examples that are different from the ones above and from
each other.

Once again these examples illustrate phenomena that are not present in the scalar case.
For instance, as we will see below, the square of the respective first order linear differential
operators ℓ1,L has a very different behavior in each one of these three cases.

Example 1. In this example we have

Bn = r1I + r2





0 −p2
12/p

2
11

1 2p12/p11



 ,

An = nζI,

with

ζ =
p12r

2
2

p4
11

(

p11p12(q22 − q11) + p2
11q12 − p2

12q21

)

.

The “eigenvalue matrix” Λ∗
n is given by the adjoint of

Λn = nP + Q

≡ n

(

p11 p12

−p2
11/p12 −p11

)

+

(

q11 q12

q21 q22

)

and the monic orthogonal polynomials satisfy the equation

ℓ1,LP ∗
n(t) = P ∗

n(t)Λ∗
n
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with

ℓ1,L = (tP ∗ + R)
d

dt
+ Q∗

and

R = r1





−p11 p2
11

/p12

−p12 p11



 + r2

p2
11









−(p2
12

q21+p2
11

q12+p2
11

p12) −p2
11

(q22−q11−p11)+2p11p12q21

−p12(p12q22−q11+p11)−2p11q12 p2
12

q21+p2
11

q12+p2
11

p12









.

In this case the square of ℓ1,L is an operator of order two, but its leading coefficient is
scalar and independent of the variable t.

We will return to this example in the last section of the paper.

Example 2. In this example we have

Bn = r1I + r2





−2a/b −a2/b2

1 0



 ,

An = (nc + a)





−1 −a/b

b/a 1



 ,

Note that the parameter c does not appear in the expression of the first order differential
operator ℓ1,L below. Note also that An is singular.

The eigenvalue matrix is given by the transpose of

Λn = nP + Q

≡ n





p11 p12

−p12
b2

a2 p11−2p12
b
a



 +





q11 q12

b

a2
(2p11a−q12b−2p12b) 1

a
((q11+2p11)a−2(q12+p12)b)





The monic orthogonal polynomials satisfy

ℓ1,LP ∗
n(t) = P ∗

n(t)Λ∗
n

with

ℓ1,L = (tP ∗ + R)
d

dt
+ Q∗

and R given by

R = r1











−p11 p12
b2

a2

−p12 −p11 + 2p12
b

a











+ r2











p12 p11 − 2p12
b

a

2p12
a

b
− p11

a2

b2
2p11

a

b
− 3p12











.
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In this case the square of ℓ1,L is a second order differential operator with a quadratic
matrix polynomial as a leading coefficient. We observe that the search considered in [6],
[7] deals mainly with cases where the second order differential operator has a scalar as a
leading coefficient. On the other hand, the family of examples that can be obtained from
[14] shows that there are naturally arising examples when the leading coefficient of the
second order differential operator can be nonscalar, as in this example.

Example 3. In this example we have

Bn = r1I + r2





−2p12/p11 −p2
12/p

2
11

1 0



 ,

An = c





−p12/p11 −p2
12/p

2
11

1 p12/p11



 ,

Note that the parameter c does not appear in the expression of the first order differential
operator ℓ1,L below. Note also that An is singular.

The eigenvalue matrix is given by the transpose of

Λn = nP + Q

≡ n









p11 p12

−p2
11

p12
−p11









+









q11 q12

−p2
11q12

p2
12

q11 − 2
p11q12

p12









The monic orthogonal polynomials satisfy

ℓ1,LP ∗
n(t) = P ∗

n(t)Λ∗
n

where ℓ1,L is given by

ℓ1,L = (tP ∗ + R)
d

dt
+ Q∗

and the expression for the matrix R is

R = r1





−p11 p2
11/p12

−p12 p11



 + r2





p12 −p11

p2
12/p11 −p12



 .

In this case the square of ℓ1,L is not an operator of order two.

