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Abstract

It is known that many equations of interest in Mathematical Physics display solutions
which are only asymptotically invariant under transformations (e.g. scaling and/or
translations) which are not symmetries of the considered equation. In this note we
extend the approach to asymptotic symmetries for the analysis of PDEs, to the case
of difference equations.

1 Introduction

When we consider a differential equation the analysis of symmetries leads, via a standard
procedure [4, 19, 34, 36, 37], to the determination of invariant solutions.

This method has been extended to consider conditional symmetries [10, 17, 28, 35],
i.e. transformations which do not leave the equation invariant, but such that some of
its solutions are left invariant. This notion can be further generalized to consider partial
symmetries where a subset of solutions, each of them not necessarily invariant, is mapped
into itself by the transformation at hand [9] (see also [7] for a short review).

In a recent contribution [21] the notion of asymptotic invariant solutions with respect
to standard symmetries and conditional symmetries for differential equations has been
introduced. This theory easily extends also to partial symmetries. The approach of [21]
can be seen as a development of [20], based in turn on the renormalization group approach
to differential equations [2, 3, 5, 11, 23]. In this way we were able to explain the asymptotic
scaling symmetry observed in numerical experiments analyzing anomalous diffusion and
reaction-diffusion equations [32]. In this note, asymptotic is meant in the sense of “for
large values of some dependent or independent variables”.
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Another interesting notion in this field is that of approximate symmetries [1, 18]. Here
one considers transformations which leave invariant the lower order approximations to the
solution of a system depending on a small parameter. This notion may also mean an
approximate symmetry for a series expansion near a fixed point [8, 22].

All these approaches and results have been introduced in the case of differential equa-
tions. However, in many physical (or biological, chemical, etc.) models – and in numerical
simulations of continuous phenomena – one is rather interested in difference equations on
a lattice, and their symmetry properties [13, 16, 26, 27, 29, 30, 38]. The reader is referred
to the bibliography contained in [38] for applications.

The purpose of the present note is to show that the approach of [21] also extends to
equations defined on a lattice.

We will not try to be as general as possible, but rather consider, after a brief intro-
duction to the generalities of equations on a lattice and their symmetries, a well defined
equation. We hope that, in this way, the general method will result clearer, and it should
be easy for the reader to apply it to other equations of interest. In fact, we will focus on
reaction-diffusion equations [6, 12, 14], and in particular on the classical FKPP equation
[15, 25, 33].

The only possible symmetries for discrete equations if we do not want to change essen-
tially the underlying lattice are discrete translations, rotations of the lattice variables and
continuous transformations of the dependent variable.

We are mainly interested here in equations whose solutions (as observed in numerical
experiments) are asymptotically well described by a travelling front. We believe that the
reader interested in more complex asymptotic symmetries will easily understand how to
deal with them by comparing the present work and [21].

In Section 2 we present the generalities on equations defined on a lattice while in
Section 3 we will consider symmetries for equations defined on a lattice. In Section 4 we
introduce the FKPP equation both in the continuous and on a lattice and analyze it so as
to deduce the correct asymptotic behavior by requiring that asymptotically the system has
the correct required symmetries. Section 5 is devoted to a final discussion of the results
and some concluding remarks.

2 Difference equations on a lattice.

For simplicity we will consider a lattice Λ in R2 = (x, t), and a difference equation for
a real function u(x, t) on it. Higher dimensional lattices and matrix functions defined
on them could be defined in the same way. We will use the notation of [29, 38]. Thus
the points on the lattice, having coordinates (xm,n, tm,n), will be indexed by a couple of
numbers (m,n) ∈ Z2, and to each site is associated a real variable um,n ∈ R.

The lattice is intrinsically described by assigning the difference between neighboring
points and will be of the form

xm+1,n − xm,n = ξm,n , xm,n+1 − xm,n = ηm,n (1)

tm+1,n − tm,n = τm,n , tm,n+1 − tm,n = ϑm,n .

These will be referred to as the lattice equations. The set of values ξm,n defines a function
ξ : Λ → R via ξ(xm,n, tm,n, um,n) = ξm,n, and similarly for η, τ, ϑ. By the notation um,n we
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mean u(xm,n, tm,n). The shifts (m,n) → (m + 1, n) and (m,n) → (m,n + 1) correspond
to (x → x + ξ(x, t, u), t → t + τ(x, t, u)) and to (x → x + η(x, t, u), t → t + ϑ(x, t, u))
respectively. The presence of u allows for solution depending lattices.

We will then consider a difference equation for the variables um,n:

Fm,n[u] : F [xm,n, tm,n, {um+j,n+i}(i,j)∈Z2 ] = 0. (2)

Given some initial boundary conditions, this equation must allow us to get u in all points
of the lattice (past or future).

As an example of difference equation we can consider the “discrete heat equation”,
obtained as the natural discretization (but only one of the possible ones) of ut = uxx,

(δt)−1 [um,n+1 − um,n] = (δx)−2 [um+1,n − 2um,n + um−1,n] . (3)

where ξm,n = δx, ηm,n = 0, τm,n = 0 and ϑm,n = δt. We can express the discretizations
in terms of an operator ∆k, a difference operator of order j − i. Acting with ∆k on an
arbitrary smooth function fk = F (zk) we have

∆kfk =
1

δk

j∑

ℓ=i

aℓ fℓ+k ,

j∑

ℓ=i

aℓ = 0 ,

j∑

ℓ=i

ℓ aℓ = 1 , (4)

where δk = zk+1 − zk. In eq. (3) the simplest discrete derivative on t, corresponding to
j = 1 and i = 0, has been considered.

3 Symmetries

A transformation S : (x, t, u(x, t)) → (x′, t′, u′(x′, t′)) will be a symmetry of the lattice
equation if it takes Λ ⊂ R2 into itself. It will be a symmetry of the difference equation
defined on Λ if it is a symmetry of the lattice and leaves the equation Fm,n[u] invariant.
Most of the transformations for the lattice will be discrete symmetries. If we consider
a uniform regular lattice ΛR, the point (m,n) will have coordinates xmn = x0,0 + mδx,
tmn = t0,0 + nδt and the lattice equations are

xm+1,n − xm,n = δx , xm,n+1 − xm,n = 0 (5)

tm+1,n − tm,n = 0 , tm,n+1 − tm,n = δt .

We will denote by p the ratio p = δx/δt (p ∈ R). On ΛR the discrete symmetries are easy
to determine. They are given by






T̂x : (x, t) → (x + δx, t) [shift in x, equivalent to (m,n) → (m + 1, n)];
T̂t : (x, t) → (x, t + δt) [shift in t, equivalent to (m,n) → (m,n + 1)];
B̂x : (x, t) → (−x, t) [inversion in x, equivalent to (m,n) → (−m,n)];
B̂t : (x, t) → (x,−t) [inversion in t, equivalent to (m,n) → (m,−n)];
R̂ : (x, t) → (−pt, x/p) [rotation by π/2 with a scale factor,

equivalent to (m,n) → (−n,m)].

Moreover, if we accept SΛR ⊂ ΛR rather than SΛR = ΛR, we have the further trasforma-
tion

Sq : (x, t) → (q1x, q2t) , (q1, q2) ∈ Z (discrete scaling) . (6)
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Apart from the discrete symmetries given by the transformation written above we can
introduce Lie symmetries which are better described in term of an infinitesimal symmetry
generator X̂, which, taking into account that the lattice ΛR is subject just to discrete
transformations, will involve only transformations of the dependent variable um,n

X̂m,n = Q(xm,n, tm,n, {um+j,n+i}(i,j)∈Z2)∂um,n
. (7)

Formula (7) will be the infinitesimal generator of a symmetry for (2) if

1∑

j=−1

1∑

i=0

X̂m+j,n+iF|F=0 = 0 (8)

Eq. (8) is equivalent to the request that the flow generated by eq. (2), when um,n =
um,n(λ), is compatible with

um,n,λ = Q(xm,n, tm,n, {um+j,n+i}(i,j)∈Z2) (9)

Let us notice that the symmetries generated by the infinitesimal generator (7), if (i, j) 6=
(0, 0), are not Lie point symmetries but generalized symmetries.