7 A further look at example 1

In this last section we make a few comments regarding the search for an orthogonality
matrix going with example 1 above. One could tackle the same situation for examples 2
and 3.
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First we exhibit a matrix valued weight function W (t) with the following orthogonality
property: if Pi(t) and Pj(t) are monic polynomials corresponding to example 1 in the
previous section, with i 6= j, then their inner product

〈Pi, Pj〉 =

∫

Pi(t)W (t)P ∗
j (t)dt, (7.1)

gives the zero matrix. This is just the way things should be.
The weight matrix W (t) is given by

W (t) = e−t2





a1 + a2t b1 + b2t

b1 + b2t c1 + c2t



 ,

where a1, a2, b1, b2, c1 and c2 are for the time being, arbitrary constants. Notice that
this matrix can not be positive definite for all real t.

To obtain the “orthogonality” alluded to above, we need to make the following choices

p12 = −p11r1/r2

q21 =
r2

2r3
1

(2q12r1r2 − 2q22r
2
1 + 2q11r

2
1 + p11)

a2 =
2r2

1

r2
2

(b1r2 − c1r1)

b2 =
2r1

r2
(b1r2 − c1r1)

c2 = 2(b1r2 − c1r1)

a1 =
r1

r2
2

(2b1r2 − c1r1)

The only trouble here is that if i = j we do not get a positive definite matrix for the
corresponding “length” of Pi. This is not surprising since, as we noticed earlier, the weight
matrix W (t) is not positive definite for all t.

This leaves open the possibility that one could find some positive definite orthogonality
matrix in this example. We will see that this is not the case.

By (1.5) in the Introduction, this positivity would require the existence of a nonsingular
matrix D, such that

B0DD∗ is Hermitian (7.2)

in our case this reduces to finding a matrix D =

(

d11 d12

d21 d22

)

such that the product





0 −p2
12/p

2
11

1 2p12/p11



 DD∗

should be Hermitian.
An explicit computation shows that this amounts to the requirement that

(d11, d12) +
p12

p11
(d21, d22) = (0, 0),
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where (d11, d12) and (d21, d22) are the rows of D. This makes D singular and shows that
(7.2) can not be satisfied.

Now that we know that example 1 can not go with a positive definite matrix valued
measure we close this paper by mentioning a general method that should give nice results
when such a positive measure exists. We then observe how this general method fails in
this case.

A possible strategy for determining the orthogonality measure in a case when the
orthogonal polynomials satisfy a first order differential equation as above is as follows:
square the differential operator ℓ1,L , and hope that the resulting second order differential
operator is symmetric with respect to some positive definite matrix valued W (t). If this
is the case then the differential equations (and appropriate boundary conditions) derived
in [7, Section 3] and [15, Section 4 ] could be useful to determine W (t). Notice that the
coefficient matrices A2(t), A1(t) and A0(t) are already determined from ℓ1,L. So much for
the general method; in the next example we see this method can not handle some of the
examples discussed above.

We can see that in example 1 if, for instance, we have q12 = q21 and q11 = −q22 then
the solution to the differential equations mentioned earlier is given by the matrix

W (t) =









w11(t) w21(t)

w21(t) −p11(2p12w21 + p11w11)

p2
12









,

where w11(t) and w21(t) are so far arbitrary.

Since the determinant of this matrix is −(p11w11 +p12w21)
2/p2

12 it fails to be positive

definite.
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[2] Bochner S, Über Sturm–Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730–736.

[3] Beckermann B and Castro M, On the determinacy of complex Jacobi matrices, Publication
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[8] Durán A J and Grünbaum F A, A survey on orthogonal matrix polynomials satisfying second
order differential equations, J. Comput. Appl. Math., to appear.
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[12] Grünbaum F A and Haine L, A theorem of Bochner revisited, in Algebraic Aspects of Inte-
grable Systems, Editors: Fokas A S and Gelfand I M, Progr. Nonlinear Differential Equations
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