Solutions invariant with respect to the symmetries of infinitesimal generator (7) are
obtained by solving the difference equation (2) together with the invariance condition
Q(xm,n, tm,n, {um+j,n+i}(i,j)∈Z2) = 0. A particularly interesting class of function symme-
tries is when the function Q takes the form

Q = ϕ(xm,n, tm,n, um,n) − ξ(xm,n, tm,n, um,n)∆mum,n − (10)

−τ(xm,n, tm,n, um,n)∆num,n

which in the continuous limit goes over to point symmetries.
When the transformation is not a symmetry, but there is an invariant solution, we say

that we have a conditional symmetry for our problem. In this case to get the invariant
solution we can add to the equation the condition Q = 0.

If we consider an equation Fm,n[u] which does not explicitly depend on x and t, it is
invariant under T̂x and T̂t transformation. In this case we can consider travelling wave
solutions, depending on ζ = x− vt. Defining v = k(δx/δt) with k ∈ Z, the travelling wave
solutions can be obtained by imposing [27]

Q = (T̂−k
x − T̂t)um,n. (11)

For k = 1 this can be read, similarly as in the continuous case where the condition is
ux + (1/v)ut = 0, as Q = ∆−

x um,n + 1
v
∆+

t um,n where ∆−
x and ∆+

t are the ’down’ and ’up’
discrete derivatives defined as

∆+
t =

Tt − 1

δt
∆−

x =
1 − T−1

x

δx
. (12)

As the regular lattice ΛR is invariant under

M̂ = T̂ k
x T̂t : (m,n, um,n) → (m + k, n + 1, um+k,n+1) ,

we can pass to the variables (ζ = x − vt, τ = t, w(ζ, τ) = u(x − vt, t)). Obviously Q and
M̂ are related, as we have Q = T̂t(M̂

−1 − 1)um,n. So we can introduce two new indices
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(µ = m − kn, ν = n). In these new independent variables the difference equation Fm,n[u]
will transform into a new difference equation for the variable wµ,ν , Φµ,ν [w].

The reduction of eq. (2) by the symmetry (11) implies that wµ,ν+1 = wµ,ν ; so, as wµ,ν

is independent on ν, we can write wµ,ν = Aµ and reduce Φµ,ν [w] to Φ̃µ[A]. If this equation
admits a solution, it represents a travelling wave solution.

Let us now consider a continuous transformation on A generated by the infinitesimal
symmetry operator

X̂ = ΨAµ∂Aµ
, (13)

where Ψ is a constant. The infinitesimal transformation (13) corresponds to the transfor-
mation Ãµ = Aµ + λΨAµ + O(λ2). If the quantity

Wµ :=
(
X̂Φ̃µ [A]

)
−

(
Φ̃µ [X̂A]

)

is not zero but goes to zero for large µ, then X̂ is an asymptotic symmetry of Φ̃µ[A].

Finally, if there exist X̂-invariant asymptotic travelling wave solutions of the original
equation Fm,n[u], we will say that X̂ is an asymptotic conditional symmetry of Fm,n[u].

4 The discrete FKPP equation and its symmetries

In the rest of this note we will focus on the standard FKPP [15, 25, 33] reaction-diffusion
equation

ut = uxx + u(1 − u). (14)

See e.g. [6, 12, 14] for a discussion of its properties. Here we are specially interested in its
asymptotic solutions for large t. For sufficiently localized non-negative initial data,

u(x, t = 0) =
{ x→+∞

→ e−k0(x+k1), (k0, k1) > 0, for x > 0

= 1, for x < 0.
(15)

the asymptotic solutions correspond to a stable front travelling with constant speed and
smoothly connecting the “fresh” (unstable) stationary state u = 0 ahead of it and the
“exhaust” (stable) stationary state u = 1 behind it.

The difference equation representing its simplest discretization on a regular lattice ΛR

is given by

Fm,n[u] :
um,n+1 − um,n

δt
= (16)

=
um+1,n − 2um,n + um−1,n

δx2
+ um,n (1 − um,n) .

Let us stress that δx and δt are small but finite parameters, representing the lattice spacing
in the x- and in the t-direction respectively.

As noted above, in analyzing the symmetries of eq. (16), we should restrict our attention
to transformations S : (x, t, u(x, t)) → (x′, t′, u′(x′, t′)) which are also symmetries of the
lattice equations (5).
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Let us first consider transformations which do not act on the um,n. It is easy to see
that shifts in x and t are symmetries of the equation (16). This is also the case for
the inversion in x, but not for the inversion in t. Also, since x and t are intrinsically
different here, the rotation R is not a symmetry of the equation. We can recover the time
inversion by considering the map Bt : (x, t, u(x, t)) → (x,−t, u(x,−t)), corresponding to
(m,n, um,n) → (m,−n, um,−n). This represents a time inversion and backward dynamics.

It is easy to see (by the same argument as for the continuous equation) that there is
no way to have a scaling symmetry of the independent variables for eq. (16).

4.1 The discrete FKPP in a moving frame

Following the results presented in Section 3, a set of values um,n will represent a travelling
solution with speed v = kδx/δt = kp (with k ∈ Z) if, for any j ∈ Z,

um+kj,n+j = um,n . (17)

The equivalent of passing to a moving frame of reference will be passing to the independent
variables

ζ = x − vt ; τ = t. (18)

The inverse of the change (18) is given by t = τ , x = ζ + vτ . It follows from

ζm,n = xm,n − vtm,n = m(δx) −
kδx

δt
n δt = (m − kn)δx ,

τm,n = tm,n = n δt . (19)

that the lattice equations, in terms of the new coordinates, are given by

ζm+1,n − ζm,n = δx , ζm,n+1 − ζm,n = −v δt = −k δx ;

τm+1,n − τm,n = 0 , τm,n+1 − τm,n = δt . (20)

The lattice point with coordinates (ζ = µδx, τ = νδt), has coordinates (x = mδx, t =
nδt) in the original system, with µ = m − kn, ν = n. The inverse map is m = µ + kν,
n = ν.

We will denote by wµ,ν the dependent variable associated to the point of coordinates
ζ = µδx, τ = νδt. We have

wµ,ν ≡ uµ+kν,ν ; um,n = wm−kn,n. (21)

We can now use (21) to express (16) in the new variable w. We get

wm−k(n+1),n+1 − wm−kn,n

δt
= wm−kn,n(1 − wm−kn,n) + (22)

+
wm+1−kn,n − 2wm−kn,n + wm−1−kn,n

δx2
.

Passing now to the indices (µ, ν), we can rewrite eq. (22) as

Φµ,ν [w] :
wµ−k,ν+1 − wµ,ν

δt
=

wµ+1,ν − 2wµ,ν + wµ−1,ν

δx2
+ wµ,ν (1 − wµ,ν) . (23)
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Eq. (23) can be simplified by recalling that δt = k
v
δx. So the equation Φµ,ν [w] reads

[wµ+1,ν − 2wµ,ν + wµ−1,ν ] −
v

k
δx [wµ−k,ν+1 − wµ,ν ] + δx2wµ,ν (1 − wµ,ν) . (24)

Let us recall that δx is a small but finite parameter, representing the lattice spacing in
the x-direction.

If we reduce eq. (24) with respect to a proper combination of the translations, we
get that the solution of (24) will depend only on the ζ (not on the τ) coordinate, i.e.
wµ,ν+j = wµ,ν for all j ∈ Z. If wµ,ν does not depend on the τ variable, we can as well
restrict to a fixed value of the ν index, and write simply Aµ := wµ,ν . Inserting this ansatz
into (24) we get the reduced difference equation

Φ̃µ : [Aµ+1 − 2Aµ + Aµ−1] +
v

k
δx [Aµ − Aµ−k] + δx2 Aµ (1 − Aµ) = 0 . (25)

4.2 Travelling fronts

A solution to (25) is, by construction, a travelling wave solution to the difference FKPP
equation (16). In the continuum case, we know this will actually be a travelling front. In
the moving frame coordinates (ζ, τ), it will quickly tend to zero for positive ζ and to one for
negative ζ. Moreover, it is stable. If we start with a sufficiently regular initial datum, the
(non translation-invariant) solution will tend to this moving front as time goes by. Finally,
the front solution is characterized by a sharp transition between the two stationary states
u = 0 and u = 1. The region with small u is described by an exponential, u ≃ exp (−αζ)
(with 1/α a characteristic width).

The equivalent of the exponential behaviour in our discrete setting is

Aµ+1 = (1 − αδx)Aµ. (26)

In fact, as µ = ζ/δx, limδx→0 Aµ = A0 exp (−αζ). Solving eq. (26) we get

Aµ = (1 − αδx)µA0. (27)

Putting formula (27) in (25), with k = 1, we have

δx2
[
α2 − (v + δx)α + 1 − (1 − αδx)µ+1A0

]
= 0. (28)

Eq. (28) is not solvable for µ → ∞ if α < 0. The case α > 0 gives us a monotonically
decreasing solution for growing µ. For large µ, we can leave out the last term of eq. (28)
and solve it for α:

α2 − (v + δx)α + 1 = 0. (29)

This equation admits two real solutions for v + δx > 2; studying the stability of the
equation as in the continuous case, one finds that the velocity is v = 2− δx. So the front,
observed in the numerical integration of the discrete FKPP on ΛR, would be just a little
slower (of the order of δx) than the front, which is solution of the FKPP equation.

Note that we have just found an asymptotic symmetry. In fact the choice of a scaling
invariant solution (26) is equivalent to set

Q = αAµ + ∆ζAµ (30)

The corresponding transformations, a scaling on A and a translation on ζ, are not a
symmetry of the non-linear equation (25) as Wµ = X̂Φ̂µ[A] − Φ̂µ[X̂A] = −αδx3(1 −
αδx)A2

µ+1 6= 0. As for α < 0 Aµ is a decreasing function of µ, we get that limµ→∞ Wµ = 0.
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5 Discussion and Conclusions

In this note we have applied the method of asymptotic symmetries to a discrete version of
the FPPK equation. In such a way we have shown that also in the discrete case the FKPP
equation possesses an asymptotic scaling symmetry which gives the correct asymptotic
behaviour of the system.

Long time ago Ibragimov and Fushchich [1, 18] introduced the notion of approximate
symmetry (for differential equations); this is based on some small parameter ε appearing
in the equation, and is a symmetry ”up to terms of order ε”. One could wonder what
is the relation between approximate symmetries in this sense and our approach to the
front solutions of the FKPP equation; note however that no explicit small parameter ε
is present in the FKPP equation. A natural way to introduce such an ε would be to
look for solutions whose amplitude is of order ε, i.e. un,m = εvn,m (with |vn,m| of order
one); proceeding in this way, however, the obtained scaling invariant solution will be
small everywhere, not only asymptotically. Actually, in our approach the natural small
parameter is inversely proportional to the group parameter generated by the asymptotic
symmetry. Thus the small parameter comes into play only when we consider an additional
object (the asymptotic symmetry). It appears, therefore, that our notion of asymptotic
symmetry cannot be reconducted to the notion of approximate symmetries of Ibragimov
and Fushchich [1, 18]; further work would be needed for a better understanding of the
relation between these two notions.

Work is in progress to obtain the asymptotic solutions for the anomalous reaction
diffusion equation. This equation is nonautonomous in the independent variables, so that
no point symmetry is available. In such a case the use of a renormalization of the lattice,
provided by eq. (6), might be important.
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